Structure oj Vegetation in the Canary Islands
by
Kornelius Lems t
Goucher College, Baltimore, Maryland U.S.A.
(Recibido en la redacción: 17-1-1968)
ESTRUCTURA DE LA VEGETACION EN LAS ISLAS
R E S U M E N
1. Este estudio intenta describir dos asociaciones arbustivas, una en la parte oc-cidental
de Tenerife, dominado por la tabaiba roja, Euphorbia atropurpurea, con
césped de hierbas anuales, la otra en Fuerteventura, su aspecto dominado por
verocíe, Kleinia ncriifolia, y espina blanca, Asparagus albus.
2. La estructura de la vegetación ha sido descrito según el sistema fisionómico de
Dansereau. Las dos comunidades vegetales son parecidas salvo en la abundan-cia
dc cspinas en la asociación de Klciriia - Asparu~qus, y las gramíneas mas
extendidas en la asociación de Euphorbia atropurpurea.
3. Cada especie tiene un "valor de importmcia" calculado de su frecuencia re-lativa
y qii rlnmininria re!ltivl. E! ?&z! l e !*u .,deres Yc imp~;ti;nciü dc tudas
especies en cada asociación llega a 100.
4. Para el análisiq de las formas biológicas se utiliza un sistema derivado de obras
de Raunkiaer (1934), Du Rietz (1931), y Schmid (1956). Tipo biológico, ra-mificación,
sistema de raices, caída de las hojas, tipo de inflorescencia, y di-semínulos
están incluidos en este sistema.
5. Diferencias entre las dos comunidades vegetales existen en: la importancia
menor dc hierbas anuales de la asociación de KIeinia y Aspnragus, plantas más
ramificadas con hojas más caducas de la misma, las inflorescencias más peque-ñas
y más escondidas, y los disemínulos de la misma asociación adaptados al
transporte por el viento y por los pájaros. Muchos de los disemínulos del ta-baibal
de Euphurbia atropurpurea podrían ser adaptados al transporte por ca-bras.
j- 1931 - 1968
6. El análisis de la .d i.s,tr ibución geográfica dc las especics revcla cl carácter afri- cni,G de as.cAuc:ci; de K!ri,yia z4bPU,-MhuA, La cviilxni&d de ~u,íJ:Gyhic
atropurpurea se interpreta como un césped de origen mediterráneo, colonizado
por una especie endémica tinerfeña de Euphorbia.
7. Como factores del ambiente. responsables para las diferencias estructurales de
las dos asociaciones, se citan los siguientes: altura más elevada (1000 m) del
sitio de Euphorbia atrapurpurerr, con un clima más frío y lluvioso: suelo mucho
más pedregoso y seco del sitio de Kleinia y Asparagus; influencia de cabras,
indudable en Tenerife: también se cita la proximidad a la costa africana de la
isla de Fuerteventura (100 km).
I N T R O D U C T I O N
The plants of the Canary Islands have been described
and classified for almost a century and a half, beginning
with the account by Leupold von Buch (1835), folluwed by
the massive monograph of Webb and Berthelot (1836-1850),
the explorations of Bolle (1863, 1891), Cllrist (1888), Pitard
and Proust (19081, Burchard (1929), and recent discoveries
made by Sventenius (1948 - 1949, 1950 - 1934, 1960). The
most recent compilation of the flora (Lems, 1960a) contains
1531 species of vascular plants. It is important to make a
distinction between the concept of flora and that of vegeta-tion.
A flora is a list of species, arranged according to genus
and family, in which each species counts equally, whelher it
be the "Crago" (Dracccna draco L.) wilh macsi;c crjivn
and trunk, or "Pata de Camello" (Aizoon caxarzense L.) with
a few short stems and leaves flat on thc drsert floor. Vege-tation
is different from flora Jn two rcspects: First; the sze-cics
contribute different numbers of individuals, so that
some are more conspicuous (dominant) than others, and by
thzir greuter bi9ri-,ass cvriti.ibiite t~ the nrncliiotinn ^f Y'----"-"
organic matter; this consideration is important to those who
use vegetation as a source of lumber, fuel, or fodder for do-mestic
animals. This usage will, in turn, modify the vegeta-tion,
either favorably or unfavorably. A second aspect of
vegetation, by which it is different from the concept of flora,
is that the components of vegetation have a growth-form
which gives rise to a distinctive physiognomy, a structure
which is composed of elements (synusiae), containing those
plants whose growth form is similar. Thus, a Canary laurel
forest may consist of a synusia of evergreen broadleaved
trees (Lwwrws c ~m~ i emiOs ,c ~tzuf:~ ztensH, ebe~de7i"Ie ezcel-sa,
Notelaea excelsa), an element of shrubs (Viburnum ru-gosum,
Ilex canariensis, and young individuals of the tree
species which for a time play the role of shrubs), a synusia
of ferns (Woodwardia radicans, Dryopteris oligodonta, Athy-rium
urnbrosum), another of perennial flowering herbs (Ra-nunculus
cortusaefolius, Senecio cruentus), and finally a
ground layer composed of moss and lichen.
The analysis of vegetation in the Canary Islands has
only just begun. The 19th century and the first half of the
20th produced only accounts of the zonation of vegetation,
and general descriptions of its various aspects. Von Hum-boldt
(1814), and Schimper (1907) were among the illus-trious
botanists who contributed to the development of a
concept of zonation and structure of vegetation in the Ca-nary
Islands. It remained for Ceballos and Ortuño (fS5l)
ti p r~v i b ea c~inprehensiver !rccifi~i?tim 2nd maps shvwing
the dislribution of the vegetation zones; their work cons-titutes
a summary of the first phase of Canarian vegetation
analysis.
While the vegetation of Europe has heen described in
greater detail than that of any other continent, mainly by
the quantitative methods developed by Braun-Blanquet
(1932) and his associates, it is surprising that such methods
have only recently been, employed in the Canaries, where
the description of plant associations had its first impetus
from work by Rivas Goday and Esteve Chueca (1964), Ober-dorfer
(1965), and the present writer (Lems, 1958). Much
more patient and systematic accumulation of data is needed
before a syllabus of Canarian plant associations can be pub-lished,
comparable to the one for the Netherlands (West-hoff,
et al., 1946), and before we can expect detailed vege-
tation maps like those made of French vegetation (Emberger
and Braun-Blanquet, 1955).
It is the purpose of the present articie to introduce a
consid~rationo f the swond major criterion of vegetation: its
structural composition in terms of plant growth forms. Sin-ce
the classification of plant associations is as yet incomplete,
sha:: restrict these reiiiarns icii he aiialysis "f sevela;
stands of vegetation which were studied using a method of
analysis that is based on structural criteria. The selecticn of
a suitable method will constitute the first problem. Its appli-cation
to Canarian vegetation will be the second phase of
this study. Its relevance to the central problem of Canarian
botany: the origin of the vegetation, will be considered last.
M E T H O D S
The study of vegetatinn s t ructur~,a s a dimensjmi dis-tinct
from its floristic composition, depends upon the selec-tion
of a set of criteria dealing with the form of the compo-
A - - l - - - A - A l - - : - - :-- 1 Al--:-- L-1 2 - A --.-A- IlCllL &JldllLb, Lllt?ll P I l Y S l U ~ l I U l I I Y ,d l l U Lllt'll LJUlld V l U U l 111 LC1111S
of leaf fall, branch and inflorescence production, root sys-tems,
and methods of dispersal. Such a list of criteria, when
applied to an actual stand of vegetation, will define its phy-siognomy,
its response to seasonal cycles, its utilization of
the substrate, and its capacity for self-maintenance and dis-persal.
No single system has as yet been proposed that will
measure al1 of these criteria, but adequate classifications are
naw Utrui!ab!z far ir,&ridUa! nspects.
PHYSIOGNOMY. Dansereau (1958) has worked out a
set of categories for the definition of vegetation structure in
which each basic life-form is represented by a symbol. Sable
1 lists the criteria in each category. The main emphasis in
Lc.lLi l:a- a..y-.aA.c..c-l ll iS ofi foliage, its height abovz t h e g r o ~ ~ idts,
perrnanence, texture, and array of shapes and sizes. In ad-dition
to the criteria listed, Dansereau provides a pictorial
representation for each one, and also recognizes in his dia-grams
the presence of buttresses, stilt roots, spines, and dif-
ferent shapes of tree crowns. The system has been found
useful for the cmparison of v~getatinn fnrmationc. nn a
worldwide scale. It emphasizes the evolution of structural
similarities in areas of similar climate and substrate.
GROWTH FORM. Parallel with the physiognomic clas-sification,
there has developed a series of classifications ba-sed
upon fhe s h o ~sty stem, 2nd thr rute anc! mcde cf brari-ching
of the plants. The initial impetus came from Warming
(1908). Du Rietz (1931) contributed a classification of stem
types based upon their orientation, relation to the soil,
thickness and consistency. Unfortunately, his growth form
classification remained incomplete. Recently, the classifi-cation
of plant growth forms based upon shoot types has
been advanced by Schmid (1956) who proposed a set of ca-tegories
and eriteria, together with pictorial symbols. This
approach has been found especially useful in the comparison
of forest types (Schmid, 1957), and in tracing the evolutio-iiaiy
iiiodificaiiur~ v i tile shvoi sysiem in ceriain genera of
plants (Lems, 1960b). 1 have found it desirable to modify the
classification proposed by Schmid, and present my revision
in Table 2.
The growth form scheme is not designed to depict phy-siognomy
of vegetation, but rather the array of morphologi-cal
types present in a given plant community. Coverage,
used by Dansereau as sole criterion for the importance of
each structural component, is here regarded as but one of
severa1 phytosociological criteria which contribute to the
-i-r-n- y- ortance QIa plunt. Curtis 2nd 1,kIntesh (1951) use t ree
diameter, frequency of species, and abundance in a sample
series from a stand of forest to arrive at an "importance va-he".
A similar procedure can be used on non-forest vege-tation,
using coverage, frequency, and abundance. For pro-poses
of the present study, only the former two data were
available. The importance value of each of the species in the
community was calculated from relative coverage and rela-tive
frecpeney, and expressed as a percentage of the sum of
relative coverages and relative frequencies of al1 species
found in the community. Where coverage of the species was
negligihle, only itc f r e q~e n r yw as coiinted towards the im-portance
value.
ROOT SYSTEMS. The importance of root systems to
the biology of plant communities is obvious. Most of the
knowledge of root systems of plants derives from work done
in grass!anc! (Weuier, 1958) 2nd swannu (vun Dmselaar -
ten Bokkel Huinink, 1966) on a relatively homogeneous
substrate which allows for the unhampered development of
roots. In regions where most of the substrate consists of re-cent
and partially weathered lava with small soil pockets,
studies of root systems are phgsically impossible, except for
transplant and seedling experiments. For a more complete
classification of root growth forms the reader is referred to
van Donselaar - ten Bokkel Huinink (1966).
DISPERSAL. Although dispersal is not ordinarily regar-ded
as part of the structural analysis of vegetation, it has
adaptive, evolutionary aspects; it contributes not only to the
interna1 dynamics and maintenance of the community, but
also to its geographic distribution. Dispersa1 is an integral
part of the biology of plant communities. The most familiar
classification of dispersal methods is that of Molinier and
Muller (1Y38), based upon the agent of transport. In order
to improve the logic and ease of application of the dispersal
classification, Dansereau and Lems (1957) have replaced the
"zoochore, anemochore" approach with a classification based
on adaptive morphology shown in Table 3. The symbols
~~tlh,eiy~ prcl~,v ridczu~n bz iri pictGriu! UiugruEs
getation.
STRUCTURE OF TWO COMMUNITIES
Two plant communities will now be analysed as to struc-ture
(Fig. 1-2). The phytosociology of these two communi-ties
was described by the author (Lems, 1958) but additional
data have now become available. The following list will
indicate the ecological and geographic differences between
the two communities :
Euphorbietum atro- Yleinio - Asparagetum
purpureae albae
Island: Tenerife Fuerteventura
Locaiity : Between Santiago and
Masca Volcán de La Oliva
Elevation: 900 1100 m 250 - 350 m
Mean annual
rainf al1 : 575 mm 214 mm
Mogn anniiol -.---A-temperature:
13.8' C 18.1° C
Substrate : Loam with boulders over coarse lava "mal-oíd-
Tertiary basaiis pais" with smaii soii
pockets rock of Qua-ternary
age
Number of
sample areas: 5 4
Dominants : Euphorbia atropurpurea Asparagus a h s
annual grasses Kleinia neriifoíia
Table 4 shows the floristic composition of the Euphor-bietum
atropurpureae, near Santiago, Tenerife. Coverage
values are given according to the combined estimate scale
of Braun-Blanquet (1932). From the coverage and the fre-quency
in 5 sample plots, an "importance value" has been
calculated, as discussed in the previous section. In tlie co-lumns
following the importance value, the physiognomic cri-teria
of Table 1 have been applied to the species, as well as
the growth form criteria listed in Table 2, and the dispersa1
class of Table 3. These results will be discussed below. Table
5 shows the same set of data for the Kleinio - Asparagetum
albae of La Oliva, Fuerteventura.
It is now possible to compare the structural features of
the two communities, not only of the individual species, but
alsv takiqg into accvunt lheir relative importance as buil-ding
blocks of the vegetation. Fig. 3 is based upon the phy-siognomic
classification by Dansereau (1958), using the pic-torial
symbols proposed by that author. The spacing and
number of symbols in these diagrams are based solely on
coverage. Those physioynomic type5 which amount to Iess
than 4% of area covered are not represented. But different
species of the same physiognomy are combined, so that from
a physiognomic point of view there is no difference between
Euphorbia atropurpurea and E. regis-jubae, and tlieir cove-rages-
. can be added together and the same symbol is used.
lile basic simiiaritg oI both vegetation types 1s irnme-diately
evident: they can both he classified as oren scrub.
However, some of the subtler differences are of interest:
the greater coverage of graminoid herbs (Vulpia, Avena,
Briza) in the Euphorbia atropurpurea cominunity perhaps
correlated with more continuous soil; the greater prevalen-ce
of spines in the Kleinia - Asparagus commimity, wqes-ting
pressure from browsing by goats, and selection of resis-
. L - - A - - 1 - - A - / r
L d l l L p i d I l L J (LIYL¿UIuI1L1L LI rL, A ~ ~ U ~ UuiYh~Ub,SL UUILUb~p i~- CL
nosa, Opmtia ficus-indica). On the other hand, it should he
noted thet Ez~phorhia specjes, have a defense against goats
in their bitter, burning latex; in fact, the entire landscape of
the Canary Islands near s m lcvel is dominated by goat-re-sistant
vegetation.
An analysis of the more cornplex growth form formu-las
yields further interesting differences between the two
communities. The first consideration is that o£ life form.
Table 6 shows how a spectrum of life forms can be construc-ted
for each of the communities, in two different ways.
First, the number of species can be counted in each cate-gory.
The species in both communities are predominantly
annual (therophytes), with a slightly higher number in the
Kleinia - Asparagus community. But if the importance of
the species is taken into account, by adding the importance
values of species having the same life fnrrn syrnbol, the pic-ture
corresponds more closely to the relationships existing
in the field: therophytes account for less than one fourth
of the vegetation in the Kleinia - Asparagus community,
and for almost one half in the Euphorbia atropurpurea com-munity.
Exactly the opposite is truc for the shrubs (nano-phanerophytes).
Branching habit in the two communities is
also strikingly different. Using the importance value totals,
we Iinci ihe Ioiiowing percentages:
Kleinia - Asparagus
very dense - 3370, dense - 27010, sparse - 32%, unbran-ched
- 8%
Euphorbia atropurpurea
very dense - 7%, dense - 30%, sparse - 35%, unbran-ched
- 28%.
Apparently there is selection in favor of very densely
branched plants in the dry lava fields of the Kleinio-Aspara-get?
j.m. in Fi~&e.irenti?ra.
The fa11 of leaves in both communities is rather compa-rable,
and the differeqces may not be significant.
Kleinia - Asparagus
aphyllous - 13%, deciduous - 46%, semideciduous - 23%,
reiay evergreen - 17%, persistent evergreen - 1To.
Euphorbia atropurpurea
aphyllous - 470, deciduous - 47%, semideciduous - 16%,
relay evergreen - 23%, persistent evergreen - 10%.
There appears to be a slight shift toward evergreen lea-ves
in the latter community.
Anotber interesting difference shows up in a compa-rison
of inflorescence sizes and exposure. Even without
summarising the percentages, it is more than evident that
the Euphurbia atropurpurea community has a preponderan-ce
of medium sized inflorescences (11-100 flowers) with se-vera1
large and very large species (Aeonium urbicum,
Echium aculeatum, Rumex lunaria), and no plants with
individual flowers; in the Kleinia - Asparagus community,
small inflorescences prevail (2 - 10 flowers) with none in
the large (over 100 flowers) category, and many with indi-vidual
flowers. The degree of exposure of the inflorescence
is also strikingly different- long stalks have an importance
value of 5370 in the Euphorbia atropurpurea community,
1370 in the Kleinia - Asparagus community. Flowers concea-
1í-d cLz.,Gng the fo!isge total 7v0 iii the ~ u p h o i - ~~ ~i Ui - o ~ ~ ~ -
purea plots, 39% in the Kleinia - Asparagus community. An
explanation of these differences would involve the availa-bility
of pollinating insects, their possible tendency to stay
near the ground in Fuerteventura, and less reliance on vi-sual
factors, in finding the flowers. Further implications
have to do with dispersal.
The disseminules produced by the two commmities
are summarised in Sable 7. The species lists of the two
stands differ mainljj in the complete absence of disseminu-les
with fleshy outer covering, presumably dispersed by
birds, in the Euplwrbia atropurpurea community. If tke im-portance
values are taken into accornt, other differcnces
can be added: desmocliores are a large groilp in the Xuluphor-bia
atropurpurea community, due mainly to the prevaleiicc
of grasses such as Bromus rz~bensV, ulpia myuros, etc., who-se
pointed, awncd leinmzs are easily entnnzled in tha fílr nf
animals, suggesting that goats play a role in dispersa], at
least on a local scale. Pogonochores, i.e. seeds and fruits
~ x 4 t ' n n r i n n n h . r + - n m-- ----TT-L + ---- ---A- v r r u u y~~ a ~ ~ i u ~ . C ar;, D " l l l = V" I L S L u L w c ; lilptml t i ~tih e Ki&
nia - Asparagus community (Kleinia, Camlluma, and ¿afi;-
m e s are in tliis group). In general, the latter community is
better adapted to long-range dispersa1 (Wind, birds) and can
be predicted to have a wider range over the islands. Indeed
Oberdorfer (1965) reports similar vegetation from Tenerife.
Fig. 4 is a pictorial representation of the most important
growth forms, in decreasing order of stature; the symbols
used. are a modificatl~nnf t h ~ s ecf Schmid (1956) 2nd Lems
(1958).
The species found in the two communities can be clas-sified
according to their degree of endemism in the flora of
the Canary Islands. Some of them (Opuntia ficus-indica, Ni-cotiana
glauca) are foreigners which have set t l~din thp war-mer
regions of the Canaries. In Tables 4 - 5 these species are
marked 1 (introduced). Others are plants of Mediterranean
L,,,,Av n & m i n ~vvlv~lL 4 tuO h Tv Tv. ' ~~ nu E\M;c v- s~l a&y u~rL~ --- -LM- : ~ larrstz, indüdlng di: c>f iht.
Canary Islands, marked W (wide-spread) in Tables 4 - 5.
Thirdly, there are plants which have their main area of
distribution in the isiands, but are also found on the African
mainland (A in Tables 4 - 5); such Afro-Canarian species
are: Euphorbia regis-iubae, Helianthemum canariense' Ca-ralluma
burchardii, Beta patellaris, Launaea spinosa, Li-naria
sagittata, and other species (cf. Rivas Goday and Es-teve
Chueca, 1964). Fourthly, there is a contingent of Ma-caronesian
species, i.e. plants found on other Atlantic Is-land
groups as well as the Canaries (M in Tables 4 - 5).
Exarnples are" Micromeria varia, and Lavandula pinnata.
It is noteworthy that Euphorbia and Kleinia communities
contain very few of these species, in contrast with the Ca-narian
laurel forest wliich is composed mainly of Macaro-nesian
species. Firully, there are two classes of endemic
species: the Cansrian endemics, and the insular endemics
(C and E, respecti~~~ienl yT ables 4 - 5). Examples of the for-mer
class are: Kleinia neriifolia, and Rubia fruticosa, found
on al1 of the islands, Echium aculeatum, found on three of
the western islands, and Lotus lancerottensis, found on the
two easterri islands. Such species are useful in the recogni-tion
of plant associations that extend over severa1 of the is-lands.
Arnong the insular endemics, which give the associa-tions
on each island a different character, are: Euphorbia
atropurpurea of Tenerife and Ruthea herbanica and Echium
fuerteventurae of Fuerteventura. Table 8 summarises the
geographic status of thc two communities, according to spe-cies
as well as importance values.
The two communities have severa1 features in common.
In both, wide-ranging Mediterrancan species are the most
numerous, and have the highest importance value. The next
mnct impnrtant categnry in hnth cnmmunities is the Cana-rian
element.
In the Euphorbia atropurpurea community, insular en-dtxnics
d~t:b maii iii riurrl'uer., Luí curibiiiuie iWÓ u1 ihe irn-portance
value, due to the principal dominant. The Afro-
Canarian element has a relatively low importance value
(7.370).
In the Kleinin - Asparagus community on the other
hand. local endemics are o£ little importance. and the Afro-
Canarian group is more prominent. These differences sug-gest
that the Kleinia - Asparagus community is a member
of thc African scrub formation discussed by Rivas - Goday
and Esteve Chueca (1964) under the general name Kleinio -
Euphorbion. Kleinia neriifolia has relatiyaes in Morocco (K.
anteuphorbium) anü in East and South Mrica. Asparagus
albus of the Canary Islands belongs to a separate variety,
var. pastoricnus which also occurs in Morocco. Ruthea her-banica
is a member of a South Africaii genus.
The Euphorbia atropurpurea community is more hete-rogeneous,
and lacks the Afrjcan a-ffinity. 11 is perliaps hest
regarded as a Mediterranean annual grassland which has
been invaded by an insular endemic species af Eqhorbia.
mi. . _ 1- _ . lle dusrrice uf ilie c h r dciw isiic iih iwu t-krrlent is corre-lated
with the high elevation. The altitudinal belt from 1000
to 2000 rn in the Canary Islands usually bears a distinctly
Mediterranean stamp (Schmid, 1954).
S U M M A R Y
1. Twn shrub communities are described, one on western Tenerife, doniinated
by Euphorbia ntropurpuren and annual grasses, the other cii northern Fuer-teventura,
dominated by Kleinia ~ieriifulina nd A.!p<rrczgu~n !brrr.
-7. Tho ~ t n ~ r t w . - , =n f thC ~ . r ~ ~j? ~&cct rj~b2td iin~ tcr~ms of T)nEscrc2Li's rl~J>ciQD. L..- ".AL.-.-.-
nomic sgstem. The two commünities are physiognoinically similx, e x e p fnr
a prevalence of thorns and spines in thr K1eii;ia - Axparn:yi~ coinriii!nily, and
greater coverage of annual grasses in the Euj?!:orl~iac ; t~o;?: i rpr~rccno mnxnity.
3. For the purpose of growth form analysis, each species is given an i~np~:!::nre
value, bascd upon relative frquency and rclativc covciage; thc suil-i of al1
importance values in each community is 100.
Growth forms are analysed by means of a system derived from Raunkiaer
(19?4)r nii Rietjl (1931) 2nd Srhmid (1956) Tt ir ronorned urith !ife forrn,
branching pattern, root type, leaf fall, inflorescence type, and dispersal type.
The Kleinia - Asparagus community differs from the Euphorbia atropurpurea
community in that the former has: fewer annuals, more densely branched
components, slightly more decidiiniis plants, smaller, more concealed inflo-rescences,
fewer disseminules adapted to dispersal by mammals, and more
adapted to bird and wind dispersal.
Analysis of the geographic distribution of the component species shows a
more ~.tron& African character in the Klpinilr - Aynnrngm cnmrniinity, whil~
the Euphorbia afropurpurea community is interpreted as an annual grassland
of Mediterranean affinity, invaded by an insular endemic Euphorbia.
Environmental factors responsible for the differences include: the higher ele-vation,
lower temperature, higher rainfall in the Euphorhia atropurpzrr~a
community. Influence of goats is also a probable factor, especially in the
Euphorbia community. Closer proximity of Fuerteventura to the African
mainland affects the floristic composition of the vegetation, but this is re-garded
as an historic. rather than an ecological factor.
ACKNO WLEDGMENTS
Field work in the Canary Islands was supported by a fellowship from the John
Simon Guggenheim hlemorial Foundation. Continued research on the evolution of
vegetation in the Canary Islands is conducted under Grant GB5246 of the National
Science Foundation, Washington, D. C., U.S.A.
LlTERATURE ClTED
BOLLE, C. 1863. "Die Standorte der Farne auf den canarischen Inseln pflanzentopo-grafisch
geschildert". Zeitschr. allg. Erdkunde 12: N.F. 10 - 11. - 1891. "Flora insulamm olim Purpurarium nunc Lanzarote et Fuerteventura
cum minoribus Isleta de Lobos et la Graciosa in Archipelago Canariensi".
Englers Bot. Jahrb. 14: 230 - 257.
BRAUN-BLANQUJE. T1, 932 P imt Joc~oiogy.V ransi. H. S . Conard & ti. U. Fulier).
McGraw-Hill, N.Y. 439 p.
BUCH, L. VON, 1825. Physim.'i.sche Beschreibung der Canarischen Inseln. Koen. Akad.
d Wissenschaften, Berlin, 407 p.
BURCHARD0,. 1929. Beitrlige zur Oekologie und Biologie der Kanarenpflanzen. Bib-liotheca
Botanica 98, 262 p. 78 pl. Stuttgart.
CEBALLOSL, . & F. ORTUÑO, 1951. Vegetación y Flora Forestal de lar Canarias Occi-dentales.
Inst. Forestal, Madrid, 465 p.
C H P ~H,. i888."Spiciiegium canariense". Engiers Bot. ianrb. Y : 86 - 172. -
CURTISJ, . T. & R. P. MCINTOSH1,9 51. "An upland forest continuurn in the prairie-forest
border region of Wisconsin". Ecol. 32: 476 - 496.
DANSEREAPU. ,1 958. "A universal system for recording vegetation". Cont- Inst. Bot.
Univ. Monrréal 72: 1 - 58.
DANSBREAPU. , & K. LEMS,1 957. "The grading of dispersal types in plant commu-nities
and their ecological significance". Contr. Inst. Bot. Univ. Montréal
71: 1 - 52.
DONS~LA- AIK~ BNO KKBL HUININKW, . A. E. VAN, 1966. "Structure, root systems
and periodicity of savanna plants and vegetations in northern Sunnam".
Wentia 17: 1 - 162.
Du RIETZ, G. E. 1931. "Life forms of terrestrial flowering plants. I". Acta Phy-togeogr.
Suec. 3: 1 - 95.
EMRERGELR., & J. BRAUN-BLANQU1E9T5,5 . Curte des Groupernents Végétaux de la
Frunce. Centre Nat. de la Recherche Scientifique.
HUMBOLDTA, . VON, 1814. Voyage aux rkgions équinoxiales du nnuveau continent
fait en 1799, 1800, 1801, 1802, 1803, et 1804, par Al. de Humboldt et A.
Bonpland. Premiere partie. Relation historique. Vol. 1. Paris, 643 p.
LEMS, K., 1958. Phytogeographic Sfudy of the Canary Islands. Dissertarion. Ann
Arbor, 2 vols. 201 + 144 p. - l96Ua. "Floristic Rotanv of the Canaw Islands". Snrrarenin S: 1 - 94. lnst
Bot. Univ. Montreal. - 1960b. "Botanical Notes on the Canary Islands. 11. The evolution of plant
forms in the isIands: Aeonium". ~ c o l o 4i 1~: 1 - 17.
MOLINIERR, . o: P. MVLLEK, 1938. "La aisserninarion aes especes vegetales'.. Kev.
G¿n. Bot. 50: 53 - 72 et seq.
OBERDORFEER.,, 1965. "Pflanzensoziologische Studien auf Teneriffa und Gomera
(Kanarische Inseln)". Beitr. Naturk. Forsch. SW-Deutschl. 24: 47 - 104.
PITARDJ, . & L. P~ u u b r ,1 908. Les ZIes Cunaries. Flure de Z'Auchipel. Paris, 503 p.
10 pl.
RAUNKIAECR,. , 1934. Thr life forms of plants and statisfical plant geography. Cla-rendon,
Oxford, 632 p.
&VAS GVUAYS, . & F. ESTEVFC HUECA19, 64. ''Erm~yüf i t l>b~i i idILigd;~e ~l a C!i~a\si-
Euphorbieta Macaronesica y estudio de los tabaibales y cardenales de Gran
Canaria". Anales Inst. Bot. A. J. Cavanilles 22: 221 - 339.
SCHIMPERA,. F. W., 1907, in: H. SCHENK",W issenschaftliche Ergebnisse der Deut-schen
Tiefscc Expcdition auf dem Dampfcr "Valdivia" 1898 - 1839". 2 Ed.,
1 Teil, 2 Lieferung: Beirruge zur Kenntnis der Vegetation der Canarischen
Inseln. 225 - 406 + 12 p.
SCHMIDE, ., 1954. "Beitrage zur Flora und Vegetation der Kanarischen Inseln". Bcr.
12. d. Geobot. Forsck. Inst. Riihcl, f.d. Jnhr 1953: 28 - 49. - 1956. "Die Wuchsformen der Dikotvledonen". Ber. ii.d. Geobot. Forsch Inst.
Riibcl f.d. Jahr 1955: 38 - 50.
- 1957. "Ein Verc-l eich der Wuchsformen im Illyrischen Buchen und Laub-
~. i schwn!d".? ?cC.. d. G~ o h n tF. or~c?.I mt . RUho! f . d. 1-hr 1956: 66 - 75.
SVEWENIUSE, . R., 1948 - 1949. "Plantas nuevas o poco conocidas de Tenerife",
Bol. Inst. Nac. Inv. Agron. 18: 1 - 19, 20: 197 - 209. - 1950 - 1954. "Specilegium Canariense". Bol. Inst. Nac. Inv. Agron. 22: 1 - 8,
23: 9 - 14, 28: 57 - 70, 39: 29 - 41. - 1960. Additrrmentrrm ad floram Canariensem. Inst. Nac. Inv. Agron., Ma-drid.
93 p.
WARMINGE,. , 1909. Oecology of Plants. Transl. P. Groom, Clarendon Press, Oxford,
422 p.
WEAVERJ,. E., 1958. "Classification of root systems of forbs of grassland and a
consideration of their significance". Ecol. 39: 393 - 401.
WEBB,P . B. 6L BERTHELOTS,. , 1836 - 1850. Hisioire Narurelle des lles Ccrnnrics.
Vol. 111. Phyrographia Catrariensir. Paris, 4 parts, 220 $- 496 + 479 + 208 p.
WESTHOFFV, ., J. W. DIJK, H. PASSCHIE&R G. SISSINGH1, 946. Oc~erzichtd er plan-tengemeenschappen
in Nederland. Breughel, Amsterdam, 2nd ed., 118 p.
TABLE 1. DANSEREAU'S SIX CATEGORZES OF CRZTERIA TO BE APPLIED
TO A STRUCTURAL DESCRlPTlON OF VEGETATZON TYPES
(DANSEREAU, 1958).
1. Life form 4.
W erect woody plants
L climbing or decumbent woody plants
E epiphytes and crusts
H herbs
M bryoids
2. Strazification 5.
1 more than 25 metres
2 10 - 25 metres
3 8 - 10 metres
4 2 - 8 metres
5 0.5 - 2 metres
6 0.1 - 0.5 metres
7 0.0 - 0.1 metres
3. Coverage
b barren or very sparse 6.
p in patches, tufts, clumps
i interrupted, discontinuous
c continuou>
7 . Spines * pi=scnt
h c t i o n
d deciduous
e semideciduous
e evergreen
j evergreen succulent or
evergreen - leafless
¿eaj sizape ana size
o leafless
n needle, spine, scale, or
subulate
g graminoid
a medium or small
h broad
v compound
y iiiaiioici
Leaf texture
o leafless
f filmy
z menibianoub
x sclerophyll
k succulent or fungoid
TABLE 2. GROWTH FORM CRITERIA, REVISED FROM SCHMID (1956),
RAUNKIAER (1934) AND OTHERS.
Life form
' MI megaphanerophytes (trees over 30 m)
M2 rneso~hanero~hvte(tsr ees 8 - 30 m)
microphanerophytes '(trees 2 - 8 mj
nanophanerophytes (shrubs 0.5 - 2 m)
woody chamaephytes (subshrubs to 0.5 m)
semi-woody chamaephytes (half-shrubs with woody lower stem)
herbaceous, creeping chamaephytes (permanent stem on the ground)
caespitose chamaephytes (cushion plants)
rosette hemicryptophytes (buds at soil level from basa1 rosette)
caespitose hemicryptophytes (sod-forming with buds at soil level)
rhizomatous geophytes (underground horizontal stem)
corm geophytes (underground upright stem)
bulbose geophytes (with underground bulb)
tuberose geophytes (with underground tubers)
root-budding geophytes
hydrophytes (perennials adapted to survival under water)
therophytes (annuals and other short-lived plants without permanent axis)
Lignification of fhe moin axis (symbol follows life form in parenthcscs)
a axylic (separate vascular bundles, secondary growth producing only pa-renchyma)
o oligoxylic (xylem weakly developed or largely parenchymatous)
h hcmixylic (xylcm wcll devcloped but with soft, thin-wallcd olcmcnts)
x holoxylic (xylem weii developed, forming firm continuous cyiinder of
wood)
P perxylic (xylem unusually hard, thick walled elements, often iitipregnated
with hardening materials)
m meroxylic (only the lower portion of the stem lignified, becomíng axylic
or oligoxylic in the upper half
Perrnanencc of tize main axis jsymboi ioiiows iife form in parenthesesi
1/2 ephemeral (life cycle completed in few months)
1 annual (life cycle completed in one growing season)
1. 1/2 winter annual (life cycle completed in one full year)
2 bienniai íiik cycic umipicieri in iwu giuwiii~;s cdsuiisj
3 pluriennial (plant developing over several years, but not perennial)
4 perennial (plant surviving for indefinite number of years)
B - Branching pattern (symbols following letter B, in parentheses)
Position of branches
F originating from aerial portion of main axis
L originating froin basa1 portion of main axis
E nriginzting from hoth zeri-! 2nd has-! p r t main nxk
J originating froni rnain axis helow soiI leve1
1 main axis simple, without branches below the inflorescence
Orientation of branches
a arching, droopinp or pendulous
e erect
h horizontal
S sinuous, climbing or winding
x divergcnt in scveral directons, ascending, or dinuse
Density of bratiches
v rnoderately dense to sparse (1-3 new branches per previous branch)
--- J~ ..~, A , - . . w UCI I ~C( +-u ~CI Í biaí i ihe~p ei vi-igiiia! branch)
z very dense (more than 6 new hranches per previous branch)
Mude of branching
d determinate (each hranch terminating in flower, inflorescence, or dead
tip; branching from axiIlary mcristems)
i indeterminate (branches elongating from year to year; flowers or inflo-rescences
produced laterally)
m mixed (wme branches indeterminate. others determinate)
R - Rooi systeni (symbol follows R in parentheses)
P1 thick primary root (taproot)
P2 diffuse primary root system
P3 piiinary root system of horizontal oricntation
Pb with buttress roots
F1 fibrous root system with root-tubers
F2 diffiise fibroiis root system
v* c:L ---a ".," -- ,.* l.-":.,,.-+nl ,.*:o..t-,+;nm
1 J u v i v u a i u u r o j o t r i r i vi u ~ ~ u u uwvu.~ -u-uIIYll
Al adventitious root system from aerial stem fincl. prop roots, stilts)
A3 adventitious root system from underground stems
A3 adventious root system iroin underground stems
L - Leaves (symbol follows L in parentheses)
a aphyllous or with ephcmeral leaves (photosynthetic function largely or
entirely fulfilled by green stems)
d deciduous (shoots losing al1 leaves during part of the year)
e evergreen with persistent leaves (leaves remain for wrll over one year)
r relay - evergreen (leaves persisting just long enough to overIap with next
year's foliage, but only one set of mature leaves is present at any time)
S semideciduous (shoots losing a substantial proportion of leaves during
the unfavorable season)
F - lnflorescence (symbols follow F in parentheses)
Size
1 flowers singly attached to the vegetative axis
2 flowcrs in small, usually simple inflorescences, 2 - 10 flowers
3 flowers in medium-sized, often compound inflorescences with 11 - 100
flowers
4 flowers in large inflorescences with 100 - 1000 flowers
c pIWcrs ii. ...,-,-,, . . i.-U--b.-u :i.i.fii-r--i-,u.-..i,. -r- urriirru, u,.ri n,r . ,. ian un--n n,,,,,,, LA" ,. -. "
- underlining indicates pseudoflowers (morphologically compact inflores-cences,
e.g. cyathum, capitulum, spikelet)
Exposure
c conceded (reproductive nxis shorter than the permanent axis, flowers
concealed arnong the foliage)
d apparent (reproductive axis short, but long enough to expose the flowers
on the periphery of the vegetative body of the plant)
c cxí;oscd (reprG&drtiye uxi-, fur el;cee&ng the -:egItritiw bc'dy ^f ?he &t,
exposing the flowers well above it)
p pendulous (reproductive axis elongating downward, hence the fruits of
flowers exposed below the crown)
r ramiflorous (nttached to the leafless lower branches)
t trunciflorous (attached to the main trunk)
b basiflorous (attached to the base of the main trunk)
D - Disseminule (symbols to follow D in parentheses; for criteria, see Table 3)
TABLE 3. DISSEA4INULE TYPES, AFTER DANSEREAU & LEMS (1957).
SLIGHTLY MODIFIED.
Autochores (dispersal by parent plant)
1. Sclerochores (disseminules without apparent morphological or physiolo-gical
adaptation for dispersal, neither very heavy nor very light)
2. Barochores (disseminules very heavy, dispersed by gravity)
S. Auxechnrer (disreminu!es depnsi?ed nn ?he g r m d hy rirrhing or elm-gating
staiks o£ the parent plant)
4. Ballochores (dissrminules shot away from the parent plant by the release
o£ valves or ot her mechanism)
Allochores (dispersal by agency in the environment)
Anenlochores
5. Sporochores (disseminules small and Iight enough to be carried by air
arrentr)
6. Pogonochores (disseminules provided with capillary hairs or bristles,
allowing it to float in the air for sorne time)
7. Pterochores (disseminules provided with wing-like appendages, breaking
the fall)
8. Cyclochores (branched framework wntaing seeds, capable of rolling on
ground; tumbleweeds)
Zoochores
9. Desmochores and ixochores (disseminiiles prnvided with bristles, hmks
or barbs, or mucilaginous, allowing them to stick to vanous animals)
10. Sarcochores (disseminules with fleshy or juicy covenng and resistant inner
part, allowing them to be carried in animal intestine)
11. Chromatochores (disseminules not fleshy nr juicy, but attractive to ani-mals,
especially birds, because of conspicuous or wntrasting colors,
especially red).
TABLE 4. Euphorbietum atropurpurme, t l o r i s t i c conipositon. iriportance o f the species, phy'.iognoiny. 2nd growth fornis
A l ' data from W. Tenerife. betiieeti Saritiago and Masca, 350 - 1050 m.
Species Cove rage
i r i p l o t n o
!mp.
1 2 3 4 5 V a l ~ i -
' J u l ~ i a niyuros (L.) Gniel. 'W - 1 - 3 7 7. L.
-Avera -b a r b a t a L.
P l m ~ no~n l p i ' r p u r a s c e n j Sch. D i p .
7etma monosperlia (L. ) BO i 5s.
' -E- c -h-. -i i , r a c i ~ l e a t u ?P o i r . ' -n r i 7 a -maxinia L. -/ t l u i r l -v i s c o s a A i t .
1 -Br ows -r u h e r s L .
Cistus t;on>pel i e n s i s ..
-Evax p y - n a i a ( L . ) Pers.
F p ' n r h i a r e g i i - j u b a e W. & B.
Ti in i c p~r - ul i [ e r a (L. ) Scop.
Wahlenbergia l o b e l ioides DC.
Nyparrhenia hirta (L.) Stapf
-Si l e w c-a l l i c a L.
-T o i ~ i s-b a r b a t a Gaer tn.
-Papa-ver s p.
Cyriosurus elegans Desi.
Phys i agnorny
formula
(Table 1)
Wgisaz
~ 6 i d ~ z
W7~enx
~ i 6 i d g z
iil7ceaz
li5pjno
'<!6peñx
HÚpdyz
b1ú;ear
liíodgz
W ~ F " ~ Z
ii7pdaz
\./jcsaz
H7idgz
H6bdaz
H6ysgz
H7Ldaz
tJ7hdaz
t16zdvz
H6bdgz
u lll'+)
T ' a l )
C 1 :x4)
T ' a l )
C l ;r4)
,r 8.~4)
c 1 ix4)
T t a l )
:2 iii4)
T ( a l )
J x 4 )
T ' a l )
Ir 'h4)
T : a l )
T : a l )
H2-:a4)
T ' a l )
T a l )
.r : a l )
T ( a l )
Medicaqo mfnirna L.
Monanthes p a l l e n s (Webb) C h r i s t
Gslacti tes tornentosa Moench
Calerdula arvensis L.
P --
P a l l e n i s spinosz (L.) "SS.
-Rumer -l u n a r i a L.
Cytisus pro1 i i e r u s L . f .
Lavandula pinriata L. f.
-Aeonium -u -rb i c i im. (Chr.Sm.) W. & B.
-A. s e d i f o l ium Webb
' A. canar iense W. & B. Greenovia aurea (Chr. h . ) U. & B. P --
L o b u l a r i a -inte-rme dia W. G B.
1 -Son-chis- co ngestus W i l Id.
Polycarpaea t e n e r i f f a e Lam.
-Si lene v- -u l g a r i s (Moench) Gcke
Larnarckia =a Moench
Oryzopsis mil iacea (L.) Batt.
-Psora-lea bi-turnin osa L.
-Umbi l i c u s- h o r i z o n t-a l i s (Gus s.) OC.
Urginea m a r i t i n a (L.) eaker
-Erodium- chium (L.) Wi l l d .
Cheilanthes p u l c h e l l a Bory
Notholaena ve1 lea ( A i t . ) Desv.
T ( a l ) ~ ( E x v d )
~4 (134) B ( l e l )
T ('31) B ( F X V ~ )
T ( ' a l ) B ( L X V ~ )
T (oI&) B ( F X V ~ )
N (114) B(exm)
M3 (x4) B (Fx,di )
C 1 (x4) R (exvd)
N (113) B(le-d)
C 1 (114) B (Exwm)
c4 (04) R ( ~ h ~ d )
C2 (04) B ( ~ h v d )
c 1 ( ~ 4 ) B (EXW~)
ck(Ci4) B ( ~ x v d )
c2 (n14) B (EXW~)
c3 (04) B (EXW~)
T (~11) ~ ( L e v d )
H2 ( d t ) B (Lewd)
c I ( ~ 4 ) B (EXW~)
GZ (e&) R ( ~ e v d )
G3 (24) B(Jevd)
T ( a l ) B ( L X V ~ )
HI (a4) ~ ( l h - i )
H I (a&) B ( l h - i )
TABLE 5. K l e l n l e - Asparagetum albae, F l o r i s t i c composi t i s n , lmportance o f the species, phys ognomy, and
growLh.forms. Al 1 data frnm La Oliva, 1-uerteventura, Plot 1 . March 1966, P l o t s 2. 3. 4: August 1956.
Spec !es:
Asparugus Jlbus L.
-K l e i n-i a l e-r i i f o l i a Ha i ~ .
Euphorbia regis-jubae W. s B.
Caral lum3 burchardi i N.E.Br.
-Rubia -f r ~ t i c o s aA i t.
-Lyc ¡ u-a~í r uv . L.
Lntus l a i c e r o t t e n s i s Webb
-Launaea -spinosa (Forsk. ) Sch. B i o .
-L i n a r i a s a-g i t t a t a H0 ok.f.
Opuntia f i c u s - i n d i c a ( L . ) M i l ! .
-R i i i h e a -h s r h a n i c a Bol l e
Me i - ~ ~ ! b r i asl annua L.
Echiu-i f ~ e r t e v e n t u r a e Lemi >, Hlz.
-' J i c o i i a-n a g l a u c a Grah.
C t r ? n i u v r o t u n d i f o : ium L.
A r r c a r i a l e p t o c l a i o 5 iRcht. ) Guss.
P' ;l l!yres a n g u s t i f n l i a L.
-r i-i c i - , ~ , , e r i a-v a l - i a E e n L ! ~ .
-e i lariti-enum canariense Ft.r ;.
5 g e r q u l i r i a f i n h r i c : a B c ' - - .
Coverage
5 i n p l o t no. i f o rmu l a '2 RI
Imp. ( T a b l e l ) V- a 52
Vülue a, c c w r
.%- -- m > c m 1-00
J rnv E
14. 1
14. 1
9.2
7.6
h. O
5.3
4.4
3. O
2.8
2.3
7.3
2.3
2.3
1.4
1.4
l. 4
c. /
?. 7
o . ;
O. 7
i45 i snz>':
h15 i dak
W5psaz
H7pjoo
W5peaz
V6pdaki:
il7pevz
~ 6 b j c o +
W7beaz
W5b~jco-'
~6hdv7
~6bclcz
~ 6 b i . z ~
W4bei1z
H7bdlz
H7hd;17
!16bc;ix
:17iic:ix
.i7he,iz
i i 7 b e 1 i ~
m
¡ U vi
E in L U L
0 O)
-oUv i m> .2e2s :a
2," o: c4; ,,1
B(Eazi)
B (Fxvrn)
B (Fxwm)
B (Jev )
B (EXW; )
B (Exzn)
B (E hzd)
B (Exzd)
B ( E X Z ~ )
B (Exvd)
B (Levd)
3 (Fxwd)
3 ( l e - d )
E (Fawd)
B (Lxwd)
R (Exwd)
B( Em~)i
B (Exzd)
E< ( E ' : L ~ )
B ' E X Z ~ )
R(f) ~ ( s ) F(2c) D(10)
R(P) L(d) F ( 3 ) D(6)
R!P) L(5) F ( p )
R(a3) L(a) F(2c) D(6)
R(p) L ( r ) F(2c) D(10)
R(p) ~ ( d ) F ( l c ) D(10)
R(P) L í r ) F(2d) D(4)
R(P) Lía) F(&) D(6)
R(P) L ( r ) F ( l d ) D ( I )
R(a) L(a) F ( l d ) DOD)
~ ( p l )lL fd) ~ ( 3 2 ) D i l )
'(p) L(¿) F(2d) D ( 1 )
~ ( p l )~ ( d ) F í i e ) D i 7 )
~ ( p ) ~ ( r ) ~ ( 2 e ) U ( ] )
R(P) L(d) F(2d) D(4)
~ í p ) I i d ) F(2dl D f l i
~ ( p ) ~ ( e ) ~ ( l c ) n!lO)
r\fp) i í r ) r!7d) D ( l )
R ( ~ ) ~ " r ) F i t d ) D ( I I
f'(p) i'r) F : i d ) 0!7)
A t r i p l e x glauca L.
Umbil icus horizontal i s iGuss.
-Avena -barbat a Brot .
Bromris rnecrostachys Desf.
-Broinu5 r i y i d ~ 5R oili.
-Lamar-cki a a urea 'toench
-St i p a -t o r t i l i s Desf .
Asphodelus f i s t u l o s u s L.
-Sonchus -oleraceu s L.
-Piar idium- vulgar e Desf.
-Linun -s t r i c t u m L.
Antirrhinum orontium L.
Scrophularia arguta Soland.
-Si lene -qal l i c a L.
Ononi S pendula Desf.
Lobularia lybica W. t B.
Fagoiia c r e t i c a L.
A t r a c t y l i s cancel l a t a L.
-Beta p a t e l l a r i s Moq.
Fumaria o f f i c i n a l i s L.
~ a t h y r u s a r t i c u l a t u s L.
Plantago p s y l l ium L.
-T o r l l i s -i n f e s t a Hoffm.
-V i c i a a t ropurpurea Desf.
W + - - - 0.7
) DC. U - - + - 0.7
u + - - - 0.7
M + - - - 3.7
W + - - - 3.7
W + - - - 0.7
u + - - - 0.7
u - - - + 0.7
u + - - - 0.7
W + - - - 0.7
W + - - - 0.7
u + - - - 0.7
M + - - - 0.7
u + - - - 0.7
W + - - - 0.7
W + - - - 0.7
W + - - - 0.7
u + - - - 0.7
W + - - - 0.7
W + - - - 0.7
M + - - - 0.7
W + - - - 0.7
W + - - - 0.7
u + - - - 0.7
:l(nd+) 3(Exzd)
;2 (a4) ~ ( ~ e v d )
T ( a l ) 3(Levd)
T ( a l ) B(le-d)
r ( a l ) ~ ( ~ e v d )
'r ( a l ) B(Levd)
T / a l ) B(Lewd)
( a l f ) B(Levd)
-í ( a l ) B(le-d)
-r (01) le-d)
i (a$) B(le-d)
.F (a+) B(le-d)
'. ( a l f ) B(le-d)
- (al9 B(le-d)
-' ( a l ) $(Exwd)
-r ( a l ) B(Ehwd)
(mi+) ~ ( ~ h w d )
-- ( a l ) B(l.xvd)
(mi$) B(Lhvd)
.- ( a l ) B(Fxzd)
- ( a l ) ~ ( ~ s w d )
-. (al? B(Exwd)
-. (a+) Bfle-d)
" ( a l ) B(Fwd)
TABLE 6. COMPARISON OF LIFE FORMS ZN TWO CANARIAN PLANT
COMMUNITIES.
Life form Euphorbietum
atropurpureae
No. of Imp.
species vaiue
Microphanerophytes 1 0.6
Nanophanerophytes 6 21.4
Chamaephytes 14 26.8
Hemicryptopnytes 4 4.3
Geophytes 2 1.2
Therophytes 17 45.7
Kleinio -
Asparagetum
No. o£ Imp.
species vaiue
1 1.4
5 45.7
Y 19.0
i 2.3
2 8.3
26 23.3
TABLE 7. DISPERSAL TYPES ZN TWO CANARIAN PLANT COMMUNITIES.
FOR EXPLANATION SEE TABLE 3.
1. Sclerochores
4. Ballochores
5. Sporochores
á. Pogonochores
7. Pterochores
9. Desmochores
10. Sarcochores
Euphorbietum
atropurpureae
No. o£ Imp.
species vüiue
23 48.7
Kleinio -
Asparagetum
No. of Imp.
spcciob -V-L-IIUl .G- -
20 29.7
3 6.5
0.0
6 26.8
3 3.7
6 4.2
6 29.1
TABLE 8. GEOGRAPHIC RANGES OF THE SPECIES ZN TWO CANARIAN
-.i a x r m ~ ~ I I T TIL T ~ IT I T . ( I
l - L f l l Y I L " I " I I Y I " I Y , l lb,,.
Range Euphorbietum Kleinio -
atropurpureae Asparagetum
No. of Imp. No. of Imp.
species value species value
E Insular endemics 2 10.4 2 4.6
C Canarian endemics 11 11.2 3 24.5
M Macaionesian species 2 7.3 1 0.7
A Afro-Canarian species 2 7.9 5 21.0
W Mediterranean species 27 63.2 3 1 45.5
1 Introduced species - 0.0 2 3.7
Euphor bietum a tropurpureae
1 Mic.v. Eu-a. Eu.a. Av.b. Vum. 1n.v. Ret. m. Vim. Vum. Eu p. Echa Brim Eu.r-j.
Kleinia - Asparagetum albae
Euphorbietum atropurpureae
Eu. a. Ret. m. Ech. o. Mir. v. Plt P. 1n.r. Av. b. Vu.m. Era r. Br1.m.
4.3 43 67 52 2~7 6.7 7.4 3.7 4.0
E
'I Kleinia-Asparagetum albae KL. n. €u. r-j. Asp. a. Rub. f. Lyc.0. Lobs. Lot. l. Lin s. Car.b. Ru.h. . ,......mh
Imp v.: 14.1 92 14.1 6.0 5.3 3.0 4 4 2a 7.6 23
LEGEND FOR THE FIGURES
Fig. 1 - Community of Euphorbia atropurpurea al 1050 ni, Santiago del Teide,
Tenerife. Retama monospernza on the upper lefthand side.
Fig. 2 - Comniunity of Kleiniu ireriifolia and Asparagiic crlbus nt 3 0 m. La
Oliva, Fuerteventura, with Carallnrna buchardii.
-. . . rig. 3 - Comparison oL' pliyaiu8iiü~ny of tiva Cíimrlm CGF.?P.IIII~?!:~S.
according to a system proposed by Dansereau (1958).
Fig. 4 - Comparison of the ten most important plant growth forms o£ two Ca-narian
shrub conununities, according to a system mociified I'ru111 Sc1111iid
(1956). Black: holoxylic axes, three lines hemixylic, open: oli;oxyiic,
single lines: axylic.