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WALSH FUNCTIONS: DIGITAL ALTERNATIVE TO SINUSOIDAL FUNCTIONS 

Mister President, Members ofthis Academy, Ladies and Gentlemen: 
1t is a real pleasure for me to celebrate with you my election as Corresponding Member of this 
Academy. Many thanks 

The mathematical concept of sinusoidal functions and its application has a long tradition as 

well in science as in engineering. The modeling of planetary orbits by circles and epicycles as 

known from Ptolemy are early applications in astronomy. Even Copemicus made use of 

epicycles in his heliocentric model of the system of the sun. Arabic astronomy was familiar 

with the sinus function and the cosinus function which has been introduced to western 

astronomy by Georg von Peuberbach (''Purbachius"). They play an important part in such 

models. In physics the investigations of the vibrating string led such famous scientists as 

Daniel Bernoulli, Leonhard Euler and Joseph Luis Lagrange to the representation of 

vibrations by series of sinusoidal functions. By his work "The Analytical Theory of Heat" 

Joseph Fourier founded 1822a part ofthe theory oftrigonometric series which is known today 

as the theory of "Fourier series". The final mathematical precision of the theory of Fourier 

series was provided by the work of Dirichlet and Riemann. Fourier series expansions of 

functions are an important too! of mathematical physics up to the present. 

A further kind of application of sinusoidal functions supported the development of electrical 

engineering in the ¡ 9th century. Altemating currents can be described by sinusoidal functions. 

The same is true for the description of the characteristics of electrical networks in respect of 

altemating currents of different frequency. It was introduced by the German mathematician 

(later famous scientist in the US), Karl Rudolf Steinmetz (1865-1923), by his famous 

"symbolic method" (Komplexe Wechselstromrechnung) in dealing with altemating current 

phenomena. An extension of the symbolic method of Steinmetz is the "operational calculus" 

as developed by Oliver Heaviside for its application in the electromagnetic theory of electrical 

phenomena in a space-time continuum. Until now the Laplace transform, and as a special case 

the associated Fourier transform provide a solid mathematical basis for this type of problems 

in electrical engineering, control engineering and communication engineering. They allow the 

mathematical treatment of problems which are related to functions and operations that deal 

with electrical currents, control variables and signals and their transformation or processing in 

engineering systems. 

Fourier-series expansions and Fourier-integral representations are conducive for the spectral 

representation of functions and operations with regard to their frequency-behavior (i.e.) with 

respect to their characteristics regarding sinusoidal functions. In ali this kind of applications 
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and mathematical models the system of real numbers (as well as the complex number system) 

play an important part. Signals and systems process "continuous" variables. In engineering 

this is known as an "Analog Technology". Today, in "Digital Technology" the leading 

technology in the field of electrical engineering system variables have only discrete values of 

finite number. Therefore, integers and finite sets are the main mathematical objects for 

modeling digital systems. 

Although digital systems look back on a long history in electrical engineering (examples are 

given by switching circuits of high voltage power lines and by telephone switching circuits 

realized by electromagnetic relais, selectors and crossbar-switches), their actual importance is 

a result of the rapid progress of semiconductor-electronics and of computer technology. 

Microelectronics and microprocessors are the reason that Digital Technology has dramatically 

changed the existing systems. Analog systems have been replaced by digital systems. In this 

context the natural question arises, if there exists a system of functions which can perform 

similarly for digital systems as sinusoidal functions for analog systems. 

The system of Walsh-Functions, which is known in mathematics since 1923, can claim to be 

partly useful for digital systems. This paper will try to show this. Special attention will be 

given to the pioneering work of H. Harmuth. His contributions to the application of Walsh

functions in the field of communication engineering (in that early times looking mainly for 

realizations by analog technology) are considered ofbig importance until today. In addition to 

such historical considerations we will also point to current modem applications of Walsh 

functions in mobile telecommunication and in secure information processing. 

From a mathematical point of view the fact that Walsh functions have a similar applicability 

in modeling signals and systems as sinusoidal function is not so surprising.: Both systems of 

functions are special cases of "character functions" of a (topological) abelian group. The 

mathematical field of "Abstract Harmonic Analysis" covers man y properties of both function 

systems in a more general way and provides a source for additional specific (orthogonal) 

function systems of similar use for applications in science and engineering. 

2. Mathematical Overview 

2.1 Walsh-Functions 

We begin with the definition ofthe system ofRademacher-functions (Rademacher 1922). 

With r/J : [ü,l)~R we denote a function which is given by rp(x) =l for xE[ü,1/2) and 

rp( x) = - 1 for x E [l / 2,1) . On the basis of the function rp we are able to define the system 

<l> = ~" : n = 0,1,2, ... } ofRademacher-functions by r/Jn : [ü,l)~R with 

(1) 
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o 

R(5,I) 

Figure 1: Rademacher-functions if>0 to if>s 

With the help of the system <P of Rademacher-functions the system 'I' = {1¡1" : n = 0,1,2,. .. } of 

Walsh-functions r¡t n : (0,1)---+ R is defined by 

'l'n(x) := [4'n0 (x))"" [4'.., (x))"• . [if>n, (x)J" (2) 

where the integer o is represented by n = n0 2° + n1 21 + ... + n; 2; (Walsh 1923). 

Walsh-functions are, as we see, finite products ofRademacher-functions. To give an example, 

for n = 2° + 22 (n=5) the Walsh-function 'l's is given by 'l's = 4'0 4'2 • 

21-I 

')J 110101 

'5S 110111 
51 ll\00 1 
:,g 111011 

61 111 101 

soW,9)~ wol(2i-1,9J 

63 1 1 1111~::::::::~:.:::::::=::::::::::::::::~~ 

' 9-L'T - ' a -11T -

5L ! 10110 

S6 111000 
58 11 1010 
60 11 1100 
6 2 111 110 

Figure 2: Walsh-functions r¡t n (o ~ n < 63) in sequency-order and divided into even functions cal(i,.) and odd 

functions sal(i,.) on the interval (-1/2, +1/2) 
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lt is well known, that the Walsh-functions 'I' constitute a complete orthogonal system for the 

Hilbert-space L2 [0,1). Consequently for each square-integrable function f : [0,1) ~ R we 

have a Walsh-Fourier representation in the form of 

00 

f = "f,](n)¡t" (3) 
n=O 

The coefficients f (n) of (3) define a discrete function J: No~R. f is called the Walsh-

Fourier transform of f. The assignment f H f defines the Walsh-Fourier transformation 

WT; WT(f) = f 

The field of Abstract Harmonic Analysis establishes in mathematics a general theory for 

functions defined on topological groups. In this context Walsh-functions can be identified as 

character-functions of the dyadic group D which is defined by the set of 0-1 sequences 

{(x1,x2 ,x3 ,. .. ): x, E {0,1}} with the addition modulo 2 (component-wise taken) as group-

operation (Fine 1949, Vilenkin 1947). 

For the identification of the Walsh-functions with the character-functions of D we use the 

map hin: [0,1) ~ D which maps a real number X = X¡ r 1 + Xz r 2 + X3 r 3 + ... to the binary 

sequence bin(x) = (x1,x2 ,x3 ,. .. ) (dyadic rational numbers are represented by a finite sum). 

2.2 Sinusoidal Functions 

The system of sinusoidal functions sin 27tnx, n=l ,2,3,. .. ; cos 27t nx, n=O, 1,2,... has, as 

pointed out in chapter 1, a long tradition in science and engineering. Similarly to the system 

of Walsh-functions it is a complete system of orthogonal function to span the Hilbert space 

L2 [0,1) . Therefore each function f E L 2 [0,1) can be represented by a series expansion 

(Fourier serie) with coefficients f,(n),n = 1,2,. .. and fcCn),n = 0,1,2,. ... 

The tupel Vs ,Je) of discrete functions defined by the coefficients is called the (real) Fourier

transform off . The assignment f H (i,,JJ defines the (real) Fourier transformation FT ; 

FT(f) = (js ,JJ. From a mathematical point of view it is desirable to use the complex 

sinusoidal functions exp(j2n nx) = cos2n nx+ )sin 2n nx (j = ~) for Fourier analysis in 

the classical sense. In this case the relation between classical Fourier analysis and Abstract 

Harmonic Analysis is easy to establish: The complex sinusoidal functions exp(j2n nx) are 

the character-functions ofthe additive group <[o,oo),+) ofnon negative real numbers. 
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2.3 Finite system of junctions 

In a large number of applications of orthogonal functions in science and engineering it is 

sufficient to use finite many functions. In the case of Walsh-functions we take as domain the 

set N(n)= ~,1,2, ... ,2" - 1} of integers and define the discrete Walsh-functions 

w(i,.):N(n)~{+ 1,-1} oforder n for iEN(n) by 

w(i, k) := (- 1) llbin(iJ e bin(kJll (4) 

where bin(i) and bin(k) denote the binary representation ofthe integers i and k, respectively 

(EB is the ,,addition modulo 2" of binary numbers, jjbjj is the Hamming weight of a binary 

number b ) . 

The set W.(·3) of discrete Walsh functions; + := + 1, - := - l. 

000 001 010 011 100 101 110 111 

w(O, .) + + + + + + + + 
w(l, .) + + + + 
w(2, .) + + + + 
w(3, .) + + + + 
w(4, .) + + + + 
w(5, .) + + + + 
w(6, .) + + + + 
w(7, .) + + + + 

Figure 3: Discrele Walsh-functions w(i, .) for n=3 

The system W(n) ofdiscrete Walsh-functions oforder n can be identified with the character

functions of the dyadic group D(n)=(Bº,EB), where B(n) denotes the set of binary numbers of 

length n. D(n) is isomorphic to the n-fold direct product Z2 ® Z2 ®·· · ® Z2 of the cyclic 

group Z2 = ({O,llEB) 

The system S(n) consisting of discrete complex sinusoidal functions s(i,.) of order n are 

defined by 

s(i,k) := exp(j(2n / n)ik) (5) 

It is known that the discrete complex sinusoidal functions of order n can be identified as 

character functions of the cyclic group Zn=( {O, 1,2, ... ,n-1}, + mod n) . 

Besides ofthe Walsh-functions lf. originally introduced into mathematics by Walsh (1923) 

there exist also "generalized" Walsh-functions as considered by Levy (1944) and Vilenkin 

(1947). 
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Generalized discrete Walsh-functions in this sense can be identified with the character

functions of finite abelian groups G = Z t(I) 0 Z tc2> 0 ... 0 Z t<n> (here Z te;> denotes the cyclic 

group of order n). For the special cases G = Z" and G = Z2 0Z2 0 ... 0Z2 (n-fold) the 

generalized discrete Walsh-functions become discrete sinusoidal functions of order n and 

respectively discrete Walsh-functions of order n. By this interpretation, generalized discrete 

Walsh-functions can also be considered as n-dimensional discrete sinusoidal functions of 

order k(l), k(2), ... , respectively k(n). Consequently, discrete Walsh-functions w(i,.) oforder n 

can then be interpreted as n-dimensional discrete sinusoidal functions s(i,.) = exp(j7Zi(.) of 

order 2. 

This viewpoint helps to consider generalized discrete Walsh functions and (ordinary) discrete 

Walsh functions not as exotic mathematical constructions but to be closely related to the 

( classical) discrete sinusoidal functions. 

2.5 Fast Transform Algorithms 

For the case of discrete sinusoidal functions s(i,.) of order n the development of a fast 

algorithm, the "Fast Fourier Transform" algorithm FFT, to implement the Fourier 

transfonnation FT is credited to Good (1958) and Cooley-Tukey (1965). 

A similar effective algorithm to implement the discrete Walsh-transformation WT of order n 

has been found by Whelchel (1968) ("Fast Walsh Transform" algorithm; FWT) 

For the case ofthe generalized discrete Walsh functions the development ofthe corresponding 

"Fast Generalized Walsh Transform" algorithm (FGWT) to implement effectively the 

generalized Walsh transformation GWT has been discovered by Nicholson (1971). 

The implementation ofthe FGWT is covered by,Kunz (1977) and also by Fellner (1982) . 

Hellwagner (1988) investigated problems oftestability ofsystolic hardware-implementation 

ofthe FGWT ; the integration ofthe FGWT into common tools for digital image processing 

has been made by Hellwagner (1990) and also by Scharinger (1995). 

3. Application in Coding and Signa) Processing 

Discrete Walsh-function have a rather long tradition with regard to their application in the 

fields of coding and signa) processing. We will give few examples: 

(1) Let W(n) denote the matrix which is defined by the system W(n) of discrete Walsh 

functions of order n in the following way: 
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For iEN(n) the i' th row of W(n) is given byw(i, .) = (w(i,O), w(i,l), ... , w(i,2" - 1)) . 

W(n) is a special kind of a Hadamard-matrix. The rows define an orthogonal code 

(Walsh-code) which has been applied in early space mission projects (Viterbi 1964). A 

reason for a successful application was the fact that this code allows the development 

of effective digital circuits for coding and decoding (Green 1958). 

(2) The cancellation of the first row and the first column of the matrix W(n) results in a 

matrix C which defines an orthogonal code of length 2" -1 . It can be shown that there 

exist permutations P of the columns of C such that the permuted matrix M=P(C) 

constitutes a cyclic orthogonal code which can be generated by a maximum length 

linear feedback shiftregister MLFSR. This indicates that a relationship between 

"Walsh-codes" and ''Pseudo Noise Codes" (which are cyclic codes generated by 

MLFSR's) can be established. 

(3) The existence ofthe Fast Walsh transformation algorithm FWT was essential for the 

applications of Walsh-function in signa! processing. Pioneering work on that topic is 

reported in Ahmed-Rao (1975). The concept of a wave-filter which operates in the 

domain ofthe Walsh-Fouriertransform was firstly introduced by Harmuth (1964). The 

accompanying description of such filters by dyadic convolution was established by 

Pichler (1968). The theory of optimization of such filters (Pichler 1970) needed the 

introduction of the concept of the dyadic autocorrelation function (DAKF) and the 

formulation of the Wiener-Chinchin theorem for the case of Walsh-Fourier analysis. 

In the context of dyadic filtering it was necessary to introduce the "sampling theorem" 

of Walsh-Fourier analysis, as a true analogon to the famous sampling theorem of 

Shannon (Pichler 1970). 

( 4) The possibility to relate different spectral representations to each other is of special 

interest in signa! processing. A transformation for discrete-time processes which 

relates Fourier power-spectra into Walsh power-spectra has been investigated and 

implemented by Gibbs-Gebbie (1969). Besides of the use of the existing 

transformations between power spectra and the appropriate related type of 

autocorrelation function (Wiener-Chinchin theorems) the transformation of such 

autocorrelation functions into each other had to be developed (Gibbs-Pichler 1971 ). 

(5) The comparison of Fourier spectra and Walsh spectra for certain signals is of great 

significance in applied sciences. As an example we mention here (Trappl-Hom

Rappelsberger 1982). 

Although the mentioned examples of signa! processing based on concepts of Walsh Harmonic 
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Analysis <leal with applications to analog signals, they are also true for digital signals and 

indicate the applicability of Walsh functions in digital signa! processing. Other specific 

applications of Walsh functions in digital technology, specially, for the design of boolean 

functions (switching functions) and their characterization with respect to fault detection, has 

been known for a long time (Karpovsky 1976, 1985). 

4. Transmission of lnformation by Orthogonal Functions: The contribution of H. 

Harmuth 

The successful promotion for the application of Walsh functions in communications 

engineering is due to Henning F. Harmuth, as well as the contribution of important papers 

during the years from 1960 to 1970 and of his book (Harmuth 1971). In the following we 

want to refer to sorne of the treatises as experienced by the author during his cooperation with 

H. Harmuth. 

Harmuth started with discovering the Walsh functions as a useful orthogonal code and their 

application in wireless communication (Harmuth 1960). This was followed by a patent of the 

concept of a multi-channel transmission system with Walsh functions as carriers (Harmuth 

1964). Harmuth considered mainly - with respect to the state of the art at this time - analog 

transmission systems with time-continuous signals to represent information. 

To develop a valid mathematical basis for such systems Harmuth contacted the Institute of 

Mathematics of the University of Innsbruck, Austria, where mathematical research in Walsh 

function was under way (R. Liedl, P. Weiss). The contribution of the author (Pichler 1967, 

1968, 1970) helped to give a mathematical and systemstheoretical basis for the work of 

Harmuth. The symposia which were organized by Harmuth in Washington D. C. (from 1969 

on) roused intemational interest. They reported about applications in information technology 

and inspired further research. As a result Walsh functions and their applications are today well 

known in communication engineering and in signa! processing. They have found important 

applications in modem digital information technology. As a conclusion we may say, that 

Henning F. Harmuth established a milestone in the development ofinformation technology by 

his work on the application ofWalsh functions asan altemative to sinusoidal functions. 
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Transmitter Rece1ver 

Channel no. Line Channe! no. 

32 

33 

992 

1024 

T 33- T 64 

LL --__¡- FG 
Sync . ~· ------~ 

Figure 4: Block diagram of a sequency-multiplex system for 1024 analog telephony channels 

(after H.F. Hannulh) 

5. Current Applications 

32 

33 

992 

1024 

In the following we want to discuss three examples of actual applications of Walsh-functions 

in the field of coding and signal processing. They should serve to show that this system of 

orthogonal functions which was introduced in mathematics more than seventy years ago is 

until today of practica! importance. 

5.1 Multiplexing in digital wireless communication 

Cellular wireless communication systems with mobile stations are nowadays an important 

component for modem digital systems for telephony and data. The concentration of the 

traffic from the mobile stations to the base stations in the different cells needs a 

multiplexing system. Aside from the utilization of frequency division (FDMA systems) 

and time division (TDMA systems) orthogonal division, as introduced by Harmuth (1964) 

is used (CDMA systems; CDMA stands for "Code Division Multiple Access"). The 

specific CDMA system of Qualcomm Inc. uses for the forward link channels Walsh 

functions as digital carriers (Qualcomm Inc. 1992). The concentration of channel traffic 

by sequency-multiplexing for an analog telephone exchange was already suggested in 

Pichler ( 1967). 
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WO l·Channd Pllot PN Sequenoe 

Pllot Ola.nnel: AJICYs 

Sync Channel ConvoluUonal 

"'°"' 1~ º'" Encoderand lnterlesver 

1200 bp• 
Repct!Uon 

Pagine Channel ConvoluUonal Blocl< 

ºª" 
Enoodttand 

lnltt'le.ver 
9.6 kbp. 

RepeUUon 

4.8 kbpi 
2.4 kbpl 

LoncCod< 
Cencnt.or 

Forwv.rd 'f't""affic Channd ConvoJuUonal 

"""" Dota Encoderand 
lnlt'r\c&VU 

9.6 kbpa 
RepetlUOn 

4.8 kbpa ........ 
1.2 kbpt LoncCod< 

°"""''"' <!}Modulo l addtuon 

Q-Channel Pllot PN Sequence 

Figure 5: Sequency-multiplex system for 62 digital mobile telephony channels 

(after Qualcomm Inc. 1992) 

W = Walsh Symbol Number 

FORWARD COMA CHANNEL 
(1 .23 MHz radio channel 

transmltted by base statlon) 

Fon.uard CD.MA Channels Transmitted by a Base Station. In addition 
to the pUot and sync channels. theforward link in each sector supports 62 
channels that may be usedfor paging and traffic. Zero to seven channels 
are assigned to paging. the remainder are tra.ffic channels. 

Figure 6 : Organization offorward channels in the COMA system of Qualcomm (1992) 

5.2 Correlation-immune coupling ofpseudo-noise sequences 

Secure transmission of information by digital data can be achieved by mixing the data 

sequence with a random sequence (key sequence). Claude Shannon has shown that 

"stream ciphering" is cryptographically absolutely secure if the key sequence is purely 
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random and is used only once ("one time key system"). Since the key sequence has also to 

be applied for demixing at the receiver station, an effective realization of stream ciphering 

has to be based on pseudo random noise generation by a finite state machine PNG 

(Pseudo-Noise Generator). To achieve an high degree of security the key sequences 

generated by a PNG has to approximate pure random noise in a "cryptographic best 

manner". 

In practice, to get a cryptographic strong PNG, n sequences of x1,x2 , ••• ,x" of weak 

quality are coupled by a certain operation C (the combiner) to result in a strong key 

sequence y= C(xP x2 , ••• , x"). In the case of binary sequences a (static) combiner C can 

be represented by an Boolean function C:Bº---+B. 

PN1 

PN2 

e pn 

pnk 

Kk 
PNk 

Pl'li : Pseudo Noin 0.nentor 

C:Conüner 

Figure 7: Architecture of a Pseudo Random Noise Generator PNG with Combiner C 

The cryptological quality of a pseudo random noise sequence has to be determined by 

different statistical tests. Such tests relate to certain attacks to break the system. For PNG 

with an architecture according to Fig. 7 the so called correlation attack tries to identify the 

individual "weak" sequences x1,x2 , .•. ,x" from observing the key sequence 

y = C(x1,x2 , . .. ,x") by a "divide and conquer" method using statistical tests and computer 

simulation. A PNG is robust with respect to the correlation attack if the combiner C 

possesses a certain degree of "correlation immunity". For boolean combiners C the 

following theorem was proved by Xiao-Massey (1985): A boolean combiner C:Bº---+B is 

correlation immune of degree m if and only if the Walsh transform WT(C) of C has the 

following spectral property: 

WT(C)(x)=O for ali x with O ~ llxll ~ m <llxll denotes the Hamming weight of x; we identify 

Bº with N(n)). 
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Siegenthaler (1986) showed by algebraic methods how a boolean combiner C ofsufficient 

high degree of correlation immunity can be constructed. Pichler (1985) established such a 

construction by means of Walsh-Fourier analysis. An extension of these results for 

(dynamic) combiners C realized by state machines with finite memory can be found in 

Pichler (1988). As a further recent publication to the topic of Boolean combiner design 

uses the Walsh transform we refer to Dobertin (1995). 

5.3 Sequency-Hopping 

The fundamental idea of the method of frequency hopping to achieve a secure 

communication by a wireless system is, that the carrier frequency of the transmitter and 

the receiver changes in time using a pseudo random pattem. lt "hops" within a certain 

(broad) frequency band. The Austro-american actress and movie star Hedy Lamarr (born 

Hedy Kiesler) known as the "most beautiful woman of the world", is considered together 

with George Antheil ("bad boy or" music") as the inventor of frequency hopping (US 

patent 2,292.387 of 1942). Following Harmuth (1971) we can replace the parameter 

"frequency" by "sequency" if we use a communication system based on Walsh functions 

as carrier. In this case "sequency hopping" is a method for secure information 

transmission. As a further generalization "code-hopping" can be introduced, when we use 

arbitrary orthogonal code sequences as carriers. A research project for the development of 

a code-hopping system in combination with a direct sequence CDMA system is currently 

under investigation (Pichler-Scharinger-Schütt 2000). 
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Figure 8: Block diagram of a digital system for secure information transmission by sequency hopping 
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6. Concluding Remarks 

The paper tries to present a survey of the history of the development of the application of 

Walsh functions in signa! processing and communication engineering. The goal was to show 

that Walsh functions and the method of Walsh-Fourier transformation can be used for digital 

systems in a similar way as the sinusoidal functions are used for analog systems. From a 

mathematical point ofview this is not surprising: Both function systems are as we pointed out 

earlier, special cases of character functions of a topological group and the existing general 

method of F ourier transformation covers essential parts of the specific methods of the Walsh 

transformation and respectively the Fourier transformation. An example is given by the 

sampling theorem in signa! processing. Kluvanec (1965) showed the validity of this theorem 

in abstract harmonic analysis, special cases of it for dyadic harmonic analysis and for real 

harmonic analysis are known from Pichler (1970) and Shannon (1948). 

The application of Walsh functions and related concepts in modeling systems for signa! 

processing and communication were - according to the state of art - originally developed for 

the case of analog information technology. Their realization used basic elements like resistors, 

coils, capacitors, operation amplifiers and sampling and hold circuits. The introduction of 

digital information technology, specifically the development of integrated microelectronic 

circuits, microprocessors and computers, required new approaches for modeling. For the 

processing of digital signals by digital systems new concepts and methods for dealing with 

hardware and software had to be developed. Examples for the case of hardware are the 

development of the theory of switching functions (boolean functions) and the theory of 

sequential switching circuits (finite automata). The different concepts and methods for analog 

signa! processing and analog information transmission which exist for Walsh functions can be 

adapted to digital system by restriction to the set W(n) of discrete Walsh functions of order n. 

This is analogous to the approach of adapting concepts and methods of analog signa! 

processing (for example by digital filters) by the use of the system S(n) of discrete sinusoidal 

functions of finite order. 

The development of communication systems is in a steady competition between the 

requirements stated by the customers and the architectural and technical propositions made by 

the designers and engineers to realize such systems by the current existing basic technology. 

In this development mathematical and systemstheoretical models are of great importance. 

Walsh functions and related mathematical and systemstheoretical results can contribute to the 

construction of models for modem digital communication systems. 
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