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ON A THEOREM OF CASS AND TRAUTNER
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Abstract. In this note a short and standard proof of a theorem of F.P. Cass
and R. Trautner, which extend to Banach valued functions a familiar result by
Wiener, is given.
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1. INTRODUCTION

F.P. CASS and R. TRAUTNER have given in [1] an extension of the well
known 1/f-Wiener’s lemma for functions defined on the closed unit disc or on
an annulus of C containing the unit circle and valued in a Banach algebra.
Most of the proof of the main result in [1] is based upon four lemmas, the

last one being strictly topologic.
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In this note we show a simple theorem, proven by standard methods, which
leads inmediately to the lemmas 1 through 3 in [1]. This is done in section 2.

We will use the following notations: Dr ={z e C: |z| = r} and aDr =
{zeC : |z| = r) A denotes a Banach algebra with identity e and |e| = 1; G(A)
is the group of invertible elements in A, and spA(w) represents the spectrum
of w € A. Finally JA(Dr) is the space of all functions f : Dr — A
continuous in Dr and holomorphic in the interior of D'_. An account of the
elementary theory of vector valued holomorphic functions is given in ([3], p.
92 ff.) We consider the arithmetic operations defined on JA(DF) as usual, and

for f € 4 (D) we set
A r

Ifl, . = sup If(2)].
e z€D

2. THE THEOREM
With the notations as above, the following result holds:

Theorem.- (i) (‘A(Dr)'l‘lu,r) is a Banach algebra with identity.
(ii) G("A(Dr)) ={f e “A(Dr) : f(z) € G(A), for every z € Dr).

(iii) For every f € ‘A(Dr)

(f)= U spA(f(z)). (1)

z€D
r

P 4 )
Ar

Proof: As in the case A = C, it is clear that the space CA(DI‘) of all

A-valued continuous functions in D is a Banach algebra with the norm l'lwr
r
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and & (D) is a subalgebra of C (D). Let {f )*  be a sequence in 4 (D)
AT AT n n= AT

1
converging to f € CA(Dr)‘ This convergence is uniform on any compact subset of
Dr and, in particular, on 6Dr. Now, applying the theorem 3.11.6 in [2] we
conclude that f is holomorphic in the interior of Dr. This shows that "A(Dr)
is a closed subalgebra of CA(Dr)' and (i) follows.

Suppose now that f is a function of AA(Dr) such that f(z) € G(A) for
every z € Dr, and let ' : Dr ———— G(A) be defined as f-l(z) = (f‘(z))_l
(zeDr). Since the inversion mapping x —— x' is continuous in G(A) and
holomorphic in each component of G(A) ([2], th. 4.3.4), £ is continuous on
Dr and holomorphic in the interior of Dr. On the other hand, if f € G(“A(Dr)
then there exists a g € JA(Dr) such that fg = e, i.e., f(z)g(z) = e for z €
Dr. This means that f(z) € G(A) for every z € D.-' and (ii) is proven. Finally
it is an easy exercise to compute the identity in (iii), and the theorem is

proven. m

As it is well known the spectrum of any element of a Banach algebra is a

non empty compact subset of the plane C. Hence sp 3 ) (f) is so, and this
Ar

exactly the result of the lemma 1.

Lemma 2 in [1] asserts that if f € l‘(Dl) and € > O is given, we can find
a & > 0 such that whenever g € AA(Dl) and |f - glm‘l < & then sp‘A(Dl) (g)c Q
= {z € C : dist [z,spd o (f)] < €). But since Q is an open set, it follows

A1l
directly from (i) in the theorem and [3, theorem 10.20]. Note that, obviously,
SPq ) (g) = Py ) (f + (g-f)).
A1 Al

Finally let f be an element in AA(DI) and let K ¢ C be a compact set such

that dist [K,sp‘ ) (f) 1 > 0. In these conditions, we have that
Al
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sup { |(t - f(z))_ll :tek, ze Dl) < o, (2)

as established in [l1, lemma 3]. But, since K ¢ € \ SPy4 (f) and the

(D)
Al

mapping t € K — |(t - f)-ll.,“ is continuous and bounded, the estimate in

(2) also follows.

(1

[2]

[3]
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