B*-CONTINUITY AND OTHER GENERALISED CONTINUITY

D. K Ganguly and Chandrani Mitra

ABSTRACT The paper is devoted to study sorne properties of generalized types of continuity and B*-continuity and sorne examples are given in this connection.

INTRODUCTION AND PRELIMINARY EXAMPLES:

Continuous function is a source of studies for many of the research workers and it has been generalized in various ways, viz. quasi-continuity, cliquishness, simply -continuity, B-continuity, almost continuity, semi-continuity in the sense of Levine, functions having the WCIVP etc. It is seen that the notions of almost continuity, quasi-continuity and semi-continuity in the sense of Levine are same [4]. These functions involve the concept of generalized open sets, viz. semiopen, simply open etc. In recent years a good number of research has been done on many types of generalized continuity. Perhaps the notion of quasi-continuity has been focussed most intensively due to its close connection with other types of continuity and its various applications in Topology and Mathematical Analysis. The notion of B^* -continuous function has been introduced by making sorne modification in the definition of quasi-continuous function and it has a closed interrelation with this function. B*-continuity is more general than quasi-continuity.

Our terminology is standard. Unless otherwise stated X and Y are topological spaces. We denote the closure and interior of a subset A of X by cl (A) and int (A) . The following is a list of the definitions that are used in our paper.

1991 AMS Subject Classifications: Primary-54C08, Secondary-26A15.

Keywords & *Phrases:* Quasi-continuity, Cliquishness, Semi-continuity, Semi-open· set, Simplycontinuity, Almost continuity, B- continuity, B*-set, B*-continuity, WCIVP .

Definition 1:

A function f: $X \to Y$ is quasi-continuous at a point $x \in X$ if, for each open neighborhood U of x and each open neighborhood V of f (x), there is a nonempty open set $G \subset U$ such that $f(G) \subset V$.

If f is quasi-continuous at each point it is said to be quasi-continuous on X. $[4]$

- A set $A \subset X$ is said to be semi-open iff \exists an open set O such that $O \subset A \subset cl$ (O).
- A function f: $X \rightarrow Y$ is semi- continuous in the sense of Levine if for any open set V in Y, $f^{-1}(V)$ is semi-open in X. [6]
- A function f: $X \rightarrow Y$ is simply continuous if for each open set V in Y, the set $f^{-1}(V)$ is the union of an open set and a nowhere dense set in X . $[2]$
- A function f: $X \rightarrow Y$ is called almost continuous at a point $p \in X$, if for any neighborhood V of the point $f(p)$ in Y we have $p \in int$ (cl $(f^{-1}(V))$).

If f is almost continuous at each point then it is said to be so on the whole of X. $\lceil 8 \rceil$

- A function f: $X \rightarrow Y$ (Y is a metric space with metric d) is cliquish at a point $x \in X$ if for each
	- $\epsilon > 0$ and each open neighborhood U of x, there is a nonempty open set $G \subset U$ such that,

d $(f(x_1), f(x_2)) \leq \varepsilon \; \forall \; x_1, x_2 \in G.$

If f is cliquish at each point, it is said to be so over the whole of X. $[8]$

We recall that a set A has the property of Baire if A can be expressed as $A = G \Delta P$, where G is open and P is of first category.

A function f: $X \to Y$ is said to be B-continuous at $x \in X$, if for any open neighborhood U of x and V of $f(x)$, there is a set B which is either open or second category having the Baire property such that $B \subset U \cap f^{-1}(V)$.

If f is B-continuous at each point of X it is said to be B-continuous over X. $[7]$

The goal of this paper is to introduce a notion of B^* continuity and present some results relating to various kinds of generalized continuous functions.

Definition 2: A set $A \subset X$ is said to be B^* set if it is not nowhere dense in X and have the property of Baire.

Definition 3: A function f: $X \rightarrow Y$ is said to be B^{*} continuous at x if for each open set U containing x in X and each open set V containing f (x) in Y, there is a B* set such that $B \subset U \cap$ $f^{-1}(V)$.

If f be B^* continuous at each point of X, then f is said to be B^* continuous on the whole of X.

Definition 4: A function f: $[a, b] \rightarrow \mathbb{R}$ is said to have the WCIVP (Weak Cantor Intermediate Value Property), if for p and q in [a, b] with $p \neq q$ and $f(p) \neq f(q)$, there exists a Cantor set C between p and q such that $f(C)$ lies between $f(p)$ and $f(q)$. [11]

Definition 5: A perfect road of a function f at a point x is a perfect set P such that,

i) x is a bi-lateral point of accumulation of P, and

ii) f_{P} is continuous at x. [3]

Among continuity, quasi continuity, simply continuity, cliquishness, B-continuity and B continuity we have the following implication:*

© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

The following discussion shows that there is no other implication among the functions:

Example 1: A function which is B^{*}- continuous but not quasi continuous.

Let the function f: $[0, 1] \rightarrow [0, 1]$ be such that,

 $f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is rational} \end{cases}$ 1 ifx is irrational

Let $x_0 \in [0, 1]$ be irrational point, and $0 \le \varepsilon \le 1$. Then for any open neighborhood U of x_0 and any open set $G \subset U$, there always exist rational points in G.

Then, $| f(x) - f(x_0) | = 1 - 0 = 1 > \varepsilon$, where $x \in G$, x rational. Thus f is not quasi continuous at x_0 . But f is B^{*}- continuous. In fact, x_0 being irrational, for any neighborhood V of f (x₀), f⁻¹(V) contains all the irrational points in $[0, 1]$, which is dense in $[0, 1]$ and has the property of Baire. Similar arguments hold for the rational points.

Example 2: A function which is simply continuous but not B^* - continuous.

Let f: $\mathbb{R} \rightarrow [0, 1]$ be such that,

$$
f(x) = \begin{cases} 0 & \text{if } x=1,2,...,n \text{ (n is fixed and finite)} \\ 1 & \text{elsewhere} \end{cases}
$$

Then, f is clearly simply continuous. But f is not B^* - continuous at each of 1,2,...,n.

Remark 1: The above function in example 2 is also cliquish.

Remark 2: The function in example 1 is B*- continuous but is neither cliquish nor simply continuous.

Example 3: *Functíon which is* B*- *continuous but not* B- *continuous.*

We have seen that Dirichlet's function is B^{*}- continuous. Now, we consider any open neighborhood V of 0, not containing 1 in \mathbb{R} . Then, $f^{-1}(V)$ is the set of all rational points of [0, 1].

Now, for any rational p in [0, 1] and any neighborhood U of p, \neq any second category set in U \cap $f^{-1}(V)$. Hence, f is not B-continuous.

MAIN RESULTS:

Tbeorem 1: *Jf* f *is* B *- *continuous then,*

i) For each open set V of Y with $f(x) \in V$, $\exists a$ semi open set O containing x, such that

$$
0 \subset cl\ (f^{-1}(V));
$$

ii) *For each neighborhood* V *of* $f(x)$, $x \in cl$ (int (cl $(f^{-1}(V))$).

Proof: i) For each open neighborhood U of x and each open set V in Y, with $f(x) \in V$, int (U) \cap $f^{-1}(V)$ is not nowhere dense. Hence we have, $(\varphi \neq)$ int (cl $(f^{-1}(V) \cap int (U)) \subset cl$ (int (U)). Put $G = \text{int } (cl (f^{-1}(V) \cap \text{int } (U))) \cap \text{int } (U)$. Then $G (\neq \varphi)$ is an open set such that $G \subset U$ and $G \subset$ cl $(f^{-1}(V))$.

Let V be any open set containing $f(x)$. U_x be the family of open neighborhood of x. For each U

 $\in U_{xx}$ \exists an open set G_U of X such that G_U ($\neq \emptyset$) $\subset U$ and G_U \subset cl (f⁻¹(V)).

Set $W = \bigcup \{G_{11}\}\)$. Then W is open set of X, $x \in cl(W)$ and $W \subset cl(f^{-1}(V))$. Take $O = W \cup \{x\}$.

Then, $W \subset O \subset cl$ (W). So, O is a semi open set and $O \subset cl$ (f⁻¹(V)).

ii) Let N be any neighborhood of $f(x)$. Then, there exists semi open set U containing x such that $U \subset cl$ (f⁻¹(V)). Therefore, $x \in cl$ (int (U)) $\subset cl$ (int (cl (f⁻¹(V)))).

Theorem 2: Let $f: X \rightarrow Y$, then the following conditions are equivalent:

i) For every dense set D, $f(cl(D)) \subset cl(f(D))$,

ii) f *is quasi continuous.*

Proof: $i) \Rightarrow ii)$

Let $p \in X$ and U is an open set in X containing p, and V be an open set in Y containing $f(p)$. If f is not quasi continuous at p, then U would not contain any open set G such that $f(G) \subset V$.

Let $D = \{ x \in U: f(x) \notin V \}$. Then D is dense in U. Then $f(cl(D)) \subset cl(f(D))$. Now $p \in cl(D) \Rightarrow$ $f(p) \in f(c)$ (D)) \subset cl (f(D)). \Rightarrow V \cap f(D) $\neq \emptyset$. But, this contradicts the construction of D. Hence f must be quasi continuous.

ii) \Rightarrow i) Let f be quasi continuous. If possible, let f (cl (D)) \subseteq cl (f (D)), where D is a dense set. Let $p \in cl$ (D). Then $f(p) \notin cl$ (f(D)). Then for V (open in Y) $\ni f(p)$, $V \cap f(D) = \varphi$.

Now f being quasi continuous, for any open set $U \ni p$, \exists a nonempty open set $G \subset U$ such that $f(G) \subset V$. Again D being dense, $D \cap G \neq \varphi$. Then, $V \cap f(D) \neq \varphi$.

This contradiction proves that $f(cl(D)) \subset cl (f(D))$.

Remark 3: H Blumberg showed that [1] for every real-valued function defined on R, there exists a dense subset B of R such that f_B is continuous. If f: $X \rightarrow Y$ where X & Y are metric spaces and B is dense subset of X such that f_{B} is continuous, then we say that B is a Blumberg set of f. A set $D \subset X$ is called strongly Blumberg set for the function f if D is a Blumberg set for f and for every open set $G \subset X$, the set $f(G \cap D)$ is dense in $f(G)$. [9]

J. C. Neugebauer established a elose relation between quasi-continuity and Blumberg set (9]. The result states that: A function f: $[0, 1] \rightarrow \mathbb{R}$ possesses a strongly Blumberg set iff f is quasicontinuous. Applying these facts to our consideration we have the following corollaries of the theorem.

Corollary 1: *A function* f: $[0, 1] \rightarrow \mathbb{R}$ *possesses a strongly Blumberg set iff for every dense set* D, $f(cl(D)) \subset cl(f(D))$.

Corollary 2: *A function f:* $X \rightarrow Y$, *having the Darboux property has a perfect road if for every dense set* D, $f(cl(D)) \subset cl(f(D))$.

This follows from the result [5] that a quasi-continuous function having the Darboux propeny has a perfect road.

Theorem 3: If Q (f) is the set of points of quasi continuity of the function f: $X \rightarrow Y$ and $X \setminus Q$ (f) *is nowhere dense, then* f *is simply continuous.*

Proof: Let V be an open set in Y. Then, we know that $[2]$, Q (f) \cap (f⁻¹(V) \ int f⁻¹(V)) is nowhere dense. Then the set $f^{-1}(V) \setminus \text{int } f^{-1}(V) \subset Q$ (f) $\cap (f^{-1}(V) \setminus \text{int } f^{-1}(V)) \cup (X \setminus Q$ (f)) is nowhere dense. Hence, f is simply continuous.

Theorem 4: *A simply continuous function* $f: X \to Y$, *is* B^* - *continuous if for each open set* V *in* Y, $f^{-1}(V)$ *contains a nonempty open set.*

Proof: Let f be simply continuous at a point $x_0 \in X$. Then for each neighborhood V of $f(x_0)$ and for each neighborhood U of x_0 the set $f^{-1}(V)$ is the union of a nonempty open set G and a nowhere dense set. Then $U \cap f^{-1}(V)$ contains a nonempty open set and a nowhere dense set. Thus, $U \cap f^{-1}(V)$ contains a B^{*}-set. Hence f is B^{*}- continuous.

We know that a function is in *DB1* class (Baire one functions having the Darboux property) iff it has a perfect road at each of its points $\lceil 3 \rceil$. We can construct a B^* - continuous functions with a perfect road at each point such that the function fails to do have the Darboux property.

Example 4: Consider the function f: $[0, 1] \rightarrow [0, 1]$ such that,

$$
f(x)=\begin{cases} \begin{array}{c} 0 \ \ \text{if $x\in A$}\\ \ 1 \ \ \ \text{if $x\in B$}\\ \ 0 \ \ \text{if $x\in C$} \end{array}\end{cases}
$$

15

Where, A is the union of the closure of all the open intervals that are removed in the odd stage in the construction of the Cantor set,

B is the union of the closure of all the open intervals that are removed in the even stage in the construction of the Cantor set,

and C is the non end points points of the Cantor set.

Now, A and B are perfect sets. Clearly, f has a perfect road at each of its points. Again f is quasi continuous at every point of $[0, 1]$, hence, f is B^* - continuous over $[0, 1]$.

But $f([0, 1]) = \{0, 1\}$. Hence f is not Darboux.

We show that there are B^* - continuous functions with perfect road at each point, but the functions do not possess the WCIVP.

Example 5: Let f: $[0, \pi] \rightarrow [0, 1]$ be such that, $f(x) = \sin x$. Then f is continuous and so B^{*}continuous over $[0, \pi]$. Also f has a perfect road at each of its points. Now, consider the points $\pi/3$ and $3\pi/4$. Then $f(\pi/3) = \sqrt{3}/2 \neq 1/\sqrt{2} = f(3\pi/4)$. We construct a Cantor set C between $\pi/3$ and $3\pi/4$. But f(C) will not lie between $1/\sqrt{2}$ and $\sqrt{3}/2$.

REFERENCES

4. Dontchev. J., Przemski. M. On the Various Decompositions of Continuous and some \cdot : Weakly Continuous Functions, Acta Math. Hung. 71.1996, 109-120. *5.* Gibson. R. G., Reclaw. l. $\ddot{\cdot}$ Conceming Functions with a Perfect Road, Real Anal. Exch. 19(2) (1993-94), 564-570. 6. Levine. N. Semi-open Sets and Semi-continuity in Topological Spaces, $\ddot{}$ Amer. Math. Monthly 70(1963), 36-41. 7. Matejdes. M. Continuity of Multi-functions, Real Anal. Exch. 19(2) (1993-94), 394-413. On Almost Quasi-Continuity, Math. Bohemica, 117(2) 8. Neubrunova. A., Salat. T. `∴ (1992), 197-205. 9. Neugerbauer. J. C. Blumberg Sets and Quasi-Continuity, Math. Zeitschr. 79 $\ddot{}$ (1962), 451-453. 10 Oxtoby. J.C. Measure and Category, Springer-Verlag, Berlín, 1971. ÷ Extendable Functions and Almost Continuous Functions 11 Rosen. H., Gibson. R. G., \mathbb{C}^{\times} Roush. F. With Perfect Road, Real Anal.Exch. 17(1)(1991-92), 248-257

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF CALCUTTA,

© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

35, Ballygunge Circular Road, Calcutta - 700019, INDIA.