Rev.Acad.Canar.Cienc., XI (Núms. 1·2), 71-81 (1999)
FURTHER RESULTS ON THE FAMILY OF
GENERALIZED RADIATION INTEGRALS
¡(p,q,u,v)
m,n
L. Galué
Centro de Investigación de Matemática Aplicada (C.I.M.A.)
Facultad de Ingeniería. Universidad del Zulia
Apartado 10482
Maracaibo-Venezuela
Abstract
In this paper we continue the investigation of the family of generalized radiation
integrals defined by
q
[
a, b, e, d, >. l 1-mp rr r([3j)
¡(p,q,u,v) a (a ) ([3 ) = <J a _1·=_1 __ _ m,n > P > q 4 p
(r¡u), bv) 7r r(a) rr r(aj)
X
j=l
{b x>-(xm+c)8Gn,p+1 (~ ¡ 1 + p - (ap), 1+8 ) F, ( (r¡u); xm) dx Jo p+l,q+l xm +e p, 1 + P - ([3q) u v bv); dm
where a, b, e, d > O; -1 < Re(>.) < mminRe(p, l+p-(f3j ))-m [maxRe(l - (r¡k)) - 1]mRe(
8) - 1, j = 1,. . .,n - 1, k = 1,. . .,u; m,n,p,q E N; /i #- 0,-1, -2,. . .,
i=l,2, .. .,v.
For this family of generalized radiation integrals we present several cases of
reducing of the order, various recurrence relations and sorne relations of special
type.
Key words: Radiation integrals, recurrence relations, reducing of the order.
71
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
Introduction
The response I(a, b) of an omnidirectional radiation detector at a height h
directly over a comer of a plane isotropic rectangular (plaque) so urce of length
l, width w and uniform strength a can be expressed as [3]:
I(a , b) = -a lb arctan (J X2a +1 ) JXd2x+ 1'
4n o x2 + 1 x2 + 1
(1)
where a= w/h >O, b = l/h >O.
This integral was originally investigated by Hubbell et al. [3] in civil defense
studies, in order to predict radiation fields due to radioactive fallout, from
nuclear accidents or weapons, deposited on rectangular surfaces such as roof
sections; the integral (1) has also subsequently found important applications in
irradiation technology.
Various generalizations of (1) have been given by several authors, so we have:
Kalla et al. [4] defined and studied the following integral involving the Gauss
hypergeometric function 2F1 (a, /3; /'; x) :
H [ a, b,p, >. ] = aa lb x>.(x2 +p)-" F (a f3· ,.,. _ _i!:_) dx "'/J'V 4 21 ''" 2+ ._.., ' 1 7r O X p
Re(!') > Re(/3) >O, -1 < >. < 2a - l;p, a, b >O.
Galué [1] generalized the integral (2) by means of
I [ ·a,b,p,>.,μ ]
a, /3, 1'
X
(2)
(3)
where Re(!')> Re(/3) >O; -1 < >. < 2a - 2μ-1; μ > -1; p,a,b >O; O< a:::;
b <OO.
Other generalization of (2) has been given by Saigo and Srivastava [6] in the
form
F [ a,(ap); am ] d
p+l q (/JqJ; - xm+c X
where min{a,b,c} >O, >. E (-1,1) and pFq((ap);(/3q);z)
hypergeometric function.
72
X
(4)
is the generalized
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
Recently Galué and Prieto [2] have considered generalized radiation integrals
in the following forro:
q
] _ cr a _J=_l_ _
1-mp n r({3j)
- 47r fr r(aj)
X
j=l
rb x.X(xm + c)c5 Gn,p+l (~ 11 + p - (ap), 1+8 ) dx (5) Jo p+l,q+l xm +e p, 1 + p - ({3q)
a, b, e> O; - 1 <Re(>.)< m minRe(p, l+p-f3j)-mRe(8)-1, j = 1, ... , n-1;
m, n, p, q E N y G;'.:t ( z 1 ~: ) is the Meijer G-function,
and
q
[
a, b, e, d, >. l 1-mp n r({3j)
¡(p,q,u,v) a (a ) ({3) = cr a _J_·=_l _ _
m,n > P > q 4 p
(r¡u), bv) 7r r(a) n r(aj)
X
j=l
l+p-(ap),1+8) uFv( (r¡u): x:)dx
p,l+p-({3q) (/v), d
(6)
a, b, e, d >O; -1 <Re(>.) < mminRe(p, 1 + p - (f3j)) - m[maxRe(l - (r¡k)) -
1] - mRe(8) -1, j = 1, ... ,n -1, k = 1, ... ,u; m,n,p, q EN; /i =f. 0,-1,-2, ... ,
i = 1, 2, ... ,v.
In this paper we continue the investigation of the family of generalized radiation
integrals defined in (6), and we present several cases of reducing of the
order, various recurrence relations and sorne relations of special type.
Cases of Reducing of the Order
In this section, using the known formulas (7.2.3.14) through (7.2.3.21) in [5]
we establish many interesting results with positive integers h and i for reducing
the order of the integral (6). These are listed below:
¡(p,q,u,v) [ a (a ) ({3 ) = ¡(p,q,u-1,v-1) a (a ) ({3 )
a, b, e, d, >. l [ a, b, e, d, >.
m,n , P ' q m,n ' P ' q
( T/u- 1), /v + 1, bv) ( T/u- i), bv- 1)
u-1
jn=l T/j ~¡(p,q,u-1,v-1) [
v dm m,n n /j
j=l
a, b, e, d, >. + m l a, (ap), ({3q)
(T/u- i) + 1, bv-1) + 1
73
(7)
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
[
a, b, e, d, >.
¡(p,q,u,v) a (a ) ({3 )
m,n ' P' q
(TJu-1),/v + h, bv)
[
a, b, e, d, >. l ¡(p,q,u-l,v-1) a (a ) ({3 )
m,n ' P' q ·
(TJu-1) + r, bv-1) + r
[
a, b, e, d, >. l ¡(p,q,u,v) a (a ) ({3 ) =
m,n ' P' q
(rJu-2),/v-l +h,/v+i,(¡v)
[
a, b, e, d, >. l ¡(p,q,u-2,v-2) a (a ) ({3 )
m,n ' P' q
(TJu-2) + r + s, bv-2) + r + S
where we use the result [7, pg. 17, No. (12) and No. (9)]
O~k~n
k>n
(>.)m+n = (.A)m(A + m)n·
v-1
[
a, b, e, d, >. l n (¡j - 1) dm
I~;~,u,v) a, (ap), ({3q) = _1=_:_-1 _ _
(rJu-1), 1, bv-1), 2 n (r¡j - 1)
j=l
X
(8)
X
(9)
(10)
(11)
X
{ [
a, b, e, d, >. - m l [ b >. ] } I~;~,u- l,v-l) a, (ap), ({3q) . - !~;~) :', (~~), (~q) , (12)
(TJu-i) - 1, (lv-1) - 1
w1· t h T)1, .. .,rJu-14r 1 an d ¡(mp,,nq ) [ aa,, (ba, pe,)>,(. {3q) ] as d e fi ne d m· (5) .
74
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
v-1
[
a, b, e, d, >. l f1 bi - 2)(¡i - 1) d2m
I (p ,q,u,v ) a (a ) ((3 ) = 2 J--1 X
m,n ' p ' q u-1
(7Ju-1), 1, bv-1), 3 n (7Jj - 2) (7Jj -1)
j=l
{ [
. a, b, e, d, >. - 2m l )I ( 1li - 2) 1 ¡(p,q,u- l ,v-1) a (a ) ((3 ) _____ _
m,n ' P ' q v-1 dm
(7Ju-l) - 2, bv-1) - 2 jgl (¡j - 2)
X
¡(p,q) [ a, b, e,>.+ m ] _ ¡(p,q) [ a, b, e,>. ] } .
m,n a , (ap), ((3q) m,n a, (ap), ((3q) (13)
7]1, · · · ·, 77u- l =J 1, 2; /1, · ... , /v-1 =J 2
v-1
[
a, b, e, d, >. l .IT (1 - 'Yi )h
¡(p,q,u,v) a (a ) ((3 ) = (-l)u-v J=l X
m,n ' P ' q u-1
(7Ju-1), 1, bv-1), h + 1 n (1 -17j)h
j=[
a, b, e, d, >. l
J~;~,u-1,v-l) a, (ap), ((3q) _
(1Ju-i) - h, bv-1) - h
v-1
h "'°""" 1.-D1 (1 - rj)s (-l)(u-v)(l+h-s) ¡(p,q) [ a, b, e,"'+ m (h - s ) ]
L., u-1 (h _ s)! dm(h-s) m,n a, (ap) , ((3q) '
s=l n (1 - 77j)s
(14)
j=l
where we have used the result [7, pg. 17, No. (10)]
O::::; k::::; n . (15)
¡(p,q,u,v) [ a (a ) ((3 ) = X
a, b, e, d, >. l 1
m,n ' P ' q ( )
(1Ju), bv-2), 77u-l + 1, 7]u + 1 7]u - 7]u-l
75
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
{ [
a, b, e, d, >. l 7/u I!/:;~,u-1,v-l) a, (ap), ({Jq) -
(7/u-1), bv-2), 7/u-1 + 1
[
a, b, e, d, >.
r¡ 1 ¡(p,q,u-l,v-1) 0 (o ) ({3 )
u- m,n ' P ' q
(7/u-2),r¡u,(/v-2),r¡u+ 1
(16)
. [ a, b, e, d, >. l ( ) ¡(p,q,u,v) 0 (o ) ({3 ) 7/u-1 h
m,n ' P ' q - )
( ) ( ) + h + 1 7/u-1 - 7/u h
7/u ' /v-2 '7/u-1 , 7/u
X
[
a, b, e, d, >. l ( ) ¡(p,q,u-l,v-1) 0 (o ) ({3 ) _ 7/u-1 h7/u
m,n ' P ' q ( ) ( 7/u-2 ) ,r¡u, (/ v-2 ) ,r¡u + 1 7/u-1 - 7/u h
X
""h' "' ( 7/u-1 - 7/u - l)i ¡(p,q,u-1,v-l) [ 0a , b(,o e , )d , ({>3. ) l L_¿ ( ) m,n > P > q
i=l 7/u-l i (7/u-1), bv-2), 7/u-1 + i
(17)
7/u-1 =/= 7/u·
Recurrence Relations
In this section we establish various recurrence relations for I!/:;~·u,v) [· · ·] ,
where the upper parameters are different from the corresponding lower parameters
by an integer. The results presented are based on the definition (6) and
formulas (7.2.3.25) through (7.2.3.36) in [5]. We list the following interesting
results without going into details.
7/u- 1 ¡(p,q,u,v) [ 0 (o ) ({3 )
a, b, e, d, >. l ( ) m,n ' P ' q
7/u - 7/u-l ( 7/u-2), 7/u-1 + 1, 7/u, (rv)
/v - 1 ¡(p,q,u,v)
(rv - 7/u - 1) m,n
76
[
a, b, e, d, >.
a, (ap), ({Jq)
(r¡u), bv-1), /v - 1
(18)
l -
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
[
a, b, e, d, >. l 7/u ¡(p,q,u,v) a (a ) ((3 )
('y _ r¡ _ l) m,n ' P ' q ·
v u (7/u-1), 7/u + 1, bv)
(19)
[
a, b, e, d, >. l _ 1 [ a, b, e, d, >. l ¡(p,q,u,v) a (a ) ((3 ) = "/v ¡(p,q,u,v) a (a ) ((3 ) _
m,n ' P ' q ("fv _ "/v-l) m,n ' P ' q
( 7/u)' bv) ( 7/u) , bv-1 ), "/v - 1
'Yv-1 - 1 ¡(p,q,u,v) [ aa, b(,a e , )d , ((>3. ) l ( ) m ,n > P > q ·
"/v -"(v-l (r¡u), bv-2),"fv-l -1,"fv
(20)
I (p,q,u,v) [ ( ) ((3 ) = 7/u-1 "/v - 7/u
a, b, e, d, >. l ( ) m,n a, ap , q ( ) x
( 7/u), ('rv) "/v 7/u-l - 7/u
[
a, b, e, d, >. l ¡(p,q,u,v) a (a ) ((3 ) -
m,n ' P' q
( 7/u-2), 7/u-1 + 1, 7/u, bv-1 ), "/v + 1
( )
[
a, b, e, d, >. l 7/u "/v - 7/u-1 ¡(p,q,u,v) a (a ) ((3 )
( ) m,n > P > q · "/v 7/u-1 - 7/u (7/u-1), 7/u + 1, bv-1), "/v + 1
(21)
[
a, b, e, d, >. l ¡(p,q,u,v) a (a ) ((3 ) -
m,n ' P' q
(r¡u), bv-2),"fv-l + l ,"fv - 1
( l) [ a,b,c,d,>. l 7/u 'Yv-1 - "/v + ¡(p,q,u,v) a (a ) ((3 )
"/v-1 ( "/v - 7/u - 1) m,n ' P ' q · (7/u-1), 7/u + 1, bv-2), "/v-1+1, "/v
(22)
[
a, b, e, d, >. l [ a, b, e, d, >.
¡(p,q,u,v) a (a ) ((3 ) = ¡(p,q,u,v) a (a ) ((3 )
m,n ' P ' q m,n ' P ' q
( 7/u)' bv) ( 7/u- 1), 7/u + 1, bv) l -
(23)
77
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
'U
ul ( 7/j) 1 [ a, b, e, d, >. + m l J- ¡(p,q,u,v) a (a ) ((3 )
v-1 'Y(¡ +l)dm m ,n ' P' q ·
[I(¡j) v v (r¡u)+l,('Yv-l)+l,/v+2
j=l
¡(p,q,u,v) [ a (a ) ((3 ) = ¡(p,q,u,v) a (a ) ((3 )
a, b, e, d, >. l [ a, b, e, d, >.
m ,n ' P ' q m,n ' P ' q
(r¡u), ('Yv) (7/u-2), 7/u-1+1, 7/u - 1, ('Yv)
u-2
( 1) .rr ( 7/j) [ a, b, e, d, >. + m l 7/u - 7/u-1 - J=l ¡(p,q,u,v) a (a ) ((3 )
dm v m,n ' P ' q · rr (¡j) (71u- i) + 1,r¡u, (iv) + 1
j=l
[
a, b, e, d, >.
¡(p,q,u,v) a (a ) ((3 )
m,n ' P' q
( 7/u), (iv)
'U
l [ a, b, e, d, >.
= ¡(p,q,u,v) a (a ) ((3 )
m,n ' P' q
( 7/u-1 ), 7/u + 1, ('Yv-1), 'Yv + 1
rr ( 7/j) ( ) [ a, b, e, d, >. + m l J=l 'Yv - 7/u ¡(p,q,u,v) a (a ) ((3 )
vr-r1 'Y (¡ + l)dm m,n ' P ' q · (¡j) V V (r¡u) + 1, (iv-1) + l,"fv + 2
j=l
¡(p,q,u,v) a (a ) ((3 ) = 7/u-1 ¡(p,q,u,v) a (a ) ((3 )
(24)
]-
(25)
l -
(26)
[
a, b, e, d, >. l [ a, b, e, d, >.
m,n ' P ' q 'Y m,n ' P ' q
(r¡u), ('Yv) v (7/u-2),7/u-l + l,r¡u + 1, ('Yv-1),"fv + 1
(' Yv - 7/u-1 ) ¡(p,·q ,u,v) [ aa, b(,a e , )d , ((>3. ) - l m,n ' P' q
'Yv (7/u-1), 7/u + 1, ('Yv- 1), /v + 1
u-2 .rr ( 7/j) [ a, b, e, d, >. + m l J=l 7/u-1 ¡(p,q,u,v) a (a ) ((3 )
v dm m,n ' p ' q · rr (¡j) (r¡u) + 1, (iv) + 1
(27)
j=l
78
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
I (p,q,u ,v) [ a, b(, c,)d,(>.(3 ) l = bv-2 - l)bv-1 - l)("lu-1 - /v )(r¡u - /v)
m,n a, ap > q ( ) X
(r¡u), (/v) 'f/u-1 - 1 (r¡u - 1)(/v-2 - /v)(/v-1 - /v)
¡(p,q,u,v) a (a ) ((3 )
m 1n ' P' q
[
a, b, e, d, >.
("lu-2),r¡u-l -1,r¡u -1, bv-3),/v-2 -1,/v-l -1,/v
bv-2 - 1)(/v - l)('T/u-1 - /v-i)(r¡u - /v-1)
X
('T/u-l - l)(r¡u - 1)(/v-2 - /v-1)(/v - /v-1)
¡(p,q,u,v) a (a ) ((3 )
m,n ' P' q
[
a, b, e, d, >.
('T/u-2),r¡u-l -1,r¡u -1, bv-3),/v-2 -1,/v-l,/v -1
bv-1 - 1)(/v - l)("lu-1 - /v-2)(r¡u - / v-2)
X
("lu-1 - l)(r¡u - 1)(/v-1 - /v-2)(/v - /v-2)
[
a, b, e, d, >. l ¡(p,q,u,v) a (a ) ((3 ) m,n > P > q ·
("lu-2),'f/u-l -1,r¡u - l,(¡v-2),/v-l -1,/v -1
I (p,q,u,v) [ ( ) ((3 ) = 'f/u-2 'f/u-1 /v-1 - 'f/u /v - 'f/u
a, b, e, d, >. l ( )( ) m,n a, ap , q ( )( ) X
( 'f/u), (/v) /v-1/v 'f/u-2 - 'f/u 'f/u-l - 'f/u
[
a, b, e, d, >. l ¡(p,q,u,v) a (a ) ((3 ) + m,n ' P' q
("lu-3), 'f/u-2 + 1, 'f/u-1+1, 'f/u, bv-2) , /v-1 + 1, /v + 1
[
a, b, e, d, >. l ¡(p,q,u,v) a (a ) ((3 ) + m,n ' P' q
('T/u-3), 'f/u-2+1, 'f/u-1, 'f/u + 1, bv-2), /v-1+1, /v + 1
¡(p,q,u,v) [ a (a ) ((3 )
a, b, e, d, >. l m n ' P' q ·
' ('T/u-2), 'f/u-1+1, 'f/u + 1, bv-2), /v-1+1, /v + 1
79
(28)
(29)
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
Relations of Special Type
We list here four more recurrence relations for I$!:;~,u,v) [· · -J. From the definition
(6) and formulas (7.2.3.38) to (7.2.3.41) in [5], it is easy to establish the
following relations that are independient of any multipliers.
[
a, b, e, d, >. l [ a, b, e, d, >. l ¡(p,q,u,v) a (a ) ((3 ) +f(p,q,u,v) a (a ) ((3 )
m,n ' P ' q m,n ' P ' q
(r¡u), bv-1), 1- /v-1 (r¡u), bv-2), -/v-1,/v-l + 1
[
a,b,c,d,>. l = 2 ¡(p,q,u,v) a (a ) ((3 ) .
m,n ' P' q
(r¡u), bv-2), 1 - /v-1, 1 + /v-1
(30)
[
a, b, e, d, >. l ¡(p,q,u,v) a (a ) ((3 ) =
m,n ' p' q
(r¡u), bv-2), -r¡u, 1+7/u
[
a, b, e, d, >. l 2 ¡(p,q,u,v) a (a ) ((3 ) -
m,n ' P' q
(r¡u), bv-2), 1 - 7/u, 1+7/u
[
a, b, e, d, >. l ¡(p,q,u-l,v-1) a (a ) ((3 )
m,n ' P' q ·
(7/u-1), bv-2), 1- 7/u
(31)
[
a, b, e, d, >. l I$!:;~,u,v) a, (ap) , ((3q) +
(r¡u) , bv-1), 1+7/u
[
a,b,c,d,>. l ¡(p,q,u,v) a (a ) ((3 )
m,n ' P' q
(7/u-i), -r¡u, bv-1), 1 - 7/u
[
a, b, e, d, >. l 2 I$;:;~·u+l,v+l) a, (ap), ((3q) .
(7/u-1), -r¡u, 7/u, bv-1), 1 - 7/ui 1+7/u
(32)
[
a, b, e, d, >. l [ a, b, e, d, >. l ¡(p,q,u,v) a (a ) ((3 ) + ¡(p,q,u,v) a (a ) ((3 )
m,n ' P ' q m,n ' P ' q
(7/u- 1), 1 - 7/u- li (/v) (7/u-2), -r¡u-1, 1+7/u-1, (/v)
= 2 ¡(p,q,u,v) [ a (a ) ((3 )
a, b, e, d, >. l m,n ' P' q ·
(7/u-2), -r¡u-li 7/u-1> bv)
(33)
80
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017
Acknowledgement
The author would like to thank CONDES - Universidad del Zulia for financial
support.
References
l. Galué L.: Una generalización de la integral de Hubbell. Rev. Téc. Ing.
Univ. Zulia, Vol. 14 (1991), 153-160.
2. Galué L. y Prieto A.: Integrales generalizadas de radiación que involucran
la función G de Meijer. Rev. Acad. Canar. Cienc., Vol. IX, No. 1 (1997),
57-64.
3. Hubbell J.H., Bach R.L. and Lamkin J.C.: Radiation field from a
rectangular source. J. Res. Nat. Bur. Stand. 64C (1960), 121-138.
4. Kalla S.L., Al-Saqabi B. and Conde S.: Some results related to
radiation-field problems. Hadronic J. , Vol. 10 (Hl87), 221-230.
5. Prudnikov A.P., Brychkov Yu. A. and Marichev 0.1.: Integrals and
Series: More Special Functions, Vol. 3. Gordon and Breach, New York, 1990.
6. Saigo M. and Srivastava R.: Some new results for radiation-field problems.
Fukuoka Univ. Sci. Rep., Vol. 20, No. 1 (1990), 1-13.
7. Srivastava H.M. and Karlsson P.W.: Multiple Gaussian Hypergeometric
Series. Jolm Wiley & Sons, New York, 1985.
81
© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017