Rev. Acad. Canar. C'ienc., Vol. XXVI, 9-25 (diciembre de 2014)
DIVERSITY AND BIOGEOGRAPHY OF FISHES
IN THE ARINAGA-GANDO AREA,
EAST COAST OF GRAN CANARIA (CANARY ISLANDS)
* Espino, F., : Gonzalcz, J. A., 'Boyra, A.,
3 Fernandez, C.,
'Tuya, F. & 3 Brito, A.
1 Centro de Investigacion en Biodiversidad y Gestion Ambiental (BIOGES)
Departamento de Biologia, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria
Campus de Tafira. 35017 Las Palmas. Islas Canarias, Espana.
2 Grupo de Investigacion en Ecologia Marina Aplicada y Pesquerias
Departamento de Biologia, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria
Campus de Tafira. 35017 Las Palmas. Islas Canarias, Espana.
’ Oceanogratica: Divulgacion, Educacion y Ciencia. Peregrinos 30. Poligono Industrial El Goro
35219 Telde, Las Palmas. Islas Canarias, Espana.
4 Grupo de Investigacion en Biologia, Ecologia Marina y Conservacion (BIOECOMAC)
Departamento de Biologia Animal (Ciencias Marinas), Facultad de Biologia, Universidad de La Laguna
38206 La Laguna, Tenerife. Islas Canarias, Espana.
* Corresponding author: Fernando Espino
email: fesprod@gobiernodecanarias.org
ABSTRACT
A check-list of fishes regularly present in waters of the Gando-Arinaga area, in the
East coast of Gran Canaria, is presented herein. This inventory includes 175 species, 22 of
which were of chondrichthyans (belonging to 19 genera and 13 families), and 153 were of
actinopterygiians (121 genera and 60 families); 77.15% of the species have stable popula-tions
in the area and 61.15% have commercial interest. The zoogeographic analysis showed
a dominance of the Atlantic-Mediterranean distribution species (26%), followed by the Warm-temperate
in the Eastern Atlantic distribution species (16%), while Eastern Central Atlantic
Oceanic Islands (9%), Guinean (8%) and Macaronesian (4%) species showed smaller values,
but they were representative of the general biogeographic pattern of the canarian ichthyofauna.
This work pointed the presence of warm affinity fish species in the area, like it occurs in other
areas of the Canary Islands. This coastal area hosts a high diversity of fish species, which
could be explained by a variety of complex habitats, its geographic location and oceanographic
conditions. This area meets the conservation criteria for the establishment of a marine pro-tected
area.
Key words: ichthyofauna, biodiversity, marine protected area, zoogeography, Canary
Islands.
9
RESUMEN
El inventario de la ictiofauna del sector costero Gando-Arinaga, en el litoral Este de la
isla de Gran Canaria, incluye 175 especies, 22 especies de condrictios (agrupados en 19 ge-neros
y 1 3 familias) y 1 53 de actinopterigios (121 generos y 60 familias); el 77, 1 5% de las es-pecies
presentan poblaciones estables en la zona y un 61,15% de las especies tienen interes
comercial. El analisis zoogeografico mostro un predomino de las especies de distribucion
Atlantico-Mediterranea (26%), seguidas por las especies de distribucion en areas Calido-tem-pladas
del Atlantico Oriental (16%), mientras que las especies de las Islas Oceanicas del Atlan-tico
Centroriental (9%), Guineanas (8%) y Macaronesicas (4%) mostraron valores menores,
pero representatives del patron biogeografico general de la ictiofauna canaria. Se destaca la
presencia de especies de afinidad tropical en la zona, como sucede en otras areas del Archi-pielago
Canario. Esta zona del litoral alberga una alta diversidad de especies de peces, que
puede ser explicada por la variedad de habitats complejos que presenta, su localizacion geo-grafica
y sus condiciones oceanograficas. En conclusion, esta zona cumple con los criterios
de conservacion para poder establecer un area marina protegida.
Palabras clave: ictiofauna, biodiversidad, area marina protegida, zoogeografia, Islas
Canarias.
1. INTRODUCTION
The knowledge of the distribution patterns of the species and the areas that host high
diversity rates is crucial for a better management and conservation of the marine biological
resources. In a global context, these resources are suffering a severe depletion and the marine
space is poorly represented in the global network of marine protected areas (hereafter MPA’s),
only 0.01% of the world’s ocean is effectively protected (PAULY et al., 2002). This implies
that the identification and protection of the most representative areas for the marine biodi-versity
are priorities (BRITO, 2010).
On the Canarian Archipelago, especially in the fisheries marine reserves, several stud-ies
and species inventories have been carried out. Most of these studies have focused on fish-ery
species and pointed the importance of the MPA’s in the conservation of the marine
biodiversity (e.g., FALCON et al., 2002). The Gando-Arinaga marine area, located in the East
coast of Gran Canaria, has been recognized in some works ( BACALLADO et al., 1 989; HER-RERA
et al., 1993; ESPINO, 1997; PORTILLO & PEREZ, 1998) for its special natural re-sources.
In fact, the protection of this area has been proposed by some authors (BACALLADO
et al., 1989; AGUILAR et al., 2010), and many previous works have been carried out to es-tablish
a fishery marine reserve (see CASTRO et al., 2001; PEREZ et al., 2001; LUQUE et
al., 2001; MEDINA et al., 2001; TUYA et al., 2004). Today, there are two legal protected
areas in Gando-Arinaga: The Special Area of Conservation (hereafter SAC) SAC 26-GC,
namely "Bahia de Gando’ located at north, and the SAC 34-GC, namely ‘Playa del Cabron’
located at south, both established under the EU Habitat Directive.
The Gando-Arinaga area is located in the East coast of Gran Canaria (27° 50’ N - 27°
57’ Ny 15° 19’W- 1 5° 24’ W) (Fig. 1), with a surface of ca. 7,998.5 ha and a total perimeter
of ca. 48.5 km. The geomorphology of the coast is abrupt in the north and south parts and
smoother in the central part. The littoral shelf is relatively wide, reaching 50 and 100 m ba-thymetric
lines at 2.7 and 7.2 km from the line coast in the central part of the area, respectively.
10
W 15° 22' W 15° 19'
Figure 1 .- Map of the Gando-Arinaga area (East coast of Gran Canaria) with the sector studied
(broken line).
The basaltic hard bottoms can be seen to 20-30 m depth in ‘Tufia’, ‘Peninsula de Gando’,
‘Baja de Gando’, ‘Punta de La Sal’, ‘Veril del Cabron’ and ‘Roque de Arinaga’; from here the
volcanic materials are covered by sediments.
The factors influencing the coast relief had given up a high variety of biotopes that
support a diversity of biological communities (BACALLADO et al. ,
1 989; HERRERA et al.,
1993; ESPINO, 1997; PORTILLO & PEREZ, 1998; PEREZ et al., 2001). For example: 1).
In the intertidal zone: rocky flats, rock pools, cliffs, sandy and rocky beaches; 2). In the
infralittoral zone: rocky reefs with photophilic macroalgae communities dominated by
Cystoseira abies-marina (S. G. Gmelin) C. Agardh, 1 820 and Sargassum spp., rocky bottoms
without macroalgae or barren grounds dominated by Diadema africanum Rodriguez,
Hernandez & Clemente, 2010, isolated rocky outcrops, vertical cliffs or ‘veriles’, hollows and
caves, mixed sandy-rocky bottoms, sandy bottoms with seagrass meadows constituted by
Cymodocea nodosa (Ucria) Ascherson, 1870 or ‘sebadales’, communities of the green
rhizophytic algae Caulerpa prolifera (Forsskal) J. V. Lamouroux, 1809, mixed meadows of
11
C. nodosa-C. prolifera , and sandy sediments without vegetation; 3). In the infral ittoral-circalittoral
ecotone there are communities of free-living coralline algae (maerl) characterized
by Lithothamnion corallioides P. L. Crouan & H. M. Crouan, 1867, and deep corals
communities (gorgonians, anthipatarians). In this sector of the Gran Canaria coast, there are
some wrecks, artificial reefs and sea-cage fish farms that exert attraction-production effects
on some fish species. In addition, the littoral water mass can be considered as the habitat tor
many pelagic fish species.
The Gando-Arinaga area is directly exposed to the Trade Winds from NNE; these reach
their maximum intensity in the June-August period, with values of 9.7-10.7 m s"
1
. The topo-graphy
of the coasts and bottoms exerts a strong influence on the local marine currents, which
are originated by winds and tides (PORTILLO & PEREZ, 1998). The dominant current shows
the direction of the Canary Current (SW), followed in frequency by the direction of the
opposite current (NE), their speeds in surface varied between 5.57 to 24 cm s '. The water
mass of the area is temperate, with sea surface temperature varying between 1 8 to 1 8.6 °C in
February-March and 22.5 to 24.1 °C in September-October. The luminic intensity shows a
seasonal variation between 379 to 2,819 pE m 2 s', reaching 1% of this intensity at 38 and 61
m depth, respectively. Like in the Canary Islands region, these waters are oligotrophic. The
primary production shows maximum values between 2.0 mg C nr3 Ir 1 during the December-
February period and 4.9 mg C nr3 Ir 1 in March, and points a peak of production in late winter
and early spring (MEDINA, 1995; MEDINA et al. , 2001).
There are many references to the ichthyofauna of the Gando-Arinaga area. For exam-ple:
FALCON et al. ( 1 996) recorded 20 coastal fish species and found high mean richness and
diversity. ESPINO (1997) pointed that more than 100 species inhabit this area, and classified
76 species as common and 30 as occasional. PORTILLO & PEREZ (1998) recorded 53 fish
species in their underwater guide and indicated high fish richness. PEREZ et al. (2001)
recorded 93 species. CASTRO et al. (200 1 ) found that 29 fish species are exploited by the ar-tisanal
fisheries in the area. TUYA et al. (2004) registered 36 species during an ecologic eval-uation.
Finally, AGUILAR et al. (2010) recorded 59 species; some of them were observed
more than 100 m depth. The aims of this work were: 1) to make a check-list of fish species
that can be found in the Arinaga-Gando area; 2) to realize a comparative zoogeographic analy-sis
of the ichthyofauna; and 3) to propose the establishment of an MPA to preserve the ma-rine
fish biodiversity.
2. MATERIAL AND METHODS
To make the inventory of the ichthyofauna, first we reviewed the scientific papers pub-lished
and the grey literature works. Second, we interviewed professional fishermen of the area
(Melenara, El Burrero and Arinaga), sport fishermen and divers, with special attention to the
dive centres that regularly visit the area. Observational data of some cryptic and rare fish
species corresponding to marine biologists, scientific divers and specialized underwater pho-tographers.
The species recorded were grouped in genera and families, and ordered follow-ing
the criteria of Nelson (2006). Most of the scientific names of the species are those recorded
in WHITEHEAD et al. (1984-1986) and QUERO et al. (1990), and updated according to the
recent scientific literature (FROESE & PAULY, 2014). Within each family, genera and species
are in alphabetical order.
We classified each fish species in a spatial distribution category, following those es-tablished
in the ‘Catalogue of the Canary Islands Fishes’ by BRITO et al. (2002). To real-
12
ize the comparative zoogeographic analysis of the ichthyofauna, the fish species were clas-sified
in 1
1 groups according to their geographic distribution area: 1 . Amphi-Atlantic species
ot wide distribution; 2. Amphi-Atlantic species of warm affinity; 3. Species of Wide distri-bution
in the Eastern Atlantic; 4. Warm-temperate species in the Eastern Atlantic; 5. Cold-temperate
species in the Eastern Atlantic; 6. Atlantic-Mediterranean species; 7.
Cosmopolitan species; 8. Guinean species; 9. Eastern Central Atlantic Oceanic Islands
species (i.e. species distributed from the Azores to Cape Verde Islands); 10. Macaronesian
species (i.e. species of Azores, Madeira and Canary Islands); and 11. Pantropical species.
Here, the classification model proposed by BRITO et al. (1996) and applied by FALCON
et al. (2002) was followed, but taking into account more recent biogeographic analyses that
separate the marine fauna of Cape Verde Archipelago from the marine Azores, Madeira and
Canaries ecoregion (BRITO et al, 2007; SPALDING et al., 2007; FLOETER et al., 2008;
BRITO, 2010; WIRTZ et al., 2013).
3. RESULTS
The inventory of the Gando-Arinaga ichthyofauna includes 175 species, 22 of which
were of chondrichthyans (belonging to 19 genera and 13 families), and 153 were of
actinopterygiians (121 genera and 60 families). Within the chondrichthyans, the families with
more species richness were Myliobatidae (5 spp.), Carcharhinidae (3) and Dasyatidae (3);
while in the actinopterygiians were Sparidae (17), Carangidae (9), Scombridae (8), Blenniidae
(7), Gobiidae (7) and Labridae (7) (Table 1); 77.15% of the species have stable populations
in the area and 61.15% have commercial interest.
The zoogeographic analysis of the ichthyofauna showed that Atlantic-Mediterranean
distribution species were dominant (22%), followed by Warm-temperate in the Eastern At-lantic
distribution species (13%), Wide distribution in the Eastern Atlantic species group
(12%), Amphi-Atlantic species of warm affinity (1 1%) and Cosmopolitan species (11%), if
all species were included in the analysis (Fig. 2a). When pelagic and benthopelagic species
were excluded of the analysis, the percentage of the Atlantic-Mediterranean species (26%)
and Warm-temperate in the Eastern Atlantic species (16%) increased. The Eastern Central
Atlantic Oceanic Islands (9%), Guinean (8%) and Macaronesian (4%) species slightly in-creased
too. In opposite, Pantropical (3%) and Cosmopolitan (1%) species decreased sig-nificantly
(Fig. 2b).
The endemism of the Eastern Atlantic Islands (i.e. from the Azores to the Cape Verde
islands) up today, were represented in the Gando-Arinaga area: Raja maderensis (Rajidae),
Muraena augusti (Muraenidae), Gaidropsaras guttatus (Phycidae), Scorpaena canariensis
(Scorpaenidae), Mycteroperca fusca (Serranidae), Abudefdufluridus (Pomacentridae), Bodi-anus
scrofa (Labridae), Centrolabrus trutta (Labridae), Ophioblennius atlanticus (Blenni-idae),
Canthigaster capistrata (Tetraodontidae), Diplecogaster pectoralis (Gobiesocidae),
Didogobius kochi (Gobiidae), Bothus podas maderensis (Bothidae), Symphurus insularis
(Cynoglossidae) and Mauligobius maderensis (Gobiidae) (BRITO et al., 1999; BRITO et al.,
2002; BRITO et al., 2007; WIRTZ et al., 2013); of these species, R. maderensis, G. guttatus,
S. canariensis, C. trutta and M. maderensis were exclusive of the Macaronesian ecoregion (i.e.
Azores, Madeira and Canaries) (BRITO et al., 2002; BRITO et al., 2007; SPALDING et al.,
2007; WIRTZ et al., 2013).
13
Wide distribution in the
eastern Atlantic
12%
Amphi-Atlantic of wide
distribution
6%
Amphi-Atlantic of warm
affinity
11 %
Atlantic-Mediterranean
22%
Guinean
5%
Cosmopolitan
11%
Warm-temperate in the
eastern Atlantic
13%
Cold-temperate in the
eastern Atlantic
Macaronesian
3%
Pantropical
7%
EC Atlantic Oceanic Islands
6%
4%
b
EC Atlantic Oceanic Islands
Macaronesian
4%
Pantropical
3%
Amphi-Atlantic of wide
distribution
5% Amphi-Atlantic of warm
affinity
26%
12%
Wide distribution in the
eastern Atlantic
10%
Cold-temperate in the
eastern Atlantic
Warm-temperate in the
eastern Atlantic
16%
6%
Figure 2.- Biogeographic composition of the ichthyofauna of the Gando-Arinaga area including all
species, b. Excluding pelagic and benthopelagic species. For biogeographic categories see material and
methods.
14
4. DISCUSSION
The Gando-Arinaga littoral hosts a high diversity of fish species, especially taking into
account that this area only represents 9.5% of the line coast and 1 8.5% of the insular shelf sur-face,
to 100 m depth, off Gran Canaria. The high diversity could be explained by many fac-tors.
First, by a diversity of natural and artificial habitats and its structural complexity. These
factors have been pointed as determinant in the richness, abundance and composition of fish
assemblages (GRATWICKE & SPEIGHT, 2005, and references therein). Second, other fac-tors
influencing fish species richness are the location and orientation of this area. Gando-Ari-naga
is located in a channel between islands and orientated parallel to the direction of the
dominant current, this allows that some migratory fish species can be seen here (e.g., Rhin-codon
Upus, Cetorhinus maxinuts, Mobula spp., Manta birostris , Mola mola and Thunnus
spp.). The situation of the area facilitates that fish larvae of septentrional sectors of the is-lands
could be carried by the Canary Current, and later settle here. In addition, some human
activities, like marine aquaculture could explain the presence of some species, like Spams
aurata, Dicentrarchus labrax and Argyrosomus regius.
The biogeographic composition of the Gando-Arinaga ichthyofauna is according with
the model proposed by BRITO et al. ( 1996) for the ichthyofauna of the Canary Islands that
shares the littoral and upper bathyal bottoms. This can be explained by the high percentage
of benthic and demersal species that could extend their bathymetric distribution range to the
upper bathyal bottoms versus the percentage of benthic and demersal species that inhabit ex-clusively
littoral bottoms (49.15% vs. 17.15%). The Macaronesian species recorded a small
percentage according to previous analysis (BRITO et al., 1996; FALCON et al., 2002). Nev-ertheless,
ca. 50% of the endemic Macaronesian fish species were recorded in Gando-Ari-naga,
and ca. 75% of the endemic fish species of the Eastern Central Atlantic Oceanic Islands,
excluding endemism of Cape Verde Islands. In this group, the wide-eyed flounder Bothus
podas maderensis (Bothidae) must be reviewed, according with BRITO et al. (2007), and the
small tongue fish Symphurus insularis (Cynoglossidae), was recently recorded on the NGor
Island (Senegal) (WIRTZ, 2012), outside the eastern Atlantic Islands.
The gradual displacement of warm affinity fishes toward septentrional latitudes had
been pointed in many works, for example in Azores, Madeira, Canaries, Galicia, west coast
of Portugal and the Mediterranean Sea (see BRITO et al., 2005 and references therein;
HORTA e COSTA et al., 2014). BRITO et al. (2005) found out that 80% of the 30 new records
of actinopterygiians littoral fishes on the Canary Islands, between 1991 and 2005, corre-sponded
to species of tropical origin. This phenomenon of ‘tropicalizatioif has been found in
some areas of the Canarian Archipelago (e.g., FALCON et al., 2002). Recently, two species
of tropical fishes were found in the Arinaga-Gando area: Echiophis punctifer (Ophichthidae)
(A. BOYRApers. obs.), a species distributed in tropical areas of the Eastern and Western At-lantic;
and Hypleurochilus sp. (Blenniidae) (A. UBIERNA pers. com.). In addition, other
warm affinity species observed here were: Rhincodon typus (Rhincodontidae), Grammonus
longhursti (Bythitidae), Holocentrus ascensionis (Holocentridae), Caranx ciysos (Carangi-dae),
Lutjanus goreensis (Lutjanidae), Gnatliolepis thompsoni (Gobiidae), Acanthurus mon-roviae
(Acanthuridae), Canthidermis sufflamen (Balistidae) and Chilomycterus atringa
(Diodontidae). Of these, only G. thompsoni and C. atringa seem to have stable population in
the area. The presence of some of these warm species could be related to some human activ-ities,
like ships traffic and aquarium collection. Some authors pointed that other species could
reach the Canarian waters by their own dispersal abilities, in relation to the sea surface tem-perature
increasing on the Canaries (BRITO et al., 2005).
15
The number of taxa recorded could be increased when more studies would be carried
out; especially focused on pelagic species (e.g., Cacharhinidae, Sphymidae, Exocoetidae) and
deep benthic or demersal species that could be associated with free-living coralline algae habi-tat,
black corals or scleractinian corals. For example, AGUILAR et al. (2010) recorded the
presence, between 200 and 500 m depth, of: Squalus megalops (Squalidae), Raja maderensis
(Rajidae), Dasyatis pastinaca (Dasyatidae), Conger conger (Congridae), Chlorophthalmus
agassizi (Chlorophthalmidae), Merluccius merluccius (Merlucciidae), Cyttopsis rosea (Zei-dae),
Grammicolepis brachiusculus (Grammicolepididae), Capros aper (Caproidae), Macro-ramphosus
scolopax (Macroramphosidae), Helicolenus dactylopterus (Scorpaenidae) and
Arnoglossus cf. imperialis (Bothidae). Of these species, C. agassizi is relevant for its abun-dance,
forming big schools near the bottom and swimming against the current. These species
could be present in the area studied, since the 500 m bathymetric line is reached in the NE sec-tor
(see Fig. 1). Many species of small epipelagic and mesopelagic fishes (Myctophidae,
Gonostomatidae, Photichthyidae and Stomiidae) were not included in the inventory. Species
of these families were recorded by MOYANO & HERNANDEZ-LEON (2009) when ichthy-oplankton
surveys were carried out on the 100 m bathymetric line of the area.
The Gando-Arinaga area is one of the richest in fish species of the Canary Islands.
Nevertheless, like in other areas of the archipelago, the fishery overexploitation (AGUILERA
et al., 1994; BAS et al., 1995; FALCON et al., 1996; GONZALEZ, 2008), especially in the
most populated central islands like Gran Canaria (BORTONE et al., 1991; TUYA et al., 2006a,
b), and the marine contamination (AGUILERA et al., 1994; AGUILAR et al., 2010), are the
most important threat factors for the ichthyofauna. The SAC’s established in this area have the
aim of conservation determined habitat, and they have not an efficient management up today;
due to this, they are not sufficient to protect the marine biodiversity, especially the species and
populations of fishes. Despite the many proposals of protection of this area, the public ad-ministration
involved has not been able to protect this marine biodiversity.
If we consider the variety of littoral ecosystems, the richness of fish species, and other
taxonomic groups, like algae and marine invertebrates (BACALLADO et al., 1989; HER-RERA
et al., 1993; ESPINO, 1997; PORTILLO & PEREZ, 1998) present in the area, it is
clear the necessity to establish an MPA to protect the natural resources. This proposal is ac-cording
with the criteria pointed by BRITO (2010), who recommended the selection of ma-rine
spaces with high heterogeneity and complexity habitats. Hereby, the maximum protection
of vulnerable biodiversity due to fisheries and resources production increase could be reached.
Another benefit to adjacent areas is the larvae dispersion and the biomass exportation. On the
Canary Islands, a legal figure to protect the area is The Marine Natural Park or Marine Nat-ural
Reserve, because they allow the resources conservation and many uses (e.g., touristic,
recreational, scientific, educative, sports, etc.) at once. The first objective of the MPA must be
the conservation of the four levels of marine biodiversity: genetic, specific, population and
ecosystem. The second objective must be the limitation and reduction of marine resources
exploitation activities, increasing at the same time others more sustainable.
5. ACKNOWLEDGEMENTS
We gratefully thank A. Telle, E. Faber, M. Farray, O. Santana, J. M. Falcon, B. Ramirez,
V. Benitez, A. Ubiema, J. Casas, B. Goldthorpe, A. Goldthorpe and E. Vera for helping us
with data collection. Special thanks go to M. T. Espino and professional fishermen of Mele-nara,
El Burrero and Arinaga.
16
6. REFERENCES
AGUILAR, R., A. DE LATORRIENTE, J. PENALVER, J. LOPEZ, R. GREENBERG & C.
CALZADILLA. 2010. Propuesta de Areas Marinas de Importancia Ecologica. Islas Ca-narias.
Oceana. 296 pp.
AGUILERA, F., A. BRITO, C. CASTILLA, A. DIAZ, J. M. FERNANDEZ-PALACIOS, A.
RODRIGUEZ, F. SABATE & J. SANCHEZ. 1994. Canarias: Economla, Ecologia y
Medio Ambiente. Francisco Lemus Editor. La Laguna. 300 pp.
BACALLADO, J. J., T. CRUZ, A. BRITO, J. BARQUIN & M. CARRILLO. 1989. Reservas
Marinas de Canarias. Consejeria de Agriculture y Pesca del Gobiemo de Canarias. 200 pp.
BAS, C„ J. J. CASTRO, V. HERNANDEZ-GARCIA, J. M. LORENZO, T. MORENO, J. M.
PAJUELO & A. J. GONZALEZ-RAMOS. 1995. La Pesca en Canarias y su area de in-fluencia.
Ediciones del Cabildo Insular de Gran Canaria. Las Palmas. 331 pp.
BORTONE, S. A., J. VAN TASSEL, A. BRITO, J. M. FALCON & C. M. BUNDRICK. 1991.
A visual assessment of the inshore fishes and fishery resources off El Hierro, Canary Is-lands:
a baseline survey. Scientia Marina, 55: 529-541.
BRITO, A., I. J. LOZANO, J. M. FALCON, F. M. RODRIGUEZ & J. MENA. 1996. Andli-sis
biogeogrdfico de la ictiofauna de las islas Canarias. pp. 241-270. En Oceanografia y
Recursos Pesqueros en el Atlantico Centro-Oriental. Llinas, O., J. A. Gonzalez y M. J.
Rueda (Ed.).
BRITO, A., R. HERRERA, J. M. FALCON, J. A. GARCIA-CHARTON, J. BARQUIN & A.
PEREZ-RUZAFA. 1999. Contribucion al conocimiento de la ictiofauna de las islas de
Cabo Verde. Revista de la Academia Canaria de Ciencias, 1 1 : 27-41
.
BRITO, A., P. J. PASCUAL, J. M. FALCON, A. SANCHO & G. GONZALEZ. 2002. Peces
de las Islas Canarias. Catdlogo Comentado e Ilustrado. Francisco Lemus Editor. 419 pp.
BRITO, A., J. M. FALCON & R. HERRERA. 2005. Sobre la tropicalizacion reciente de la ic-tiofauna
litoral de las islas Canarias y su relacion con cambios ambientales y actividades
antropicas. Vieraea, 33: 515-525.
BRITO, A., J. M. FALCON & R. HERRERA. 2007. Caracteristicas zoogeograficas de la ic-tiofauna
litoral de las Islas de Cabo Verde y comparacion con los archipielagos macaro-nesicos.
Revista de la Academia Canaria de Ciencias, 18 (4): 93-109.
BRITO, A. 2010. Biogeografia y conservacion de la biodiversidad marina en la Macaronesia.
Revista de la Academia Canaria de Ciencias, 22 (3): 215-229.
CASTRO, J. J., A. FERNANDEZ, J. PEREZ, F. TUYA, L. MEDINA & A. LUQUE. 2001.
Nivel de explotacion del area propuesta como reserva marina en la costa este de Gran Ca-naria
(Islas Canarias, Espana). pp. 405-413. En Actas de las Primeras Jomadas Intema-cionales
sobre Reservas Marinas. Murcia, 1999. Ministerio de Agriculture, Pesca y
Alimentacion.
ESPINO, F. 1997. El valor ecologico del litoral de Agiiimes, Gran Canaria. Medio Ambiente
Canarias. Revista de la Consejeria de Polltica Territorial y Medio Ambiente, 5: 3-4.
FALCON, J. M., S. A. BORTONE, A. BRITO & C. M. BUNDRICK. 1996. Structure and re-lationships
within and between the littoral rock-substrate fish communities off four is-lands
in the Canarian Archipelago. Marine Biology, 125: 215-231.
FALCON, J. M., A. BRITO, P. PASCUAL, G. GONZALEZ, A. SANCHO, M. CABRERA,
A. BAEZ, P. MARTIN-SOSA & J. BARQUIN. 2002. Catalogo de los peces de la Reserva
17
Marina de La Graciosa e Islotes al norte de Lanzarote. Tropicalizacion reciente del po-blamiento
ictico. Revista de la Academia Canaria de Ciencias, 14 (3-4): 1 19-138.
FLOETER, S. R., L. A. ROCHA, D. R. ROBERTSON, J. C. JOYEUX, W. F. SMITH-VANIZ,
P. WIRTH, A. J. EDWARDS, J. P. BARREIROS, C. E. L. FERREIRA, J. L. GASPARINI,
A. BRITO, J. M. FALCON, B. W. BOWEN & G. BERNARDI. 2008. Atlantic reef fish
biogeography and evolution. Journal ofBiogeography, 35: 22-47.
FROESE, R. & D. PAULY (Eds.). 2014. - FishBase. World Wide Web electronic publication.
www.fishbase.org, version (02/2014).
GONZALEZ, J. A. (Ed.). 2008. Memoria Cientlfico-tecnica Final sobre el Estado de los Re-cursos
Pesqueros de Canarias (REPESCAN). Instituto Canario de Ciencias Marinas,
ACIISI, Gobiemo de Canarias. Telde (Las Palmas), 210 pp.
GRATWICKE, B. & M. R. SPEIGHT. 2005. The relationship between fish species richness,
abundance and habitat complexity in a range of shallow tropical marine habitats. Journal
ofFish Biology, 66: 650-667.
HERRERA, R., D. MONTERO & R. HAROUN. 1993. Bionomia bentonica del litoral de la
playa del Cabron (Gran Canaria). Publicaciones Especiales del Instituto Espahol de Oce-anografia,
11: 291-298.
HORTA e COSTA, B„ J. ASS1S, G. FRANCO, K. ERZINI, M. HENRIQUES, E. J. GON-SALVES
& J. E. CASELLE. 2014. Tropicalization of fish assemblages in temperate bio-geographic
transition zones. Marine Ecology> Progress Series, 504: 241-252.
LUQUE, A., M. REUSS, J. PEREZ, A. FERNANDEZ, L. MEDINA, F. TUYA, J. A. MAR-TIN
& J. J. CASTRO. 2001. Estudio de las actividcides costeras que pueden afectar a la
posible area de reserva marina de Gando-Arinaga, Gran Canaria, pp. 32 1-332. En Actas
de las Primeras Jomadas Internacionales sobre Reservas Marinas. Murcia, 1999. Minis-terio
de Agricultura, Pesca y Alimentacion.
MEDINA, L. 1995. Analisis multidisciplinar del ecosistema costero insular, balance energe-tico,
capa de mezcla y modelo biologico. Tesis Doctoral. Facultad de Ciencia del Mar,
ULPGC. 330 pp.
MEDINA, L., A. LUQUE, S. ALVAREZ, F. TUYA, J. J. CASTRO & J. A. MARTIN. 2001.
Parametros ambientales del area de lafutura reserva marina de Gando-Arinaga. pp. 393-
403. En Actas de las Primeras Jomadas Internacionales sobre Reservas Marinas. Murcia,
1999. Ministerio de Agricultura, Pesca y Alimentacion.
MOYANO, M. & S. HERNANDEZ-LEON. 2009. Temporal and along-shelf distribution of
the larval fish assemblage at Gran Canaria, Canary Islands. Scientia Marina, 73S 1 : 85-96.
NELSON, J. S. 2006. Fishes of the World. 4th ed. John Wiley & Sons, Inc., Hoboken, New
Jersey, USA. 601 pp.
PAULY, D„ V. CHRISTENSEN, S. GUENETTE, T. J. PITCHER, U. R. SUMAILA, C. J.
WALTERS, R. WATSON & D. ZELLER. 2002. Towards sustainability in world fisheries.
Nature, 418: 689-695.
PEREZ, J., J. J. CASTRO & A. LUQUE. 2001. Evaluacion del efecto reserva en Arinaga
(Sureste de Gran Canaria), pp. 2 1 7-225. En Actas de las Primeras Jomadas Internacionales
sobre Reservas Marinas. Murcia, 1999. Ministerio de Agricultura, Pesca y Alimentacion.
PORTILLO, A. & J. PEREZ. 1998. Reserva Marina de Arinaga. Gran Canaria. Cabildo In-sular
de Gran Canaria. 141 pp.
18
QUERO, J. C., J. C. HUREAU, C. KARRER, A. POST & L. SALDANHA (Eds.). 1990.
Check-list ofthe Fishes ofthe Eastern Tropical Atlantic. Vol. I-III. UNESCO. Lisbon.
SPALDING, M. D„ H. E. FOX, G. R. ALLEN, N. DAVIDSON, Z. A. FERDANA, M. FIN-LAYSON,
B. S. HALPERN, M. A. JORGE, A. LOMBANA, S. A. LOURIE, K. D. MAR-TIN,
E. McMANUS, J. MOLNAR, C. A. RECCHIA & J. ROBERTSON. 2007. Marine
Ecoregions of the World: A bioregionalization of Coastal and ShelfAreas. BioScience, 57:
573-583.
TUYA, F., G. M. REUSS, J. A. MARTIN & A. LUQUE. 2004. Evaluacion de las comunida-des
icticas litorales de la zona propuesta como Reserva Marina Gando-Arinaga (Gran Ca-naria,
Islas Canarias) mediante muestreos visuales. Ciencias Marinas, 30: 259-278.
TUYA, F„ L. ORTEGA-BORGES, P. SANCHEZ-JEREZ & R. J. HAROUN. 2006a. Effect
of fishing pressure on the spatio-temporal variability of the parrotfish, Sparisoma cretense
(Pisces: Scaridae), across the Canarian Archipelago (eastern Atlantic). Fisheries Research,
77: 24-33.
TUYA, F., P. SANCHEZ-JEREZ & R. J. HAROUN. 2006b. Populations of inshore serranids
across the Canarian Archipelago: Relationships with human pressure and implications for
conservation. Biological Conservation
,
128: 13-24.
WHITEHEAD, P. J. P„ M. L. BAUCHOT, J. C. HUREAU, J. NIELSEN & E. TORTONESE
(Eds.). 1984-1986. Fishes ofthe North-eastern Atlantic and the Mediterranean. Vol. I-III.
UNESCO. Paris. 1473 pp.
WIRTZ, P 2012. Seven new records of fish from NGor island, Senegal. Arquipelago, Life
and Marine Sciences, 29: 77-81.
WIRTZ, P, A. BRITO, J. M. FALCON, R. FREITAS, R. FRICKE, V. MONTEIRO, F. REI-NER
& O. TARICHE. 2013. The coastal fishes of the Cape Verde Islands - new records
and an annotated check-list. Spixiana
,
36: 1 13-142.
19
Table 1 . List of fish species recorded in Arinaga-Gando area (East coast of Gran Canaria Island). Family
(in bold), species (in italic) and the spatial category are shown.
Chondrichthyes
Family-Species Spatial category
Rhincodontidae
Rhincodon typus Smith, 1828
Odontaspididae
epipelagic littoral & oceanic
Oclontaspisferox (Risso, 1810)
Cetorhinidae
demersal
Cetorhinus maximus (Gunnerus, 1765)
Lamnidae
epipelagic littoral & oceanic
Isurus oxyrinchus Rafinesque, 1810
Triakidae
epipelagic littoral & oceanic
Mustelus mustelus (Linnaeus, 1758)
Carcharhinidae
demersal
Carcharhinus brachyurus (Gunther, 1870)
Carcharhinns fcdciformis (Muller & Henle, 1839)
Prionace glauca (Linnaeus, 1758)
Sphvrnidae
epipelagic littoral & oceanic
epipelagic littoral & oceanic
epipelagic oceanic
Sphyrna zygaena (Linnaeus, 1758)
Squatinidae
epipelagic littoral & oceanic
Squatina squatina (Linnaeus, 1758)
Torpedinidae
demersal littoral
Torpedo marmorata Risso, 1810
Rajidae
demersal littoral
Raja maderensis Lowe, 1838
Rostroraja alba (Lacepede, 1803)
Dasyatidae
demersal
demersal
Dasyatis centroura (Mitchill, 1815)
Dasyatis pastinaca (Linnaeus, 1758)
Taeniura grabata (Geoffroy Saint-Hilaire, 1817)
Gymnuridae
demersal
demersal
demersal
Gymnura altavela (Linnaeus, 1758)
Myliobatidae
demersal
Manta birostris (Walbaum, 1792)
Mobula mobular ( Bonnaterre, 1788)
Mobida tarapacana (Philippi, 1892)
Myliobatis aquila (Linnaeus, 1758)
Pteromylaeus bovinus (Geoffroy Saint-Hilaire, 1817)
Actinopterygii
epipelagic littoral & oceanic
epipelagic littoral & oceanic
epipelagic littoral & oceanic
benthopelagic littoral
benthopelagic littoral
Family-Species Spatial category
Muraenidae
Enchelycore anatina (Lowe, 1838) benthic littoral
20
Family-Species Spatial category
Gymnothorax polygonius Poey, 1875 benthic
Gymnothorax unicolor (Delaroche, 1809) benthic
Muraena augusti (Kaup, 1856) benthic
Muraena helena Linnaeus, 1758 benthic
Ophichthidae benthic
Apterichtus caecus (Linnaeus, 1758) benthic
Echiophis punctifer (Kaup, 1859) benthic
Myrichthys pardalis (Valenciennes, 1839)
Congridae
benthic
Ariosoma balearicum (Delaroche, 1809) benthic littoral
Conger conger (Linnaeus, 1 758) benthic
Heteroconger longissimus Gunther, 1870
Nettastomatidae
benthic
Facciolella oxyrhyncha (Bellotti, 1883)
Engraulidae
benthic littoral
Engraulis encrasicolus (Linnaeus, 1758)
Clupeidae
pelagic littoral
Sardina pilchardus (Walbaum, 1792) pelagic littoral
Sardinella anrita Valenciennes, 1847 pelagic littoral
Sardinella maderensis (Lowe, 1838)
Synodontidae
pelagic littoral
Synodus saurus (Linnaeus, 1758) demersal
Svnodus synodus (Linnaeus, 1758)
Bythitidae
demersal littoral
Grammonus longhursti (Cohen, 1964)
Phycidae
demersal
Gaidropscirus guttcitus (Collett, 1890) demersal littoral
Phycis phycis (Linnaeus, 1 766)
Antennariidae
demersal
Antennarius nummifer (Cuvier, 1817)
Mugilidae
benthic
Che/on labrosus (Risso, 1827) demersal littoral
Liza aurata (Risso, 1810)
Atherinidae
demersal littoral
Atherina presbyter Cuvier, 1829
Exocoetidae
pelagic littoral
Cheilopogon heterurus (Rafinesque, 1810)
Belonidae
epipelagic littoral & oceanic
Belone belone gracilis Lowe, 1 839 epipelagic littoral
Tylosurus acus (Lacepede, 1803)
Holocentridae
epipelagic littoral
Holocentrus ascensionis (Osbeck, 1765)
Zeidae
demersal littoral
Zeus faber Linnaeus, 1758 benthopelagic
21
Family-Species Spatial category
Syngnathidae
Hippocampus hippocampus (Linnaeus, 1758) benthic littoral
Nerophis ophidion (Linnaeus, 1758) benthic littoral
Syngnahtus acus Linnaeus, 1758 benthic
Syngnathus typhle Linnaeus, 1758 benthic littoral
Aulostomidae
Aulostomus strigosus Wheeler, 1955 demersal littoral
Macroramphosidae
Macroramphosus scolopax (Linnaeus, 1758) pelagic oceanic
Dactylopteridae
Dactylopterus volitans (Linnaeus, 1758) benthic littoral
Scorpaenidae
Scorpaena canariensis (Sauvage, 1878) benthic
Scorpaena maderensis Valenciennes, 1833 benthic littoral
Scorpaena porcus Linnaeus, 1758 benthic
Scorpaena scrofa Linnaeus, 1758 benthic
Triglidae
Chelidonichthys lucerna (Linnaeus, 1758) benthic
Trigloporus lastoviza lastoviza (Bonnaterre, 1788) benthic
Moronidae
Dicentrarchils labrax (Linnaeus, 1758) demersal
Dicentrarchus punctatus (Bloch, 1792) demersal littoral
Serranidae
Anthias anthias (Linnaeus, 1758) demersal
Epinephelus caninus (Valenciennes, 1843) demersal littoral
Epinephelus marginatus (Lowe, 1834) demersal
Mycteroperca fiisca (Lowe, 1838) demersal
Serranus atricauda Gunther, 1874 demersal
Serranus cabrilla (Linnaeus, 1758) demersal
Serranus scriba (Linnaeus, 1758) demersal
Priacanthidae
Heteropriacanthus cruentatus (Lacepede, 1801) demersal littoral
Apogonidae
Apogon imberbis (Linnaeus, 1758) demersal
Pomatomidae
Pomatomus saltatrix (Linnaeus, 1 766) pelagic littoral & oceanic
Coryphaenidae
Coryphaena equiselis Linnaeus, 1758 epipelagic
Coryphaena hippurus Linnaeus, 1758 epipelagic
Echcneidae
Echeneis naucrates Linnaeus, 1 758 pelagic littoral & oceanic
Carangidae
Caranx crysos (Mitchill, 1815) pelagic littoral
Naucrates ductor (Linnaeus, 1 758) pelagic oceanic
Pseudocaranx dentex (Bloch & Schneider, 1801) benthopelagic
22
Family-Species Spatial category
Seriola dumerili (Risso, 1810) benthopelagic
Seriola fasciata (Bloch, 1793) benthopelagic
Seriola rivoliana Valenciennes, 1833 benthopelagic
Trachinotus ovatus (Linnaeus, 1758) pelagic littoral
Trachurus picturatus (Bowdich, 1825) benthopelagic
Trachurus trachurus (Linnaeus, 1758)
Lutjanidae
benthopelagic
Lutjanus goreensis (Valenciennes, 1830)
Haemulidae
demersal littoral
Parapristipoma octolineatum (Valenciennes, 1833) demersal littoral
Pomadasys incisus (Bowdich, 1825)
Sparidae
demersal
Boops hoops (Linnaeus, 1758) benthopelagic
Dentex dentex (Linnaeus, 1758) demersal
Dentex gibbosus ( Rafinesque, 1810) demersal
Diplodus annularis (Linnaeus, 1758) demersal littoral
Diplodus cervituts cervinus (Lowe, 1838) demersal
Diplodus puntazzo (Walbaum, 1792) demersal
Diplodus sargus cadenati de la Paz, Bauchot & Daget, 1974 demersal
Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) demersal
Lithognathus mormyrus (Linnaeus, 1758) demersal littoral
Oblada melanura (Linnaeus, 1758) benthopelagic
Pagellus acarne (Risso, 1827) benthopelagic
Pagellus erythrinus (Linnaeus, 1758) demersal
Pagrus auriga Valenciennes, 1 843 demersal
Pagrus pagrus (Linnaeus, 1758) demersal
Sarpa salpa (Linnaeus, 1758) benthopelagic
Spcirus aurcita Linnaeus, 1758 demersal
Spondyliosoma cantharus (Linnaeus, 1758)
Sciaenidae
benthopelagic
Argyrosomus regius (Asso, 1801) Benthopelagic littoral
Sciaena umbra Linnaeus, 1758 demersal
Umbrina canariensis Valenciennes, 1 843 demersal
Umbrina ronchus Valenciennes, 1 843
Mullidae
demersal
Mullus surmuletus Linnaeus, 1758
Kyphosidae
demersal
Kyphosus sectatrix (Linnaeus, 1 758)
Pomacentridae
benthopelagic
Abudefdufluridus (Cuvier, 1830) demersal littoral
Chromis limbata (Valenciennes, 1833)
Labridae
benthopelagic
Bodianus scrofa (Valenciennes, 1 839) demersal
Centrolabrus trutta (Lowe, 1834) demersal littoral
23
Family-Species Spatial category
Coris julis (Linnaeus, 1758) demersal
Labrus bergylta Ascanius, 1767 demersal littoral
Symphodits mediterraneus (Linnaeus, 1758) demersal littoral
Thalassoma pavo (Linnaeus, 1758) demersal
Xyrichtys novacula (Linnaeus, 1758)
Scaridae
demersal
Sparisoma cretense (Linnaeus, 1758)
Trachinidae
demersal
Trachinus draco Linnaeus, 1758 demersal
Trachinus radiatus Cuvier, 1 829
Uranoscopidae
demersal
Uranoscopus scaber Linnaeus, 1758
Tripterygiidae
demersal
Tripterygion delaisi Cadenat & Blache, 1970
Blenniidae
benthic
Hypleurochilus sp. benthic
Lipophrys pholis (Linnaeus, 1758) benthic
Ophioblennius atlanticus (Valenciennes, 1836) benthic
Parablennius incognitas (Bath, 1968) benthic
Parablennius parvicornis (Valenciennes, 1836) benthic
Parablennius pilicornis (Cuvier, 1829) benthic
Scartella cristcitci (Linnaeus, 1758) benthic
Labrisomidae benthic
Labrisomus nuchipinnis (Quoy & Gaimard, 1824) benthic
Gobiesocidae benthic
Apletodon pellegrini (Chabanaud, 1925) benthic
Diplecogaster pectoralis Briggs, 1955 benthic
Lepadogaster candolii Risso, 1810 benthic
Lepadogcister lepadogaster (Bonnaterre, 1788) benthic
Opeatogenvs cadenat
i
Briggs, 1957
Gobiidae
benthic
Didogobius kochi Van Tassell, 1988 benthic
Gnatholepis thompsoni Jordan, 1904 benthic
Gobius niger Linnaeus, 1 758 benthic
Gobius paganellus Linnaeus, 1758 benthic
Mauligobius maderensis (Valenciennes, 1837) benthic
Thorogobius ephippiatus (Lowe, 1839) benthic
Vanneaugobius ccinariensis Van Tassell, Miller & Brito, 1988
Acanthuridae
benthic
Acanthurus monroviae Steindachner, 1876
Sphyraenidae
demersal littoral
Sphyraena viriclensis Cuvier, 1 829
Gempylidae
pelagic littoral
Lepidocybium flavobrunneum (Smith, 1843) benthopelagic
24
Family-Species Spatial category
Scombridae
Acanthocybium solandri (Cuvier, 1832) epipelagic littoral & oceanic
Katsuwonus pelamis (Linnaeus, 1758) epipelagic oceanic
Sarda sarda (Bloch, 1793) epipelagic littoral & oceanic
Scomber colias Gmelin, 1789 pelagic littoral & oceanic
Thunnus alalunga (Bonnaterre, 1788) pelagic oceanic
Thunnus albacares (Bonnaterre, 1788) epipelagic oceanic
Thunnus obesus (Lowe, 1839) pelagic oceanic
Thunnus thynnus (Linnaeus, 1758) pelagic oceanic
Xiphiidae
Xiphias gladius Linnaeus, 1758 pelagic oceanic & littoral
Centrolophidae
Schedophilus ovalis (Cuvier, 1833) benthopelagic
Bothidae
Bothus podas (Delaroche, 1809) benthic
Soleidae
Microchirus azevia (de Brito Capello, 1867) benthic
Pegusci lascaris (Risso, 1810) benthic
Synapturichthys kleinii (Risso, 1827) benthic littoral
Cynoglossidae
Symphurus insularis Munroe, Brito & Hernandez, 2000 benthic
Balistidae
Bcdistes capriscus Gmelin, 1789 benthopelagic
Canthidermis sufflamen (Mitchill, 1815) benthopelagic littoral
Monacanthidae
A/uterus scriptus (Osbeck, 1 765) benthopelagic littoral
Stephanolepis hispidus (Linnaeus, 1766) demersal
Tetraodontidae
Canthigaster capistrata (Lowe, 1839) demersal
Sphoeroides marmoratus (Lowe, 1838) demersal
Diodontidae
Chilomycterus atringa (Linnaeus, 1 758) demersal littoral
Molidae
Mold mold {Linnaeus, 1758) epipelagic littoral & oceanic
25