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ABSTRACT 

The baker-transform and the related dynamical system is usually studied 
with the unit-square as its state-space. In this paper we define the baker­
transform and related discrete-time dynamical system with the non-negative 
real numbers as state-space. Furthermore we consider the extension of the so 
defined baker transform to real-valued functions. As a mathematical 
instrument we use the generalized Walsh-Functions as originally introduced 
by Fine (1950). The A-transform of Prigogine is proven to be identical to 
dyadic convolution. It is shown that the method of Prigogine to construct 
irreversible processes can also in this case be applied successfully. 

O. lntroduction 

The baker-transform is extensively studied in mathematics. Its representation as a Bernoulli 

shift operation is wellknown [l], [2]. l. Prigogine and his coworkers have shown how the 

baker-transform and the related discrete time dynamical system (baker-Prigogine dynamical 

system) can be used to construct irreversible processes. The essential mathematical too! for 

this is provided by the so-called A-transform [3], [4]. In a former report it was shown by the 

author that by use of Walsh Fourier analysis, the A-transform can be considered as a discrete 

dyadic convolution [5]. A similar approach has been suggested in [6]. In this paper we study 

the baker transform on the non-negative real numbers R+. It is shown that in this case the 

generalized Walsh functions as originally defined by N.J. Fine [7] can be used to study 

irreversibility in the line of Prigogine's work. The A-transform is equivalent in this case to the 

dyadic convolution defined on the non-negative real numbers [0,oo). 

It is shown that dyadic differentiation as introduced by Butzer in analysis provides means to 

construct specific examples of the A-transform. 
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1. Preliminary Consideration 

Prigogine (1977 Nobel price for chemistry) and his group explore complex phenomena by 

bottom up methods starting at deterministic microscopic models with conservative dynamics 

to be lifted up to macroscopic models with dissipative dynamics and collective variables for 

state definition. The hope is, to explore possible emerging properties of attracting chaos which 

can be observed in macroscopic pattems of behavior. Besides of physics and chemistry the 

field of biology and socio-economics is considered to be promising for the application of this 

approach in modeling. 

In the work of Prigogine ([3], [4]) severa! examples serve for the demonstration of the 

method. Besides of the horse-shoe map of Smale the baker transform, a specific case of a K­

system (K stands for Kolmogoroff) is used there to define conservative discrete-time 

dynamical systems with chaotic behaviors. For the case of the state space L2 [0,1)2, consisting 

of the hilbert space of square-integrable functions on the unit-square [0,1) x [0,1 ), Prigogine 

is able to construct a unitary transformation A which allows to transform a conservative 

(reversible) dynamic process into a dissipative (and therefor irreversible) dynamic process 

and vice versa. 

2. Representation of the baker transform on [0,oo) 

By D[O,=) we denote the subgroup of the dyadic group D which consists of ali sequences u 

which are 0-periodic to the left. Between [O,=) and D[O,=) we define the following (natural) 

map e: [O,=)~ D[O,=). For sE [O,=) with s = L,s;2-; we define e(s) :=u with u(i)=s¡ for 
i=-N 

ali i with -N~i<= and u(i):=O for ali i with i<-N. The map e is bijective and its inverse 

e· 1:D[O,=) ~[O,=) therefor exists. It is easy to confirm that the Bemoulli-shiftoperation ~in 

D[O,=) corrresponds by e in [O,=) to a multiplication by 2-1 s. 

(l) 

From this result it is evident, that the baker-transform B - if restricted to the domain 

Q2[0,l)x[O,l)- results in [0,oo) asan ordinary multiplication by 2·1• In detail this can be seen 
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as follows: For se [0,oo) and the baker-transform B we define the following map 

B~: [O,oo)~[O,oo): For SE [O,oo) the value B~(s) is given by 

B~(s):=r(B(f 1 (s ))), ·(2) 

where r is the bijective map r:Q2[0,l)x[O,l) ~ [O,oo) given by r(x,y)=s with s = L,s;2-; and 
i=-N 

s;=X.;+1 for i=0,-1,-2, ... ,-N and s;=y; for i=l,2,3, .... , where x = Í,x;i-; and y= y= f Y; 2-; . 
i=l i=l 

Since the baker transform B defined on Q2[0, 1) x [O, 1) is represented in D[O, 00) by a 1-step 

shift to the "right" (Bemoulli shift) it follows from ( 1) that 

B~ (s)=2-1s. (3) 

We call B~ the real baker-transfonn. Although B~ looks rather trivial it can be considered as 

the representation of the (not so trivial) dyadic baker-transform on [O,oo). Next we study the 

effect of the real baker-transform for function sfe L2[0,oo). To begin with, we compute first 

the real baker-transform of the generalized Walshfunctions 'lfro,ffiE [0,00), as defined by 

Fine[?]. Here we repeat this definition. 

For m = L, m; i-; and s = L, s; i-; the generalized Walshfunction 'lfro: [O, 1 )~ R is defined 
i=- N i=-M 

by 

r if L,m;5 1- ; e ven 

lf/OJ (s)= (4) 
-1 if L,m;si-; odd 

In line with our earlier definition of B~ we define now the real baker-transform b~ of a 

function fe L2 [O,oo) by b~f(s)=f(B~ (s)). Using (3) we have in general 

b_J(s) = f (2-1 s) (5) 

For the case of a generalized Walshfunctions 'l'ro this results in 

b_(lf/., )(s) = lf/., (2-1 s) = lf/2.,)s) since in general we have lf/OJ(2m s) = lf/2.°'(s) for meI'.. 

W e see that for ali (roe [ oo)) we ha ve 

b_(lfJ,,,) = lfí 2-1w (6) 

This result is analogous to the result which was derived in [5] for the dyadic Walshfunctions. 
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The theory of the generalized Walshfunctions as developed originally by Fine [7] shows that 

each function f E L2 [O, oo) can be represented by an integral in the following form 

f(s) = J F((J))lf/OJ(s)d(J) (7) 
o 

Here the function F denotes the generalized Walsh-Fouriertransform which is given by 

F((J)) = J f(s)lf/OJ(s)ds (8) 
o 

Using the representation (7) we get for b_ (f) the following Walsh-Fourier representation 

- - -
b_ (f )(s) = f (B_ )s)) = J F((J))lf/ OJ (B_ (s))d(J) = J F((J))lf/., (T1 s)d(J) = J F({J})lf r • ) s)d(J) 

o o o 

Substituting 2-1 úJ H úJ gives 

b_ (f)(s) = J 2F(2(J))lf/OJ(s)d(J) (9) 

We see that the generalized WF-transform of b_(f) is given by 

WFT(b_ (f))(m) = 2F'(2m) (10) 

The formula ( 10) allows an effective computation of the real baker-transform b_ (f) by 

means of the generalized WF-transform by "chasing" the following commutative diagram. 

The computational efficiency is assured by the use of the existing fast algorithm for 

computing the generalized WF-transform (WFFT-algorithm). 

L2[0,oo) 
b_ 

L2[0,oo) 

WIT j r WIT' 

(11) 

L2[0,oo) L2[0,oo) 
2F(2(.)) 

This concludes the mathematical analysis of the real baker-transform. The next chapters will 

deal with systemstheoretical problems. 

3. Baker-Prigogine Dynamical Systems on L2[0,oo) 

We have seen, that the baker-transform B, if restricted to dyadic points, can be represented on 

[0,oo), using the real baker transform B- by multiplication by 2·1; B~(s)=2- 1 s for SE [O,oo). The 
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inverse baker-transformation s·1 is then represented by B:,1 on [O,oo) by multiplication by 2; 

B:,1 (s) = 2s. For the real baker-transformation of functions from L2[0,=) we have shown by 

(6) that b_rp., = rp 2.,.,. Similarly we ha ve 

(12) 

Furthermore we showed in (10) that WFI'(b_f.)(m) = 2F(2m). In a similar way it can be 

shown that for fE L 2[0,oo) we ha ve 

( 13) 

3.1 Real baker-dynamics 

We define now in direct analogy to the definition of the baker-Gibbs dynamics which has 

been developed in [5] the appropriate dynamics for the state-space L2[0,=). The place of the 

evolution operator u=b-1 of [5] is then taken by U_ = b:,1 • A distribution function p:E~R 

considered in the book of Nicolis-Prigogine [4] corresponds in our dynamics to a .function 

pe L2[0,=). 

Let the elements of L2[0,oo) be considered as states of a discrete-time autonomous dynamical 

system. For the state p1 of this dynamics at time t, the state Pt+I at time t+ l is computed by 

Pr+I =U_p, (14) 

The global state-transition function cp(U~) is then given by 

p, =u~-'º Po (15) 

We call the so defined dynamical system rb := (q>(U _), L2 (O,= }[O,oo ))- the real baker­

dynamics. By means of the Walsh-Fourierintegral representation of a state Pt at time t, which 

is given by 

p,(s) = J R,(co)1¡1.,(s)dco (16) 

we compute the next state Pr+I by 

This means, that (as expected by (13)) 

l 1 
R,+I (co) = 2 R, ( 2co) (17) 
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Consequently, the WF-transform R1 of p1 can be computed from the initial state p0 by 

R1 (m) = z-<1-10 >Ro (z-<1-1, > m) (18) 

Next we want to investigate the "energy-function" H _ : L2 [O, oo )--7 [O, oo) of a real baker­

dynamics rb. 

We have in general 

H_(p 1 )= J p 1
2 (s)ds. 

o 

For the difference H_(p 1+1)-H_(p1 ) we compute using (16), (17) and the parseval's 

equation 

- -f R1
2 (m)dm- f R1

2 (m)dm =O 
o o 

This result shows that the real baker-dynamics rb constitutes, as expected, a conservative 

dynamical system. 

3.2 A-Transformation for the real baker-dynamics 

Following the methods, as developed by Prigogine et al. [3], [4], now we want to assign to a 

real baker-dynamics rb an irreversible dynamical system. Let the .real baker-dynamics rb as 

befare be given by rb=( <p(U _ ), L2 [o, oo} [o, oo )). 

Let A denote a dyadic convolution operator A: L2 [o, oo )--7 L2 [o, oo) which is generated by a 

weighting function l , that means that A = l ©. Now we require from A the following 

properties: 

For the WF-transform L of l we want that for 

L(O) = 1 and O$ aJ1 < aJ2 < oo it should follow that 1 ~ L(m1) > L(m2 ) >O (19) 

In other words, by (19) we require that L starts with value 1 and is a positive monotonically 

decreasing function in the hilbert space L2 [O,oo ). 

In analogy to our approach in [5] we use A as a· state assignment map to establish a 

dynamorphic image of the given baker~dynamics rb. 

p1 = Ap1 (t E [0,oo) (20) 
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The condition (19) as required in our case for a dyadic convolution operator A assures the 

existence of the inverse operator A"1• For the evolution-operator W of the assigned 

dynamorphic system we have therefor 

W_ =AU_K1 (21) 

Similarly as above we define for the state space L2 [O, oo) an associated discrete-time 

autonomous dynamical system with local state transition function W -· <¡>(W _) denotes the 

associated global state transition function derived by iterating w _. 

We call the dynamical system rbP :=(tp(W_),L2 [0,oo}[O,oo)) defined in this way, the real 

baker-Prigogine dynamics. 

Since U_ = A-1w_A and p1 = A-1 p1 we ha ve a one to one correspondence between the real 

baker-dynamics rb and the associated real baker-Prigogine dynamics rbP. 

3.3 Irreversibility of the real baker-Prigogine dynamics 

As in the case of the baker-Prigogine dynamics which is investigated in [5] there is also in the 

case of a real baker-Prigogine dynamics rbP the proof of its irreversibility of most importance. 

We approach this problem by investigating its "energy-function" H_ ~hich is given by 

H_(p1 ) := J p1
2 (s)ds (22) 

o 

Let t > t0 ~ O. Wewanttocompute H _(p1 ) - H _(p0 ). Wehave 

00 - 00 00 

H _ (p1 ) = J p1
2 (s)ds = J R,2 (OJ)dOJ = J L2 (0J)R1

2 (OJ)dOJ = J L2 (0J)21º-1 Rg (21º-1 OJ)dOJ 
o o o o 

Substitution of 21º-1 aJ -HV gives finally H _ (p1 ) = J L2 (21- 1º OJ)Rg(OJ)dOJ . With this result 
o 

we have then 

H _ (p1 )- H _ (p10 ) = J (L2 (21- 1º OJ)- L2 (OJ))Rg (OJ)dOJ <O 
o 

since for t>to follows by (19) L2 (21- 1º0J)- L2 (0J) <O. 

This shows that the "energy-function" H- of a real baker-Prigogine dynamics rbP is a 

Ljapunov-functional and the transformation A2 is a Ljapunov-variable. Therefor the 

dynamical system rbP = (tp(W_ ), L2 [O,oo} [o, oo)) is irreversible. 

As a result we see, that the A-transform of Prigogine, which is in 01.ír case of real function 

analysis given by the dyadic convolution of real functions defined on [0,oo) provides a state 
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isomorphisms to associate to a conservative reversible real baker-dynamics rb the 

corresponding dissipative irreversible real baker-Prigogine dynamics rbP. 

3.4 Realization by dyadic differentiation 

In this final section we investigate how the A-transformation of a real baker-dynamics can be 

realized by dyadic differentiation. For a function f E L2 [o, oo) we denote by f [iJ the (strong) 

Gibbs-derivative, which is given by (see for example [9]. [10]) 

f [i](s) = lim f,21- 1 (f (s)- f (s Ef> p -i )) 
n-+oo i=O 

lt is known that for the generalized Walshfunctions 1f1 '"' (m E [O,oo )>, we have 

'l'~l = mr¡t'" 

(23) 

(24) 

(24) shows that the generalized Walshfunctions \jlro are the eigenfunctions of the Gibbs­

differential operator D[iJ which is defined by D[1l¡ = f [iJ _ 

However, by (24) it is also evident that D[iJ is a dyadic convolution operator, that means, that 

there exists a function d E L2 [O, oo ), such that D[iJ = d © and furthermore that f [iJ can 

consequently be represented by the integral 

¡[1l(s) = J d(t © s)f (t)dt 

Let D denote the WF-transform of d. Then by the dyadic convolution theorem and 

considering (24) we have 

D(m) = m 

By means of D we define the transformation Lv : [o, oo) ~ R by 

Lv := e-D 

This menas, that we have 

Lv(m) =e-'" 

We see, that Lv (O) = 1 and furthermore that for O~ m1 < m2 < 00 we have 

1 ~ Lv(m1) > Lv(m2 ) >O. 

This shows that Lv meets the requirements (19). Consequently AD = l D © where l D 

is given by 
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l 0 (s) = J L 0 (OJ)l/f w (s )dOJ 
o 

is a suitable A-transformation in the sense of Prigogine. 

This means that (<p(W_ (D)),L2 [0,ooHO,oo), where 

W_(D)=A 0U_A~ 

is a specific real baker-Prigogine dynamics. 

(29) 

(30) 

The following generalization of this specific example of a real baker-Prigogine dynamics is 

straightforward. For non-negative real numbers c1,c2, ••• ,c0 we define by D[iJ a polynomial 

operator by 

p(D[1]) := c¡D[i] + c2D[z] + ... + c.D[n] (31) 

Application of p(D[1l) to 1p wgives 

p(D!1l)l/fw = (c1D!1l +c2D!2l + ... +c.v!"l)l/fw = (c10J+c20J 2 + ... +c.OJ")l/fw (32) 

Together with vl1l also p(Dl1l) is a dyadic convolution operator. Therefor there exists a 

function p(d) E L2 [O,oo) such that p(D[1J) = p(d) ®. The WF-transform WFT(p(d)) of p(d) 

is by (8) given here by the polynomial 

(33) 

Let now L ptoi be defined by 

(34) 

Then we have 

(35) 

The function L ptoi meets in analogy to L0 the requirements (19) and we have with the 

dynamical system (<p(W_p(D)),L2 [0,ooHO,oo) where 

W_ (p(D) ) =A p(oP _K )<oi 

a further example for a real baker-Prigogine dynamics. 

Its A-transformation A pt oi is given by 

A p(O) = l p(O) ® 

(36) 

(37) 

The weighting function l ptoi can be computed again by the in verse WF-transformation of 
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lp<D>(s) = J Lp<D>(W)lfFw(s)dw 
o 

4. Summary and Conclusion 

(38) 

Starting from the example of the wellknown 2-dimensional baker transform B as considered 

in Prigogine works [3] , [4] which has been investigated further by the author in [5], the 

resti;iction of B on the set of dyadic rational numbers on the horizontal line is interpreted as 

the real baker transform b~ for the set [O,oo) of nonnegative real numbers. B~ is trivially given 

by the division of a real number s E [o, oo) by 2; B_ (s) = i-1 s. For real functions f the real 

baker-transform b~ is defined by (b_f)(s) := f (2-1 s) . In consequence it follows that the real-

valued Walshfunctions 1fJ "' of Fine are with respect to b~ a closed set of functions since 

b_lfF"' = lfF2_,"' for all me [o, oo ) . 

With respect to the spectral domain of Walsh-Fourier analysis it follows, that the real baker 

transform of functions results in an inverse real baker transfom1 of the associated Walsh­

Fourier Spectrum. This property allows to prove that the energy function of the discrete time 

system rb with the real baker transform a state transition is conservative. However, if we use a 

dyadic invertible convolution operator l with non-decreasing spectral representation A to 

assign the states from rb to rbP (real baker Prigogine dynamics) we find that rbP is dissipative 

and irreversible. 

The paper shows how the well known example of Prigogine for the A-transform can be 

demonstrated by the most simplest case with the interval [O,oo) as state space and where A is 

defi!led by dyadic convolution. Furthermore our paper demonstrates the construction of 

different possible A-transforms using the concept of dyadic differentiation. From our 

viewpoint it might be possible to find models for practica! examples tlik.en from physics, 

chemistry or biology which use the approach of Prigogine to associate a (microscopic) 

dynamical system of conservative and reversible kind to a (mesoscopic) dynamical system 

with collective variables which is dissipative and irreversible. 
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