Rev.Acad.Canar.Cienc., I, 247-250 (1990)

ON G-LOCALLY TRIVIAL SPACES OVER FINITE G-COMPLEXES

Antonio Vidal¹

Faculty of Matematics, University of La Laguna, La Laguna, Spain.

ABSTRACT. The purpose of this paper is to prove that a G-locally trivial G-space over a finite G-complex is an equivariant Serre-fibration. An application of this result to equivariant fixed point theory is described in [2].

Classification A.M.S. (1980): 57S17

1. PRELIMINARIES

Let G be finite group and p: $E \longrightarrow B$ an equivariant map of a G-space E into a finite G-complex B.

<u>Definition 1.1</u> p: $E \rightarrow B$ is said to have the G-covering homotopy property (abbreviated G-CHP) for the G-space X if, for every equivariant map f: $X \rightarrow E$ and every equivariant homotopy ξ_t : $X \rightarrow B$, $0 \le t \le 1$, of the map $p \cdot f$: $X \rightarrow B$, there exists an equivariant homotopy $\hat{\xi}_t$: $X \rightarrow E$ of f which covers the homotopy ξ_t . p is said to be an equivariant Serre-fibration if it has the G-CHP for every finite G-complex X. Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

<u>Definition 1.2</u> p: E \longrightarrow B is said to have the G-bundle property (abbreviated G-BP) if it is G-locally trivial, that is, if for each be B there is an open G_x -invariant neighborhood U_b of b in B together with a G_x -equivariant homeomorphism(G_x =isotropy group of x) η_{U_b} : $U_b \times \bar{p}^1(b) \longrightarrow \bar{p}^1(U_b)$, satisfying the condition $p \circ \eta_{U_b}(x,y) = x$.

¹This paper was partially supported by the Conse**s**jería de Educación de Canarias.

2. THE RESULT

We now state the result of this paper. <u>Proposition 2.1</u> p: $E \rightarrow B$ has the G-BP \implies p: $E \rightarrow B$ has the G-CHP for the family of finite G-complexes.

In other words, a G-locally trivial G-space over a finite Gcomplex is an equivariant Serre-fibration. Proof. Let X be a finite G-complex and let us consider the following

commutative diagramm

where $i_0(x) = (x,0)$, f is an equivariant map and $\xi_t(x) = \xi(x,t)$, $0 \le t \le 1$, any equivariant homotopy of the map $p : f: X \longrightarrow B$. To prove the Proposition we have to construct an equivariant homotopy $\hat{\xi}$ of f which covers ξ .

Let $\mathbf{U} = \{\mathbf{U}_{\mathbf{x}} / \mathbf{x} \in \mathbf{B}\}$ be a collection of decomposing neighborhoods. We have decomposing functions $\gamma_{\mathbf{U}_{\mathbf{x}}}^{-1} : \vec{p}^{1}\mathbf{U}_{\mathbf{x}} \longrightarrow \mathbf{U}_{\mathbf{x}} \times \vec{p}(\mathbf{x})$

for all x ε B. By II.5.5 in [1] we can assume that $\forall y \in U_x \Longrightarrow G_y < G_x$, (2.2)

that is, in the neighborhood U_x , x is have the biggest isotropy group. This fact is essentially used in the proof.

The collection $\xi^{\text{-1}}U$ of open sets of X \times I forms an open covering of

248

X = T. Since X = I is compact $\zeta^{1}(U)$ has a refinement of the form $\{W_{\lambda} \times I_{\nu}\}$, where $\{W_{\lambda}\}$ is a finite covering of X and $I_{\mu} = \{I_{1}, \ldots, I_{r}\}$ is a sequence of open subintervals of I which cover I. We may assume that I_{ν} meets only $I_{\nu-1}$ and $I_{\nu+1}$ for each $\mu = 2, \ldots, r-1$. Choose numbers $0 = t_{\nu} < t_{1} < \ldots < t_{r} = 1$ such that t_{μ} is in the intersection $I_{\nu} \wedge I_{\nu+1}$. On the other side, taking a sufficiently fine triangulation of X, we may assume that X is a simplicial complex such that every simplex σ in X is contained in some W_{λ} of the finite open covering $\{W_{\lambda}\}$ constructed above.

We are now ready to construct the equivariant homotopy $\hat{\xi}$ inductively: For $t_0 = 0$ define $\hat{\xi}(x, 0) := f(x)$. Suppose now that there exists an equivariant homotopy $\hat{\xi}: X \times [0, t_{\mu}] \longrightarrow E$ such that $\hat{\xi} \cdot i_0 = f$ and $p \cdot \hat{\xi} = \xi$. We want to extend ξ over $X \cdot [0, t_{\mu+1}]$. For each simplex σ in X choose a decomposing neighborhood U_x , denoted by U_{σ} , such that $\xi(y,t) \in U_{\sigma}$ for all $y \in \sigma$ and $t \in [t_{\mu}, t_{\mu+1}]$. For σ a 0-simplex in X define $\hat{\xi}(g\sigma, t): = g \cdot \gamma_{U_{\sigma}}(\xi_t \sigma, \psi_{U_{\sigma}}, \gamma_U^{\dagger}, \hat{\xi}_t(\sigma)),$

where $t \in [t_{\mu}, t_{\mu+1}]$, $g \in G$ and $\Psi_{U_{\sigma}} : U_{\sigma} \times p^{1}(\sigma) \longrightarrow p^{-1}(\sigma)$

is the proyection onto the second factor. ξ is well-defined : Because $\xi_t : X \longrightarrow B$ is an equivariant map, we have $G_{\sigma} < G_{\xi_t}(\sigma)$ with $\xi_t \sigma \in U_{\sigma} = U_x$ for some $x \in B$. From (2.2) follows $G_{\xi_t}(\sigma) < G_x$ and we have $G_{\sigma} < G_x$. But $\gamma_{U_{\sigma}}^{-1}$ is a G_x -equivariant map (= equivariant for the subgroup G_x of G), therefore from $g\sigma = g_t \sigma$ follows that $\hat{\xi}(g\sigma, t) = \hat{\xi}(g_t \sigma, t)$ and $\hat{\xi}$ is an equivariant well-defined extension of ξ .

Suppose now that $\hat{\xi}$ is already been defined on $X \times [0, t_{\mu}] \cup X^{n-1} \times [t_{\mu}, t_{\mu+1}]$. We proceed to extend $\hat{\xi}$ over the n-dimensional skeleton X^n of X. Let δ be any n-simplex of X and put

249

P is a retract of Q. Let r: $Q \rightarrow P$ be a retraction and define $\hat{\xi}(gy,t): = g \cdot \eta_U (\xi_t y, \psi_U \cdot \tilde{\eta}_U^* \hat{\xi} \cdot r(y,t))$ for $y \in \sigma$, $t \in [t_U, t_{U+1}]$ and $g \in G$.

Finally, by the same argument used above for the O-simplexes, we have that $\hat{\xi}$ is a well-defined equivariant extension of ξ . This completes the construction of $\hat{\xi}$ and the proof is finished. <u>Remark 2.3.</u> An application of Proposition 2.1 to equivariant fixed point theory is described in [2].

REFERENCES

[1]	Bredon,	G.	,	Introduction to Compact Transformation G Acad. Press (1972).	roups.
[2]	Vidal,	A.	,	On equivariant deformation of maps, Pub.	Mat.