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ABSTRACT

In this paper the generalized Hankel- Clifford transformation
® —caH3 /2
F, plEx)}=F(y)= [, (y/x) I (27xY)£(x)dx ( O<y<m)
where (a-#)2 -1/2 and J,(x) denotes the Bessel function of the first
kind and order v, is extended to a class of generalized functions. A
testing function space is constructed so as to contain the kernel,
(Y/x;(a+ﬁ)/zJa_ﬂ(2i§§),of the transformation. Some properties of the
function space and itse dual are derived. An inversion theorem is
established by interpreting the convergence in the weak distributional
sense. The theory thus developed 1is applied to solve some partial
differential equations involving the generalized Kepinski type operator
Aa,ﬁ=xpD x*P*lp x™ with distributional initial conditions.
KEY WORDS Hankel-Clifford transformation,generalized functions,countable
union spaces,inversion theorem,adjoint method,kernel method,operational
calculus,Cauchy problems.
1 _INTRODUCTION
The conventional Hankel transformation defined by

h, {£(x) X (¥)=F(y)= fmov’x—y J, (xy)E(x)dx  (O<y<m) (1.1)
was extended by Zemanian [13] to certain generalized functione of.slow
growth through a generalization of Parseval’s equation.Later on Koh and

Zemanian [3] extended (1.1) to a clases of generalized functions by

Kernel method, which is a more natural extension of (1.1) because the
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kernel appears explicitly as a testing function and is very
well suited for specific computations.
The conventional Hankel-Clifford transformation defined by

clg_,{f(x)}—-F(v)‘f (y/x)“"J (2/xy HE(x)dx (O<y<o)

(1.2)
y"j’ (xy)""’a (2/Zy) £(x)dx

was extended by Héndez and Socas [B8] to certain generalized functions
by the method of mixed Parseval s egquation. The transformation (1.2)
was also extended by Choudhary (1] to a class of generalized functions
by kernel method in which the transformation (1.2) has not been
precisely developed and studied in detail.

A simple generalization of (1.2),called generalized Hankel-Clifford
transformation,is defined by
F, A£00H(y)=cH, A£(x}(¥)= f@“’“"’”z o (2/Z7)L(x)dx, (O<yam)

[+ ]
w”‘”fotn)‘“*'?”zaa _p (/A f(x)ax

=F, (1.3)
where (a-f3) 2-1/2 and J_ ﬁ(z) is a Bessel function of the first kind of
order (a-3). Note that when a=0, #=-u the transformation (1.3) reduces
to (1.2) and when a=u/2,3=-14/2 the transformation (1.3) reduces to the
classical Hankel-transformation in Tricomi“s form (by a suitable change
of variables).

Following Méndez [71,Sneddon [10]and Watson [11],the convergence and the
inversion for (1.3) and some of the important classical results which
we require in subsequent work are given by the following theorems.
THEOREM 1 For (a—3)2 -1/2 , if f(x) is a locally integrable function

on 0<x<» such that

f(x) = 0(X') , x0 and
£(x) = 0(F) , xo ,
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a
then the integral [ x@%)/2 J,-(2/x )f(x)dx defining the transform-
o

ation (1.3) is absolutely convergent when n>—(a+l) and {<-(*— +1—+3_

THEOREM 2 (Inversion forsula) A

If f(x) is of bounded variation into a neighbourhood of the point
x,>0, (a-#)> -1/2 and the integral £m|f(x)|x“°””"‘"‘/‘ dix exists,
then

@ R
1 2 £of ¥ @ O G g @2, 2PRgdvax
R 00 o o

= S AE(x, +0)+£(x, 0% (1.4)
or
F ¢ Joy—(au) /2 : 1

lim [ (5 I p(2/x7) Fi(0)dy = 5 {£(X,40)+£(x,-0%

R-00 o
where F,(y) is as defined by (1.3).

:If (@32 - 1/2, then
joaa_,,(zﬂ?)aa_,,(zlx?)dv

_ 7R
=6 L7x

(23R, , (2/ERTE I, o (2T, , (2/FD)]

o3 +1 £+l

(1.5)
THEOREM 4:(Operational calculus )

(a) If F,(y) 18 as defined by (1.3) then
E ol fa) = a*PlE ffolcse
where a is a positive real constant.
(b) The transformation (1.3) satisfies the operational rule
E, o 8, pER(0) = -y B, o[ £ () (1.6)

where
» » -t

8 p 8% px=% p S+ f Hx l’: + (c43+DD, + qﬂx_ll

1.7)
and f(x) is a suitable function .
(a43) /2
Jd

() If y = x 2% ) thon 1t satisfles the differential

equation
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X ¥y —(a4f-1)y°+ ( aBfx 1)y = 0 (1.8)
(d) If y = x (@ )/2Ja_ﬁ(2fi- ) then it satiasfies the differential

equation
X ¥ o H@B3+1)y + ( aﬁx"1+1)y =0

(0 FPNL [;EMAY oy @PA o
) S (P g @moa=CTDA L x)

@ S x5 x )1-1: C, (-1 PG 2rE

where G = and C =1.

- d-ﬂ-}l -1
(h) I£4, , =48, , =2 D D, x® A x I - (a43-DD_ + opx ]
(1.9)
then
K -@43)/2 P —(a43)/2
8% o (L) NG RN Nl RS ) 3, (2T
(1.10)
for k = 0,1,2,3,.......
In accordance with (1.7) and (d), one has
)= (a43)/2 = o1 X —(a43)/2
Aaﬁ)k[( CHING -0 BENC T e 3, (23]
for k = 0,1,2,3,........ (1.11)
) —sn[ 2/xy ) 32 N=2%" 2 NI, (oxy ) (1.12)
THEOREM 5 (Parseval’s relation):
If £(x) x* and G, (y)y~ are in Lj(0) and @-#R-1/2,
Fi(v) = F, 4[£(x)1(¥) and &(x) = F, ’,,[G (¥)1(x), then
) P famdax = [ v a6, (ndy. (1.13)

By invoking Fubini‘s theorem we also can prove
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THEOREM 6 (Mixed Parseval’s equation )
If £0x” and G, (v)y° are in L (0,0) ,
Fity) = Faﬁ[f(x)](v) and G, (y)= Fﬁ_a[c(x)](v)
o —(a43)
=_]'0(x/y) I (27xy)E(x)dx (1.14)

then form(a-(i)z -1/2 ©

J fxaxyax = [ F,(y)G, (v)dy (1.15)
Accordl?u to Mendez [Bltheoequnllty (1.15) is called the mixed Parseval
equation for the E_ ﬁ—tranefomtion (1.3) and F{, ’a-tranafomtion
(1.14).The F_ ,ﬂ-transformtion (1.3) is recently extended by
Malgonde and Bandewar [6] to certain generalized functions of slow
growth through a generalization of mixed Parseval’s equation (1.15) for
(a—3)2-1/2, as follows:

The Fréchet spaces Hﬁ(I) and S (I) of testing function defined
below by (1.17) and (1.18) respectively are constructed such that
ordinary F_ ’ﬁ—transfomtion and the ng ’a—transformtion given by (1.3)
and (1.14) respectively are automorphisms on them respectively for
(a-3)2 -1/2 .As suggested by the mixed Parseval’s equation (1.15), the

distributional FJ ﬁ—tranafomtion F‘; (af of any fe S&(I) is defined by

CF,pf . ¢>=<f,Fg ¢ > (1.16)

for every ¢ € 5 (I).Analogously,we can define the gereralized transfor-
mation Fr; ,a on l-l{;(I). It follows that F;,ﬁ and Fr; ,a are automorphisms
on S/(I) and H,;(I),respect:lvely, for (a-3) =2 -1/2.

The object of the present paper is to extend the transformation
(1.3) to other class of generalized functions following a different
procedure called the kernel method and prove the inversion formula by
interpreting the convergence in the weak distributional sense as veil
as other important properties of the distributional generalized

Hankel- Clifford transformation. In the end, we develop an operational
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calculus that is applied to solve certain partial differential equations
involving generalized differential operator of Kepinski type.

The notation and terminology used here are those of Zemanian [14].
Throughout this work I denotes the open interval (0,).D(I) denotes the
space of functions whose supports are compact subsets of I. We assign
to D(I) the topology that makes its dual D" (I) the space of Schwartz’s
distribution on I [9].E(I) and E°(I) are, respectively, the space of
smooth functions on I and the space of distributions having compact
support with respect to I. These spaces have their customary topologies
[14].

Let # be any real mmber.lHﬁ(I) denotes the linear space consisting of
all smooth complex-valued functions ¢(x) on I such that,for every pair
of of non-negative integers (m,k) the number

L @x) = sup X Do) (1.17)

xE€X
exist.

a

m,k=o generates the topology of Hﬁ(l).'l‘he
dual of l'k(I) is H,;(I). D(I) %(I) and l;.;(l) <D (I).
Let a be any real number. Sa(I) denotes the linear space consisting of

The set of seminorms {p{: o

all smooth complex valued functions ¢(x) on I such that, for every pair

of non-negative integers (m,k), the numbers

L0 (@)= sup| =" Dx (x| (1.18)
f s

00

exist. The set of seminorms {{ :  Inx=0 g enerates the topology

of S5, (I) . The dual of S (I) is § (I). D(I) 1s proper subspace
of Sa(I). So"(I) can be considered a subspace of D" (I).
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2.THE TESTING FUNCTION SPACES H AND H_ ﬂ(a) AND THEIR DUALS:

3,8

Let a denote a positive real mmber and « and 3 are any real
numbers.Then we define IHa-ﬂ a28 the space of testing functions ¢(x)
which are defined and smooth on O<x<vand for which

r:"ﬁ’“w) = esuwp |6 x™ A:.,ﬁ #(x)] <o (2.1)

0<x <00

for k = 0,1,2,..., where Aa,fi is as defined in (1.9). We assign to

Na A, at;he topologygenerated by the countable multinorm {r:’n’ﬁ»:' o
'Ha,ﬁ,a is a Hausdorff space, since r:’ﬁ’a is a norm on Ha,ﬁ,a
Horeover,lHq A.a is a locally convex linear space that satisfies the
first axiom of countability. The dual space 'Ho: 4.8 consists of all
continuous linear functionals on IHaI A.ar
which we assign the weak topology generated by the multinorm {¢ ¢(f )}¢ -
where £, (f) = |<f,#>| and ¢ varies through Hep.ar
We now list some properties of these spaces:

The dual is a linear space to

(1) Let(a-3) 2 -1/2 and a>0.For a fixed positive real number y,
m

o —
—.| Ex,¥) ] € 'Ha,{i,a for m=0,1,2,....

3y
—(a4f3) /2
where K(x.y)= (y/x) Jup(2/xy) .
Indeed, it is easily verified that
m me (a-3)
-‘1—;“[x(x,y)] = 3—;[2 @)Ly 2Tz Ja_ﬁ(ZJxv)]
ay oy

m-j i (a—3)

(a3 . m da -, d7
=2 L 1M S TR 3, 2T

i j—m —~Of3+) f2
= 5,6 Y7L (y/xy A g 27y )
using (1.12), where the Cd(a) are constants depending only on a. By the

series and asymptotic expansion of Ja—ﬁ—j (27xy ), it follows that the

mantitiac
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a3 ,a :
" [ (y/xy @O g 2T )] exist for all k=0,1,2,..

=
and (a-3)=-1/2_Hence
o {—‘!—;"[K(x.v)] }
ay

S Z,G @)Y " P yxy P g

MR £ S

for any fixed y>0.
(11)H f.a 8 sequentially complete and therefore a Frechet space.
Hence,IHo" 5.a is also sequentially complete.

To prove the first part, we use an inductive argument based on

x == k- gk-i
A @) = I G, % ¢ (x) (2.2)

where, the ci‘k 8 are constants depending upon « and # and k is a
nonnegative integer.
a

If{ ¢u}:»=1 is a Cauchy sequence :I.anOIﬂ(?,'l then by seminorms ri’ﬂ’a and
(2.2) there exists a smooth function ¢ on I such that for every n<€ N
1lim D%v (x)=D"(x) uniformely on every compact subset contained in I.
Y->0

Stnce 7377 *%(#,) 1s finite for every velN,it follows readily
that ¢+ ¢ ,as v+o in the sense of convergence in IHcl A.a
(iii) If a>b>0, theanaﬁ’bc ma,ﬁ,a and the topology of ma,ﬂ.b is
stronger than that induced on it by IHaﬁ a
from the inequality r‘;’p'a@’)ﬁ r‘;'ﬁ'b@) for ¢ € 'Ha,ﬁ b - Hence the

.This follows immediately

restriction of fe IH&J, " to IHG’B b is mN&ﬁ b’ and the convergence in
md’,f?,a implies convergence in N‘;,ﬂ,b .

(iv)Let (a-3)2-1/2.8 (I) is a subspace of IHG,B = for every choice of
a>0 and the topology of Sa(I) being stronger than that induced on it by
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[Ha.ﬁ.a'
To see this,we note that
o Lk e ki 2k—3)_-o
x Aa,ﬁ P(x) = j>=:° qu r x ¢(x)
where the constants (}:,k depend on a« and 3. Since, for any choice of a>0,

e %% 1 on O<x< ,we have
2k

re @) S LICl Ty, @) for any ¢ « § (D).

This implies our assertion and shows that Sa(I) is continuously imbedded
on IHG’B.“.It now follows that the restr‘iction of any fe m&,ﬁ,a to Sa(I)

in S;(I) and that convergence 1in IHO’l A.a implies convergence in

S&(I).We note that S (I) is the proper subset of 'Ha,ﬁ,a‘ Indeed

K(x,y)sH for all y fixed as was aw shown in note(1),but nov ..

a,fl3,a
Sa(I),becauae this function is not of rapid descent at infinity ([6].

(v)D(I) < Naﬁ a’ and the topology of D(I) 1is stronger than that

induced on it by Na,ﬁ'a.ﬂence,the restriction of anyfe Ho’t,ﬂ,a to D(I)

is in D°(I), and convergence in 'H&,n & implies weak convergence in D (I)
(vi)For every choice of a,o and 3, 'Ha,n aS E(I).Moreover,it is dense
in E(I) because D(I) < lﬂa’ﬁ = and D(I) is dense in E(I). The topology

of ma.f?,a

be identified with a subspace of mo:ﬁ,a'

(vii)The generalized Kepinski operator A, B is a continuous linear

is stronger than that induced on it by E(I).Hence,E“(I) can

mapping- from the space S(I) into itself. Analogously A: defined in

>3
(1.7) is a continuous linear mapping from the space S {I) into itself.
(viii)The operation ¢-'Aa ,/3" is a continuous linear mapping of Ma,ﬁ &

into itself since

rel %o, » = 3%  fork=o0,1,2 ....

»

We define the operator Aaﬁ on D-lo’lﬁ aby
E ] -
<Aa,raf’¢’> —<f,Aaﬁ¢>.¢€ﬂ'|aﬁ’nandfe 'Ha.ﬂ,a'
This is consistent with the usual definitions of multiplication by a
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smooth function and differentiation of generalized functions

([121,pp-28, 47).Since ¢-+A4 B¢ is a continuous linear mapping of H_ An
x

Bf is a continuous mapping of H®

into itself, it follows that f-Aa .f,8

into itself.
(ix)For each fe 'H; f.a ,there exist a nononegative integer r and

a positive constant c such that, for all ¢ € IHa B.a’

I<£.¢>) < c max » " *3(p)
oSk<r

The proof of this statement is similar to that of Zemanian

[12,Theorem 3.3-1].

(x) Let f(x) be a locally integrable function on O<x<» and such that

a0

folf(x) e®x%|dx < ©.Then f(x) generates a regular generalized function

in IH;l fa defined bz)

<f,e¢> = fof(x)x(x)dx R AL

That f(x) is truly in H;,ﬁ » follows from the inequality
& o

t,0) = KES| <2370 0% [ fx) e™xM|dax o

(x1H £.a

example the function defined as ¢(x)n¢°”ﬂ is in IH‘Jl

xd*ﬁ-l

is8 not in general closed with respect to differentiation.For

f£.a and however the

derivative Dp(x)=(a+3) provided that 0<3<l-o and

a43* 0.

is not in lHa B8
Next,we give the structure formula for the restriction of an element
in H® to D(I).

a,3,a

(xii)Let f be an arbitrary element of IHO'l .Then there exist bounded

»3,a
measurable functions gi(x) defined for x>0 and 1=0,1,2...r where r is
some non-negative integer depending upon f, such that for an arbitrary
¢ € D(I) we have

KES> = (ICAy D 4™ x™ (D) g(x} , 6(x) >,
We turn now to the definition of a certain countable-union space

!Ha ,ﬁ(d) that arises from the l?-lcl .8 spaces. Our subsequent discussion
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takes on a simpler form when the H ,3?) spaces are used in place of the
I}io‘ﬁ,a sp:cee. Following Friedman [2,p.21] and Koh and Zemanian [3],
'Ha,n(")" U H, 6.8, is the countable-union space where {%} -1 18 a
-onotonlc sequence of positive numbers such that g,» o (0=4o 1is
allowed). A generalized function f is F; ﬁ—transforlable if feH} ’ﬂ(a)
for some >0 where ﬂ*’.ﬁ(o) is the dual of H r,(o').

In view of our definition of Il'laﬁ(a) and its dual,the following Lemmas
are immediate.

LEMMA 1:For any fixed y>0, lm—m [ K(x,y) € Naﬁ(d).n-'o,l,z...where
o>0. o

LEMMA 2:For every choice of o>0,Sa(I)dHa'ﬁ(0) and convergence in §_ (I)
implies convergence in H ﬁ(o').'l'he restriction of feH ,B(a) to 8§ (I) is
in S (I), and convergence in HJ ,n(‘” implies convergence in S;(I) .
LEMMA 3:The operation ¢-+A ,ﬂ¢ is a continuous linear mapping of H ﬁ(o')
into itself.Hence the operation f+ A ’ﬁis a continuous mapping of

H” (o) into itself by Zemanian [14, Theorem 1.9-1].

a’ﬁs was indicated in note(vi), HJ ﬁ(o') contains all distributions of
compact support on I=(0,»).Similarly, any conventional function f
satisfying the conditions stated in note(x) for some a< is a member of
No'(ﬁ(O), as is every generalized derivative Akf » k=1,2,3....,according
to Lemma 3. Moreover, we may say that the member of Mc;,ri(") are
“generalized functions of exponential descent”,since the multinorm

£ 3"*® ) shows that the testing functions ¢ « M, , . are at most
of exponential growth.
3 THE DISTRIBUTIONAL GENERALIZED HANKEL-CLIFFORD TRANSFORMATION:

Let o and # be real numbers restricted to -1/2<(a-3)<o.In view of

note (1i1) of & 2, to every fe lH x.0.a there exists a unique real number

o, (possibly,o, =+») such that f e H_ 1fb<a and f <H"°

aLf3 b aLf3 b
Therefore,fe H ,ﬂ(df). We define the distributional generalized

if b»f.
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Hankel-Clifford transform F’

aﬁfoffasthomlicationof f to the

kernel K(x,y); 1i.e,
Fl(v) = (F‘;J,f)(v) =< f(x) , K(x,y)>
-(a#f3)/2 (3.1)
= Lf(x), (y/x) Ja_r,(ﬂxy»
where O<y<» andot)o . The right hand side of (3.1) has a
sense because, by Lesma 1,K(x,y)e IHaﬁ(of) for each y>0.
If £(x) satisfies the conditions of the note (x) in &2

for every a<o ,then we may write

a0
Fi(v) = (Fg x)(y) = {f(x)l(x.v)dx (3.2)

for O<y<o.
LEMMA 4:Let a and o¢ be fixed real numbers such that 0<a<nf.
For all fixed y>0,for (a-3)2-1/2 and for O<xa

—(a-f3)

le™ (27x¥) Jap (2/TD|< A, (3.9)

3

whereAaﬁ is a constant with respect to x and y.

Proof:The proof is simple and can be easily verified following Koh
and Zemanian [3].

We will now show that the transform F,(y)= F, J,f is analytic. Namely,
THEOREM 7: For y > 0, let F,(y) be defined by (3.1). Then

H R = <@ 3 Kxy >

Proof:Let y be an arbitrary but fixed positive real number. Let us
choose Ay as a nonzero increment such that O0<|Ay| <y/2 .

For Ay *o,

ORNTEO) ) 55 KD =< R, 8, (xD (3.4)

Ay
where

E(x,yHy) - K(x,y)
Ay

Ppy (X) = - :—yl(x,y)

Our theorem will be proved when we show that (3.4) converges
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to zero as |Ay|+0 .This can be done by showing that ¢, (x)

converges to zero as |Ay|+0 in H ,3(@g)-BY using the fact from (1.10)
a, r,K(x.v) = (- 1) ¥ K(x,¥) (3.5)
and by interchanging o_y with Aa ,3 e can write

k
X By (00 = 6 x (1) (riay) K(x,y+y)
-1*Y K(x,y) .
- iy = —( 1y K(x.v)]

—ax -ot k 1 y+Hy
= e x [A—Y‘! 5% (¢ Kx, t)dt g5 (¢ K(x.t))}uy]

—ax - k

y Hy t
= ¥ (D s fi, {u° K(x,u)du
Ay y y @&du

By letting the constant M be a bound on of the expression

I-———— U K(x, u)}l we obtain

yHy t M|Aay|
le™ x4y 58, ()| = ——] Jdtdu = ——=+ 0 as |ay|+ O.

Thus,as |Ay|+ O, rka.ﬁ,n [¢Ay(x)] + 0 for every k € N.
Consequently , (3.4) vanishes as |Ay| -+ O.

THEOREM 8:Let Fl(y) be defined by (3.1). Then FI(Y) is bounded
according to

cy_ﬂ asy*o+

F.(y)]| = (3.6)
LXTER DA

where c is a positive constant and r is some non-negative integer
depending on f.
Proof :Since felHo‘!ﬂbwhere0<a<b<at , we see from
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note (ix) of & 2 that there exist a constant ¢“>0 and a

non-negative integer r such that

Iy | = o max  SUD | o @y a¥ LIK(x,y)]

Here, ¢ and r depend in general on the choice of a.By (3.5) ,

the right-hand side is equal to

¢’ max sup —a k k-3 03 —(a-3)
0ZkSr owx® | e ™ (1) ¥y L2l Jx_P(ﬂ;Y)l .
= k
SHE (9

using Lemma 4, from which the theorem follows.
In view of note (iv) of €2 and Lemma 2 if f is mméﬁ(of) then f

belong to S;(I) provided that (a-3)2-1/2 . We now show that
distributional generalized Hankel-Clifford transformation of
fd";,ﬁ(af )aiven by (3.1) is equal (in the sense of eguality in S (I))
to the distributional generalized Hankel-Clifford transformation of £
as given by (1.16).

THEOREM 9: Let f « IH;J,(O',) » 9 € S§,(I), and (a-3)2-1/2.Then

< <f(x) , K(x,y)> , 2(y) > = <f(x) , [ K(x,y}(y)dp>
° (3.7)
Proof:We now restrict y to the positive real line. Since
F, (y)=<f(x),K(x,y)> 18 of slow growth as y-» (Theorem 8) and
is Lebesgue integrable on O<y<Y for every Y on (0,0), we may take into
account that F,(y) generates a regular member in S (I) with

(a—3)2-1/2 to write the left hand side of (3.7) as
[+ ]

< <£(x) , K(x,¥)> , ¢(¥) > = [ <f(x) .K(x,¥)>(y)dy, ¢ < S (I)

o

(3.8)
Our theorem will be proved when we show that
a0 a0
J <f(x) K(x,y)>(y)dy = <£(x) , | K(x,¥y)¢(y)dw>
o (] (3-9)
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Following Zemanian [14,p.148] and Koh and Zemanian [3], the

technique of Riemann sums can be used to express

y Yy
J <f(x) .K(x,¥)>(y)dy = <f(x) , [ K(x,y%(y)dw>
(o]

¢ (3.10)
Finally, the right hand side of (3.10) converges to the right hand
side of (3.9) because of the following inequalities:

00
e x " A, 4 s ¢ K(x,y)dy

00
-ax __-ol

I s e(wre x™ -1 Kx.y)dy
Yy

1]

1A

[ ]
sle v PEP & () g, (2wl ay

o
Y

- | ¢y | ay.

1A

The last inequality is due to Lemma 4.Since ¢ € S (I) is of
rapid descent, the last integral, which is independant of x ,
vanishes as Y+ ®.This completes the proof of the theorem.

We now state an inversion theorem for our distributional
generalized Hankel-Clifford transformation (F, ,ﬂ—tranafomtion).
THEOREM 10:Let F,(¥) = ‘Fo‘:,nf)(y)’ fe N&,ﬁ(v,) as in (3.1) where
y>0.Let (a-3)2 -1/2.Then,in the sense of convergence in D’ (I)

f(x) =lim s, F,(7)K(y.x)dy (3.11)
R 00
where K(v.x) = (x/y) )25 (xy)

Proof:Let ¢#(x)eD(I). We wish to show that

< P KLY , (x> (3.12)
tends to <f(x), ¢(x)> as R-o. From the emoothness of F,(y)
and the fact that support of ¢(x) is a compact subset of I, we
may write (3.12) as a repeated integral on (x,y) having a
continuous integrand and a finite domain of integration. Hence
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we can change the order of the integration and obtain
5 (x) P Ky, x)dydx = SOCE(E) . K(b,¥) 08 (x)K(y,x)dxdy
(3.13)
By an argument based on Riemann sums for the integral f:...dy,
the right side of (3.13) can be written as

< (1) L 8 K, ¥ 0 (x)K(y, x)dxdy > (3.14)

o

= KB, SRR 2VEy wie(xx EY PRy (2Vy yaxdy>

From (1.5) of Theorem 3, and the asymptotic representation of
the Bessel functions enable us to show that for any a>0,

the testing function in (3.14) converges in H to #(t) as Rvw.

a,f3,a
Since de‘ x.0.a where O<a<o, ,it follows that (3.14) converges

to <f(t),#(t)> as mr+o.This proves our theorem.

As a result of the inversion theorem, we have the
following uniqueness theorem.
THEOREM 11 :Let Fl(v)— aﬁf for y>0 and Gl(v)- F’ o 08 for y>0, £
and g being in IH; ﬁ(o ). If Fl(y)=G1(y). for every y>0,then f=g in
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the sense of equality in D°(I).
Proof : By theorem 10,
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f-g = lim J‘ [Fy(¥) - G (V] K(y,x)dy = 0.
R-»00

© Del documento, de los.

4. AN OPERATIONAL CALCULUS :

Our distributional generalized Hankel-Clifford transformation
generates an operational calculus by means of which certain
(partial) differential egquations involving generalized functions can
be solved.
We define the operator
by 5 WS p@) o+ HI (o)
by the relation
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A

a

»
A f(x) , 2(x)> = < f(x) , Aaﬁ'#(x))

for all fe mt;,ﬂ(af )and ¢(x)e 'Ha,ﬁ("f) , (a-3)2-1/2.1t can be readily
seen that

<y PMEX) L 0> = < Ex) L ALK BED

for each k=1,2,3,...... In this case f is a regular distribution
generated by an element of D(I),then
8% 4= [xDZ+(@43+1)D, + opx™) as defined by (1.7).

The distributional generalized Hankel-Clifford transformation is
useful in solving initial value problems. Indeed, we now establish

a theorem that enables us to transform a differential equation of

L2017

the form
PLA, Ju = & (4.1)
where P is a polynomial and u and g possess Fa'l ,ﬂ—tranafor-s, into

an algebraic equation of the form

Pl-y1U(y) = G(¥v)
where U(y) = (F&ﬁ)u(x))(v) and G(y) = (I‘;’r,s(x))(v)-
THEOREM 12: For k = 0,1,2,.....

g
£
5
2
£
E
J
<]
4
g
5
8
2
£
5
8

8
|
&
a

£

8

. A." B k kg 4.2
F; olon 581 = UYYE; of (4.2)
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for dea‘,ﬁ(o', )~
Proof:From our definition of the operator A: A
F; ol A:t,,ﬂ (¥) = «8y " E(x), K(x, ¥
= <£(x) , A
=(-1)'¥ <£(x) , K(x,¥»
=1 ¥ (E; D)
We now wish to find a generalized function ueHj ﬁ(O) for

and from (3.5), we have

,ﬂx(x,v»

some >0 satisfying the distributional differential equation (4.1)
where P is a polynomial having no roots on -©<x<0. By applying ]i‘a‘l P
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to (4.1) and invoking Theorem 12, we obtain
H-y1UW(y) = G(y)

where U and G are F& g transfomations of u and g respectively.
Taking the inverse Fo“ ﬁ—transfomtion, we get as our solution
a generalized function u in H®° (o) such that

a8
<u,e> = lim< £ S g,y , e (4.3)
Reo0 Pl-y ]

for every ¢ € D(I) if P[-y ] = O.

We now wish to find u € M; (o) such that (E; ,u(¥) ﬁ%? ;
By Theorem 8, we know that |G(y)|< ¢ y* asy -+ o

for some non-negative integer r depending upon g and so

G4 g(y,x) is an integrable function in O<y<R and then
Pl-y 1

s* 84 g(y,x)dy 1s a locally integrable function in O<x<o
Pl-y 1

and it defines a regular distribution in D°(I).Now let Q(x) be
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a polynomial of degree (r+l1) having no zeros on the negative
real axis. Then the convergence of the right hand side of (4.3)
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can be established as follows:

<™ SO gy, x)dy , ¢(x»
PL-y]
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= <ae) gt S gy, x)ay.exp
P(-y1Q[-¥]

2(5' G(y)
Pl-ylal-y]
by integration by parts.
Let us suppose that the support of ¢(x) is contained in [A,B].
Then, we can find a constant L such that for R .R, >L we have

K(7,X)dy,Q(4, ) (x)>
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*2 6(y)

19] = | <sr 28 gy xyay . x>
r Pl-y]

) 3

s — M Jdy+ 0asR,R + o where M 1s a suitable
=, |Pr-¥1] jar-y1|

IA

positive number.Therefore

lim< & &9 giy.x)ay . 2(xD>
R+® O Pl-y]

exists and by completeness of D" (I) there exists fe D" (I) such

that

1im < ™ 3 gy, xydy ., 2(x) = <E.8> (4.4)
Rw@ o P[-y]

Now for all ¢ € D(I), we have

lim < Py ) ° S gy,xdy L sxD =< PO L)E8,
R0 o Pl-y]

or
lim < /* GOOIK(Y,x)y . #(xD> =< P, )E9>

R -0 o

Hence by our inversion Theorem 10 it follows that

84> = < Py )E.6>. |
This proves that f determined by (4.4) , which belongs to D" (I) and is
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the restriction of udH; ’ﬁ(o) to D(I), satisfies the differential

equation (4.1).
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5 APPLICATIONS:

This section is devoted to an application of the preceding
theory to two Cauchy type problems having generalized functions
like initial conditions.The distributional generalized Hankel-Clifford

transformation can be used in solving certain partial differential
equations involving the generalized Kepinski operator.We point out
that other equations,as the generalized Fokker-Plank egquation

A G2 =l [p(x) 2] +5—[a(xul + r(x)u
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when p(x) = x , a(x) = a4 and r(x) = a3x (o and # are real numbers

and constant), as well as the general linear equation of heat
conduction

a(x,t) 3o - b(x.t)—:z—:'— - o(x, t)32— - d(x,t)u = £(x,t)
X

when a(x,t) = A, b(x,t) = x, c(x,t) = a4+l , d(x,t) = oB¥x "'
f(x,t) = 0, reduce to equations of generalized Kepinski type.
An operational calculus generated by Fj ﬁ—tra.nsfomtion
is now used in solving two Cauchy type problems:
Let us determine a function u(x,t) on the domain {(x,t):
0<x<w, 0<t<w} which satisfies the generalized Kepinski equation

dzu du -1 4 u
x—a—x;- +(ﬂ+ﬂ+1)7x—+aﬂx u A 7t - 0 (5.1)

for(a-3)2 -1/2,and A>0 under the initial condition u(x,t) converges
inH; (@) to £(x) e H; () for some o > 0 as t+0".
We will find the solution in the spaceﬂ'l&ﬁ(a) for some > 0 and
(a3 )2-1/2.
Let U(y,t) = F;’B(u(x.t)(Y).Then applying (4.2) to (5.1) we obtain
-y U(y,6) X 33 Uzt = 0
whose solution is
U(y,t) = F,(y)exp(-ytA)

where F,(¥)= (E;ﬁf(x))(v).
Using the inversion formula stated in Theorem 10 we get

ux,t) = lim $"F, (v) exp(-ytA) K(y.x)dy (5.2,
in D°(I).
For each ¢ € D(I) one can show that
<u(x,t),8(x» = £° ¢(x)dx £¥ F,(y) exp(-ytA)K(y.x)dy (5.3)
Now one can observe from (5.3) that
u(x,t) = 7 F, (v)ex-yt/AK(y,x)dy  (x,t>0) (5.4)
Using the asymptotic orders of F,(y) as established in
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Theorem 8 we can justify that

€8y 5 -2 gpu = LR (VK Ay 5 - Mg dex-yt/AIK(Y, x)dY

Therefore u(x,t) as defined in (5.2) satisfies the generalized
Kepinskil equation (5.1).To verify the initial condition, assume as in
§4 that Q(x) is a polynomial of degree (r+l1l) with no roots on the
negative real axis . Then, we have

alx,t) , ox)> = sSpax ey e BT exp-ytr kG xay
Q(-y)

53 A, pwmax sy B exp-ytm)kiy.xray
Q-y)
(by integration by parts)
That 1is,

ulx,t) . 6> = g @B, wmax sy BV exp-yta k. xay

Q(-y)
(5.5)

We assume that the support of ¢(x) is contained in (A,B), B>A>0.

The right hand side expression in (5.5) converges uniformly for all
t>0 as Rso. Therefore, letting t+0* 1in (5.5) and ewitching the 1limit
operation with respect to R and t in the right hand side of (5.5) we
get

lim <u(x,t).¢(x)> = Mg /h @6, emax s B xe.xay

a
b Q-y)
or

Lim <u(x,t),8(x)> = Jig S ¢ (x)dx 75 F,(y) K(y,x)dy

t »0+

(by integration by parts)

<f,#> (in view of Theorem 11)

Thus the condition is verified.The solution obtained is unique in

the sense of equality over D(I) in view of uniqueness Theorem 11.
Similarly we can find the solution

u(x,t) = pig " Fi(v)cos(t/y/A HK(y,x)dy (5.6)
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of the partial differential equation involving the generalized Kepinski
equation
02 u au - 62 u
X — +(of3+l) 5+ oB3x u-r — =0 (5.7)
axz ax 3 E

satisfying the initial conditions
(1) u(x,t) converges :I.nN;_B(a) to f(x) € M‘;ﬁ(a) as t+0"
(11):—tu(x,t) converges in N‘;ﬁ(a) to zero, as t+0
and verify that (5.6) is a solution of (5.7) [14,p.158].
Remark 1: It is proposed to develope the theory in distributional
sense for the second generalized Hankel-Clifford transformation
defined by (1.14) which is the generalization of the second
Hankel-Clifford transformation

Fz(y)=cll“f=f:i" C, (xy) f(x)dx (5.8)
defined by Méndez and Socas in (81, where C,(x)= x */2] (2/%) is the
Bessel-Clifford function of the first kind of order . Note that when
a=0,3=—4, (1.14) reduces to (5.8) and then to show that the study of
these two transformations (1.14)and (1.3) on certain spaces of
generalized functions allows one to solve a class of partial
differential equations of the generalized Kepinski type for any real
values of its parameter (a-3).
Remark 2: In future it is proposed to extend these two transformations
(1.3) and (1.14) to a larger space of generalized functions
similar to Koh and Li [4].
Remark 3:It is proposed to develope the distributional set up for
the finite generalized Hankel-Clifford transformation.
Remark 4:Using the theory of one-sided generalized Laplace
transformation of generalized functions by Malgonde and Choudhary [5]
and the theory thus developed can be used to solve a distributional
integral equation which will be the future investigation.
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