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Abstrac t Patchiness is the name given to a 
heterogeneous, unequal, spatial distribution of many 
populations. A simple mathematical model to explain the 
temporal evolution of patch sizes is built. The model 
introduces random parameters in a basic differential 
equation which rules the logistic growth of patch 
sizes thus obtaining a stochastic differential equation 
whose associated Fokker - Planck equation is solved 
afterwards . 

1. INTRODUCTION 

Logistic growth is one of the moat important tools 

in the modelling of various problems in Ecology. 

Roughly speaking, it is a variant of the classical 

malthua i an growth law y"= ky where k is dependent on 

the population size y and on some limiting factor. In 

general , this factor represents the maximum 

that can survive on the available resources, 

population 

although 

short periods can happen where 

greater than this maximum. 

small-scale phenomena can modify 

the population is 

On the other. hand, 

the logistic growth 

path in such a way to render it difficult to recognize. 
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The contribution of these must be added to the logistic 

pattern, in order to obtain an equation where both 

large and emall-ecale factors are represented.Thie can 

be achieved by way of a stochastic differential 

equation, whose solution is the probabilistic 

distribution of the population eize rather than ite 

actual eize. 

2. PATCH SIZES IN THE OCEAN. 

The study of patches of several substances or 

living beings is of foremost importance in the field of 

marine sciences, where estimation of patch sizes and of 

their spreading mechanisms is an active research field. 

When one deals with patches whose constituents are 

passive, logistic growth is a rather adequate modelling 

for the estimation of patch sizes. First of all, we 

shall suppose that patches are elongated bodies whose 

size can be described by the diameter L(t), where time 

dependence shows the variability of L. Second, the 

size of the patch depends on how energy is fed into it. 

Two sources are available: a) large or medium-ecale 

energy-containing eddies characteristic of the ocean 

zone where the patch appears. b) small-scale eddies 

responsible for very small variations in the patch 

size. The scale of these is so small with respect to 

the energy -containing eddies that they can be 

considered as noise. In any definite ocean area one 

can find a · typical scale for the energy-containing 

eddies. It is natural to think that whenever the size 

of a patch is greater than thi.s typical scale, the 

patch will break into smaller patches. Thus, the 

typical scale i~ a limiting factor for the patch size. 

Now we write E for this typical scale and find the 

logistic expression for L(t): 
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dL 

dt 
L = A( t- -r ) L (1) 

where >.. models features of the ocean ambient. A typical 

interpretation for >.. is the stress tensor given by the 

velocity gradient within the eddies. Now we turn to 

small-scale energy transfers. If the scale is very far 

from the typical scale, we find that fluctuations are 

much faster than those due to the general logistic 

pattern. Thus we model them as 

dL dt = µ(t) L (2) 

where exponential growth is prevented by the 

pattern of µ(t). This µ(t) is thought of 

changing 

as a 

stochastic process; thus equation (2) is a stochastic 

differential equation. Physical considerations allow us 

to write the expression 

µ(t) = ~ tp(t) (3) 

where tp(t) is white noise. The parameter k models the 

intensity of randomness and can be interpreted in 

various ways. One of them is the effect of shear 

stresses and of molecular viscosity. By adding 

equations (2) and (3) we find a simple model for patch 

size in the ocean: 

-5!!::._ = >.. ( t - _!::._ ) L + ( 2k)v2 4'( t) L ( 4) 
dt E 

This is a Langevin-type stochastic differential 

equation whose solution is some stochastic process 

L(t), instead of a deterministic function. 

3. THE FOKKER-PLANCK EQUATION FOR PATCH SIZE. 
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Equation (4) ia usually interpreted aa shorthand 

for the physically formulated difference equation: 

M = X. ( t - ~ ) L At + .;--;;;- L AW( t ) 

where AW(t) is the increment of the Wiener process. 

Thie process ( alao called Brownian 'motion )ia defined 

aa the stochastic Ito integral of white noise. 

Equations (4) and (5) can be uaed to ahow that the 

solution process L(t) is a Markov process. 

In effect, we aee that the formal solution to 

the Langevin equation (4), with the initial condition 

L(O)=O is: 

.;--;;;- J~ a( L( s» ds f ~ </J( s) ds 
L(t) = e e e 

from which we obtain 

_ft+At a( L) ds t+At4>(' s) ds 
L( t+At) = L( t) e e 

Since </>( t) ia 6-correlated, its value a in the interval 

[t,t+At] are independent of the previous history and 

L(t+At) doea not depend on the history preceding L(t>. 

Therefore the process L<t> is Markovian. 

Homogeneity of the proceaa can be aaaumed on 

physical grounds. Owing to the inertial ayatem that 

prevails in the oceans, the joint probability denaitiee 

depend only on the time difference between 

obaervationa. In thia way, time homogeneity expreaaes 

the invariance of the mechanism which generates 

fluctuations. 
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Thus, a Fokker-Planck equation (FPE) can be 

formulated for our process, whose drift and diffusion 

terms are calculated in the standard way: 

iJ p(L. t ) 
iJ t 

iJ [ L ] iJ
2 

2 = - -- A.(t- -)L p + k --(L p) 
iJL E iJL2 

The solution of this FPE is simply the probability 

distribution p(L,t) of finding a size Lat time t. As 

it is a continuous distribution, it must be interpreted 

as the probability of finding L at time t between some 

fixed values . 

Now we proceed to find a solution of the FPE. It 

is reasonable to think that the steady state is 

natural in normal conditions, under the assumption that 

the environmental eddies are in statistical 

equilibrium within the tidal period. 

The FPE (5) can be written as 

iJ 
Dt p( L. t) = L fp p ( L. t) ( 6) 

where 

iJ 
Lfp = - -ar:- A(L) + 8( L) 

and A( L ) and B(L) are time-independent drift and 

diffusion coefficients respectively. 

Now equation (6) may be written in the form 

iJp iJJ 
-at+~=O (7) 

where 
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J( L • t ) = [ A( L) - :L B( L) ] p( L • t ) (8) 

Because (7) is a continuity equation for a probability 

distribution, J may be interpreted as a probability 

current, i.e. probability flow. 

Therefore, we concentrate on solving the statio

nary FPE with the supplementary normalization: 

.r: p( L>dL = t 

4. THE GAMMA DISTRIBUTION. 

Solving the stationary FPE, we 

foilowing results. For a stationary 

probability current must be a constant. 

the stochastic variable L cannot reach 

obtain the 

procces the 

Nevertheless, 

values smaller 

than zero, so we require that the probability current 

be zero at L 0. Thus, the probability current 

vanishes for all L. Setting J = 0, we rewrite equation 

(7) as 

" A( L) P,} L) = al 8( L) P~/ L) 

for which the solution is obtained by a single integra

tion as 

A(S) 

B(S) dS] 

where N is a normalisation constant such that 
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We then obtain 

A. A. L 
t -;;;- - --;;:£ 

p ( L> = N L e 
s kL

2 

with 

N 
A. = A. 

(~) ~ 
- 2 

r(~ - t ) E k A. 

Finally, we write the expression for stationary p(L): 

p (L) 
s 

t 
= r<b> 

t 
a 

where we have introduced 

H-r- t 

a = Ek 
-A.-- and 

e 

L 
a 

A. 
b = ~ - t 

This happens to be a gamma distribution 

depending on two parameters: E and b. b models the 

relative incidence of large and small-scale eddies in 

the spreading of the patch. When b is large the 

energy-containing eddies dominate, and if b is small, 

the more chaotic behaviour of the small-scale eddies 

prevents the patch from attaining a size similar to E. 

This is shown in the accompanying graphs, where the 

evolution of p(L> according to E and .b is represented. 

It is interesting to note that the larger b is, the 

closer is the mode distribution to the typical scale£. 
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8) 

C) 

Figure 1: The Ga11111a distributions for b=5 and A) E=200, 8) E=500, C) E=lOOO. 
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A> 

8) 

C> 

Figure 2: The Gamma distributions for b=lO and A> E=200, 8) E=500, C) E=lOOO. 
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A) 

8) 

Figure 3: The GalilTla distributions fo1 b=25 and A) E=200, 8) E=500, C) E=lOOO. 
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