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AFISTRACT. The paper discusses control theoretic optimization of a functional 
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differcntiablc variety. Tbe paper also shows a realistic application of such an 
optima! control problem. 
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l. INTRODUCTTON 

Optimal control problems are of two types - ( i) when the restrictions are only 
in the parameter domain and ( ii) when the restrictions are in the stable domain 
and also in the parameter domain. The necessary condition of optimality type (i) 
is known as Pontryagin's maximum principle (14], similar conditions of optimality 
in type ( ii) is given in [l, 2, 13, 17]. So far as type ( i) optimal control problem are 
concerned, t heir applications in real world problems and the corresponding analysis 
are found in [6, 7 , 8, 9]. But it is very difficult to have realistic applications of 
type (ii) optima! control problems owing to arbitrary restrictions on the domain 
of the fimctional expressed by inequalities of differentiable functions. In realistic 
applications, it is found that the domain of restriction of the functional is a manifold 
with bounda ry [10, 15], where the manifold is an open set of Rn (n > 1) and the 
boundary is a differentiability variety in Rn [10]. Naturally it remains open to 
formulate type (ii) optima! control problem with the aforesaid type of restrictions 
on the state domain and apply it in realistic optima! control problem. The present 
chapter dea ls with such control problems and their applications. 

The whole matter of the paper is divided into four main sections, where sec­
tion 1 gives the introduction. Section 2 gives the idea of differentiable manifold 
and differentiable variety and contains sorne results in this connection. In section 
3, sorne constrained optimal control problem in parameter domain are given and 
discussing sorne real world problems on the domain of definition of the functional, 
in the sense that, the domain is a manifold with boundary, where the boundary is · 
a d ifferentiable variety. Section 4 d iscusses the stability analysis and the control­
theoretic optimization of a functional of replicator dynamics on the same domain 
of definitions. 
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2. SOME KNOWN D EFINITIONS AND RESULTS [10] 

Definition 2.1. [10] A differentiable variety in R"+l is defined as u- 1 (O)}, 
where f : Rn+l ---+ R is a differentiable function such that at each z E M, the 
matrix [f ,J(z)] has rank one, j = 1, 2, .... ., n 
It can be shown that it is a differentiable manifold of dimension n. 

Example 2.2. [10] A 2-sphere S2 = {(z1, z2, z3) E R 3 : ZI + z~ + z§ - 1 =O} is a 
differentiable variety in R 3 and it is a manifold of dimension 2. 

3. CONSTRAINED OPTIMAL CONTROL PROBLEM WITH RESTRICTIONS IN THE 

STATE SPACE 

Stateme nt of the problem and its solution 

(3.1) Maximize Jx(u) = cj>(t,xtJ + 1ti F(x,t,u)dt \f(x,u) E X 

where X = {(x,u): corresponding to each u, x(t) is an integral curve of x' 
f(t, x, u) and G(x, u) ~O}; G(x, u) ~O denotes a manifold with boundary in R 11+m 
whose interior is open sub-manifold of Rn+m and whose boundary is a differentiable 
variety given by G(x,u) =O; u E Rm, t E [O,t1], x = x(t) E R" is C 1, x = Xo when 
t = O; further f : R X Rn X Rm ---+ R 11 ' e/> : R X R 11 ---+ R, F : R X R 11 X Rm ---+ R are 
all C 1-maps. 

Proceeding as in [2, 17], we get the following 

Theorem 3.1. A necessary condition that (x*, u*) minimizes the control problem 
(3.1) is that there are costate vectors >. (t) and µ(t) such that the following holds: 
(i) >.(ti)= (~)t=tu (ii) Fx + >.fx + µGx + ~ =O and 
(iii) (Fu+ >. fu+ µGu)u=u* =O. 

Remark 3.2. It is noted that the necessary conditions of optimality as given in 
Theorem 3.1 reduce to the solution of a system of ordinary differential equations 
in co-state variables. Naturally it becomes almost impossible to find the solution 
analytically. This is why, steady state optimal solution is needed. Hence prior to 
finding out the optimal solution, at least local asymptotic stability of the system is 
to be assured. 

Example 3.3. Suppose x, y are two non-interacting fishes and z is their predator 
moving in a part of an ocean, that is given by x2 + y2 + z2 - a ~ O, x > O, y > 
O, z > d > O, for some real a and d. Let the natural dynamics of motion be given 
by (with standard meaningsj 

(3.2) 

x = rx(l - ..::_) - axz 
K 

y = sy(l - '}!_) - f3yz 
L 

Z = z( - f + /X + Óy) 

Let the dynamics of exploited motion under control parameter u per unit biomass 
be given by the following differential equations (with standard meaningsj 

x = rx(l - ..::_) - axz - q1ux 
K 
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(3.3) y= sy(l - '}!_) - (Jyz - Q2UY 
L 

Z = z( - f + "(X + Jy) - Q3UZ 

u = u(t) is the effort, q;, (i = 1, 2, 3) are the catchability coefficients of x, y, z 
species, In this case, the state space of the natural dynamical system (3,2) is a 
manifold with boundary; the interior is the three dimensional open sub-manifold of 
R 3: x2 + y2 + z2 - a < O and the boundary is a differentiable variety of R 3, which 
is the surface of a two dimensional sphere given by x 2 + y2 + z2 = a, The state 
space of the exploited system (3,3) is x 2 + y 2 + z2 + bu - a ::::; O which is also a 
manifold with boundary; the interior is the four dimensional open sub-manifold of 
R 4 : x 2 + y 2 + z2 + bu - a < O and the boundary is a differentiable variety of R 4 , 

which is a paraboloid (of dimension 3) given by x2 + y2 + z2 +bu = a, Moreover, 
the state space of the exploited system is bounded since (x, y , z, u) E R~. 

Let c be the cost per unit efj'ort u. Let p 1 , p2 , p3 be the prices of the species x, y , z 
respectively. Then the profit function is taken as 

(3.4) 

where (x, y, z, u) belonging to the state space. 
The control problem is as follows: 

(3.5) M aximize 1T (P1Q1X + P2Q2Y + p3q3z - c)udt, u E U [the control set]. 

Remark 3.4. As mentioned in Remark 3.2, that first of all local stability analysis 
of the system (3.3) is to be done and then corresponding optimal analysis is to be 
performed. Far this problem local stability analysis is already known in connec­
tion with fishery management problems, but the optimal analysis is definitely much 
harder and completely new. 

Proposition 3.5. The dynamical system (3.2) possesses equilibrium (x1 , y1 , z1 ) > 
(O, O, O) , if 

(3.6) a,("(K + JL - f) (J("f K + JL - f ) K JL f 
r > p ,s > p ,"f + > 

where P = -yo K + /3íiL. 
1' s 

Similarly (3.3) possesses equilibrium (x2 , y2 , z2 ) > (O, O, O) if (3.6), (3 .7) and (3.8) 
hold, 

(3.7) 

(3.8) 
"(K +óL-f 

u< Q 

where Q = J!l.J!i. + íiq2 L + q3 r s 

Proof. It follows that 
X 1 = K[l - ,,':¡, ("f K + JL - f)], y1 = L[l - j3p ("f K + JL - !)], z1 = 1K +;L-f where 
p = 10.K + {36L. 

r s 
So, (x1 , y1 , zi) > (O, O, O) , if (3.6) holds. Similarly, it follows that 

Ku aQ 
X2 = X 1 - - (q1 - - ) r p 
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where Q = 121~K + óq~L + q3 . 

Clearly (x2, y2, z2) > (O, O, O), if (3.6), (3.7) and (3.8) hold. D 

Proposition 3.6. The vanishing equilibrium (O, O, O) is always an unstable saddle 
point and the interior equilibrium ( x 1 , y 1 , z1 ) is asymptotically stable for the system 
(3.2). 

Prooj. The variational matrix for the equation in model (3.2) at origin is 

lo= ( ~ ~ ~ ) 
o o -f 

which clearly shows that (O, O, O) is an unstable saddle point. 
To show the interior equilibrium (x1 , y1 , z1 ) is asymptotically stable, we first rewrite 
the model (3.2) as 

(3.9) 

. r 
x = x[- K(x - x1 ) - a(z - zi)] 

iJ = y[-~(y - Y1) - /3(z - z1)] 
L 

i = z[!'(x - x1) + 8(y - Y1)] 
Consider the Liapunov function as 

V(x, y, z) =X - X1 - X1 log(:,) + C1 [y - Yl - Y1 log(* )] + c2[z - Z1 - Z1 log( * )] 
where c1 , c2 >O are constants to be determined suitably. It is obvious that V(x, y, z) 
is positive definite. 

. X - X1 y - YI z - Z1 
V(x,y ,z) = (--)x + c1(--)iJ + c2(--)i 

X y Z 

= (x - x1)[- i(x - xi) - a(z - z1)] + c1(Y - Y1)[-f(y - Y1) - /3(z - z1 )] + c2(z -
z1)b(x - x1) + 8(y - Y1)] 
= -i(x -x1)2 - f (y-y1)2 + (c2')'-a)(x -x1)(z - z1) + (c28 -c1/3)(y-y1)(z - z1) 

Let us choose c2 = ~, then c1 = ~~ which implies that V(x, y , z) is negative and 
consequently the interior equilibrium ( x 1 , y1 , z1 ) is asymptotically stable. D 

Bionomic Equilibrium and its feasibility[3] 
Let L denote the locus of dynamic equilibrium of the three species system (3.3) 

and !et 7r = O denote the zero profit function. A feasible equilibrium is the point 
of intersection of L = O and 7r = O, provided ali the coordinates of this point are 
positive and also the value of the control parameter u(t) is positive at this point. 
It is usually denoted by (x=, Y=, z=)· 

The optimal steady state analysis is taken around the bionomic equilibrium of 
the model, so its existence is to be assured. In this connection we prove the following 
theorem. 
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Theorem 3. 7. Let the dynarnic rnodel be given by (3.3) under the restrictions (3.6), 
(3.7) and (3.8) . Let the objective function be given by (3.4). Then there exists a 
feasible bionornic equilibriurn if (3.10) and (3.11) holds separately where 

(3.10) 

(3.11) 

Proof. The locus of dynamic equilibrium (x2 , y2 , z2 ) is given by 

(3.12) 
X - X1 y - Yl z - Z 1 

L·---------u . p - -Q - -R -

The zero profit function is given by 

(3.13) 7r = P1q1 x + p2q2y + p3q3z - e= O 

If (3.12) intersects (3.13) at (x* , y* , z*) where u = u 1 , then it follows that 
x = x* + Pu1, y* = Y1 - Qui , z* = z1 - Ru1 

Again from 7r = O, it follows that 
P1Q1X1 + p2q2Y1 + p3q3 z1 - e= (p2q2Q + p3q3R - P1Q1P)u1. 
Hence 

(3.l4) ui = P1q1x1 + P2q2Y1 + p3q3z1 - e 
P2q2Q + p3q3R - P1Q1P 

Obviously, we get u 1 >O if (3.10) and (3.11) hold. 

Statement of the optimal control problem and its solution 

Let the state space of the exploited system (3.3) be given by 

o 

X = { (x, y , z, u): corresponding to each u , (x (t) , y(t) , z(t)) is an integral curve of the 
exploited system (3.3) and G(x, y , z, u) :::; O} where G(x, y , z, u) = x 2+y2+z2+bu-a 
then G(x, y , z, u) :::; O denotes a manifold with boundary in R 4 whose interior is 
an open sub-manifold of R4 and whose boundary is a differentiable variety given 
by G(x, y , z, u) = O; u E R , t E [O, T], (x(t) , y(t) , z(t)) E R3 is C 1 , (x, y , z ) = 
(xo, Yo, zo ) when t = O; further Jet f : R 3 x R --> R 3 , 7r : R 3 x R --> R be all 
C 1-maps where f = (f1, h ,f3) 

X 
fi(x , y ,z, u) = x[r(l - K) - az - Q1u] 

y 
h(x, y , z, u) = y[(l - -¡) - /3z - Q2u] 

h(x, y, z, u)= z[-f + "(X+ 8y - q3u] 

We assume that the total time taken to control the biomass is T . Then the 
control problem is to maximize 

(3.15) J = 1T 7r(x, y, z , u)dt V(x, y , z, u) E X 

over the control parameter u , where u E (O, Umax ) and to find a suitable u= u* in 
(O, Umax) for which J is maximum where 

7r(x, y , z, u) = (p1 q1 x + P2Q2Y + p3q3z - c)u(t) 

Before going to the main t heorem we want to find out the particular solution of a 
3- system of ordinary differential equation with constant coefficients. Such solution 

37 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



of differential equation in co-state variable will be necessary in our subsequent 
realistic example. 

Particular Solution of a 3- system of ordinary differential equation 

Let us consider the 3-system of ordinary differential equations 

(1) % = a1.A1 + b1>.2 + C1A3 + d1 
(! 1) ~ = a2.A1 + b2,\2 + C2A3 + d2 
(IJI) 1if = a3>.1 + b3>.2 + c3.\3 + d3 
Differentiating (!) with respect to t and using (JI) and (!JI), we get , 

(IV) 

where X= d;t~1 - a1 % - (b1a2 + c1a3).A1 - (b1d2 + c1d3) , 
A= b1b2 + b3c1, B = b1c2 + c1c3. 
Again differentiating (IV) with respect to t and using (JI), (I JI) , we get, 
(V) Y= C>.2 + D>.3 

J' >. d, >. ( ) J>. ( A ) ( A ) where Y= 7 - a1 7 - b1a2 + c1a3 Ti - a2 + a3B >.1 - d2 + d3B , 
C = b2A + b3B, D = c2A + c3B. 

Solving (IV) and (V) we get, 

DX-BY 
>.2 f:t) = AD - BC 

AY-CX 
>.3 (t) = AD - BC 

provided AD - BC f= O. Putting the values of >.2(t) and >.3(t) in (I) , we get , 

s 
>.1(t)=-R 

h S = d1(c1A- b1B) _ (b1d2 + c1d3)(b1D - c1C) _ (d A d· B) 
w ere AD - BC c1A - b1B 2 + 3 

R _ a1(AD - BC) - (b1a2 + c1a3)(b1D - c1C) _ ( A B) 
- A b B a2 + a3 . C1 - 1 
Thus the values of .A2(t) and .\3(t) are given as follows 

A2(t) = AD~BC [b1D(~ - d2) + c1D(~ - d3) + AB(d2 - ~) + B 2(d3 - ~)] 

,\3(t) = AD~8c[A2(~ - d2) + AB(~ - d3) + b1C(d2 - ~) + c1C(d3 - ~)]. 

Theorem 3.8. Let the dynamic model be given by (3.3) with restrictions (3.7) and 
(3.8) and the profit function be given by (3.4) under restrictions (3.10) and (3.11). 
The problem is to maximize 

J = lT 7r(x, y, z, u)dt 

where T is the total time. Then there exists u = u* satisfying (3.7) and (3.8) for 
which J is maximum. 

Proof. Hamiltonian for our model (3.3) is given by 

H = (p1q1x + p2q2y + p3q3z - c)u(t) + .Aif1 + >-2h + ,\3f3 + µG 

where ,\i(t) for i = 1, 2, 3 and µ(t) are co-state variables to be determined suitably. 
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For steady state solution, we have 
X 

r ( 1 - K) - nz - q1 u = O 

s(l - '}!_) - (Jz - q2u = O 
L . 

- f +/X+ Óy - Q3U = Ü 

By applying Pontryagin's maximum principle we have (for a steady state solution) 

d>.1 8H >-1r 
dt = - ax = -p1Q1U + Kx - A3/Z - 2µx 

d>.2 8H >-2s 
- = -- = -p2Q2U +-y- A3ÓZ - 2µy 
dt 8y L 

(3.16) 

d>.3 8H dt = ---¡¡; = -p3q3u + nx>.1 + (Jy>.2 - 2µz 

and 
8n 8fi 8h 8f3 ac - + >-1- + >-2- + ;\3- +µ-=O 
au au au au au 

i.e. 

(3.17) 

Equation (3.16) can be rewritten as 

d>.1 
dt = a1>-1 + b1>-2 + c1>.3 + d1 

(3.18) 
d>.2 
dt = a2>.1 + b2>.2 + c2>.3 + d2 

d;\3 
dt = a3A1 + b3>.2 + c3;\3 + d3 

where a1 = (f- 29¿x)x, bi = - 291xy, c1 = -(r+ 29tx)z, d1 = 2~x -p1Q1U. 
a2 = - 2q1xu,.b2 = (f - 2qbV)y, C2 = -(ó + 29tY)z, d2 = ~ - P2Q2U. 

a3 = (n - 2qbz)x, b3 = ((3- 29bz)y, C3 = - 2qiz2
, d3 = 2~z -p3Q3U and 

r = P1Q1X + P2Q2Y + p3q3z - c. 
Using the particular solution of system of ordinary differential equations as given 

in the previous section, we get the particular solution of (3.18) given by 

1 
>-1(t) = R(xu - V) 

where p1qi(c1A-b1B) _ (b1P292+ c1p3q3)(b1D-c1C) _ (Ap q + Bp q) 
AD-BC c¡A- b1B 2 2 3 3 

V= 2r [(c1A - b1B)x _ (b1y+c1z )(b1D-c1C) _(A + B z)] 
b AD-BC c 1 A - b1 B y 

>-2(t) =TU+ K 

where T = BC~AD [( 'W- + P2E2)(b1D - AB) + ( 21'.ff- + p3E3)(c1D - B2)] 

K = AD~8c[(~ - r)(b1D -AB) + (~ - r)(c1D - B 2 )] 

>.3(t) = r¡u+J 

where r¡ = AD~8c[('W- + P2E2)(b1C ~ A2) + (21'.ff- +p3E3)(c1C - AB)] 
J = AD~8c[(~ - r)(A2 - biC) + (~ - r)(AB - c1C)]. 
A, B, C, D, S, R have their usual meanings as discussed while giving the particular 
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solutions of a 3- system of ordinary differential equations mentioned above. Finally 
we take u---> U max as t---> T , in >..1, >..2 and A3, and have the limit ing values given as 

(3.19) 

(3.20) 

(3.21) 

Using (3.17) the co-state vector µ(t) is given by 

(3.22) 

Now, if H is maximum at u = u* (say) , O < u < Umax, then ~~ = O at u = u*. 
Hence we have 

(3.23) r - >..1(t)q1x - >..2(t)q2y - >..3(t)q3z + µ(t)b = O 

where >..i (t) (i = 1, 2, 3) and µ(t) corresponds to u = u* . Hence from (3.19) to 
(3.22) , we get 

>..1(t) = ~(xu* -V) 

>..2(t) = rn* + K 

>..3(t) = r¡u* + J 

1 
µ(t) = ¡;[>..1(t)q1x + >..2(t)q2y + A3(t)q3z - r] 

Again, as steady state optima! solution (x*, y*, z*) is desired, u * is given by 

(3.24) 

Thus finally we have 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

* X - X¡ y - Y1 z - Z ¡ 
u=--=--=--

p -Q - R 

1 X - X ¡ 
>..1(t) = - (x-- - V) R p 

where P , Q and R are given in proposition 3.5. Putting the values of x 1 , y1 and z1 , 

we obtain the equation of the optimal path. Solving (3.12) with the above optimal 
path, we obtain the optimal values x*, y*, z* of x, y , z respectively and thus we find 
the optimal value of u* . D 
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4. STABILITY ANALYSIS AND THE CONTROL-THEORETIC OPT IMIZATION OF A 

FUNCTIONAL OF REPLICATOR DYNAMICS 

In this section we prefer to restrict our detailed analysis only to the following 
replicator system of dynamics , which is completely new in all respects. 

Definition 4.1. [16] Let 
3 

s3 = {x = (x1, x2, x3) E R n: ¿ x., = c,x;;:::: O for 1 :::; i:::; 3}. It is called the con-
·i= l 

centration simplex. 
The dynamics on Sj is given by the differential equations 

. 3 1> 
(4.1 ) x; = x;[qi + L k;jXJ - -] 

j=I C 

3 3 

where e> O, Qi and kij E R and </> = 'L: xi(q; + L kijXJ)· x; represents the 
i= l j=l 

concentration of the chemical or biological species i and q; E R corresponds to 
the selfreproduction or decay of the species i and k;jXj represents the effect of the 
species j on the reproduction of species i which is of mass action type, catalytic 
if kiJ > O and inhibiting if k;J < O. ( 4.1) is called a replicator system on Sj; if it 
keeps the boundaries and faces of s3 invariant. 

Example 4.2. Let us consider an inhomogeneous hypercycle defined on 3- concen­
tration simplex s3 = { (x, y, z) E R 3 : X+ y + z = e, x, y , z ::::: O} given by the system 
of differential equation 

(4.2) 

x = x(q1 + k1Y - 1_) 
e 

Y = y( Q2 + k2 Z - p_) 
e 

i = z( Q2 + k3 x - p_) 
e 

where </> = k 1xy + k2yz + k3 zx is called the dillution fiu.r. x, y , z represents the 
concentrations of the chemical ar biological species. q1 , q2 , q3 denotes the self re­
production ar decay of the species x, y and z respectively. k1 , k2 , k3 represents the 
effect of the species x on y , y on z and z on x respectively. 

Let the dynamics of the exploited system of (4.2) under control parameter u be 
given by 

(4.3) 

x = x(q1 + k1y - p_) - E1UX 
e 

Y= y(q2 + k2 Z - 1_) - E2 UY 
e 

i = z (q2 + k3x - p_) - -E3UZ 
e 

where u is the effort of control per unit waste molecule. 
E1 , E2, E3 : coefficients of degradation product (waste) from evolution reaction ves­
sels far the molecules x, y and z respectively. In this case, the state space of the 
dynamical system is a 3-simplex, which is actually a manifold with boundary, the 
manifold being the open submanifold in R3 given by x +y+ z < e and the boundary 
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being the differentiable variety given by x + y + z = c. The exploited system ·under 
the control parameter u is the 4 simplex x +y+ z +u - c ::::; O, u > O, which is also a 
manifold with boundary¡ the interior is a 4- simplex which is an open submanifold 
of R 4 given by x +y+ z +u - c < O and boundary is a 3-simplex x +y+ z +u = c. 

Let P1,P2,p3 be the projected profit for degradation product (waste) of molecules 
x, y , z respectively from evolution reactor coming out of the vessel to avoid risks of 
breaking the walls of the reactor. 
The total number of waste molecules x, y, z at time t taken by the control process 
are given by E1 ux, E2uy, c3uz respectively. 

Therefore, the net projected profit for degradation (waste) of molecules x, y and 
z are respectively p1E1ux, p2E2uy and p3E3uz. 

Let e be the cost per unit effort u at time t. 
So total effort in the process is eu(t). Then the profit function is taken as 

( 4.4) 

where (x, y, z, u) belonging to the state space. 
The control problem is as follows: 

( 4.5) M aximize J = 1T 7r(x, y, z, u)dt V(x, y, z, u) E X [the control set] 

Proposition 4.3. The replicator system (4.2) has equilibrium (x1 , y1 , z1) > (O, O, O) 
if c is large enough. Similarly ( 4.3) possesses equilibrium if c is large enough as 
well as ( 4.6) hold. 

(4.6) 

€3 - €2 E2 - tl l Q -----+ < 
k3 ki 

Proof. Equilibrium point of ( 4.2) can be obtained by solving the system of linear 
equations given by 

Q3 + k3X - <!!_ = Ü 
c 

where ef; = k1xy + k2yz + k3zx. It follows that 
1 1 l 

x = EL [c - !l.L!l1. + !1..c..'.t! ] y = .Ei. [c - !1..c..'.t! + <n..=!L!. J an d z = 5- [c - <n..=!L!. + !1.L!l2] 1 N k2 ki ' 1 N k3 k 2 1 N k1 k3 

where N = ~1 + ~2 + ¿. Thus for inhomogeneous hypercycle (where qi's are 
unequal) the inner equilibrium (x1 , y 1 , z1 ) > (O, O, O) if c is large enough. 

For the exploited system (4.3), it follows that 
X2 =Xi - ~u, Y2 = Yl - c;J·, Z2 = Z1 - 1{.,¡u 

where 
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Clearly (x2, y2, z2) >(O, O, O) if e is large enough as well as (4.6) hold. o 

Proposition 4.4. The system (4.2) is globally asymptotically stable if (q1 +k1y)(x­
x1) + (q2 +k2z)(y-y1) +(q3 + k3x)(z-zi) <O V(x,y,z) > (0,0,0) andx i- x1,Y i­
Y1, z i- Z1. 

Proof. To test the global stability analysis let us consider the following Lyapunov 
function 
V(x,y, z ) = x - X1 - x1log(~) + c1[Y - y¡ - y1log(.1L)] + c2 [z - Z1 - z1 log( zz )], 

X1 Y1 1 

where c1, c2 are positive constants to be determined suitably. 
We have V(x, y, z) = ( x~xi ).i + c1 (Y~vi )y+ c2( z~zi )i. Using (4.2), we get 

V = ( Q1 + k1y - ~ )(x - x1) + c1 ( Q2 + k2z - ~ )(y - yi) + c2 ( q3 + k3x - ~) (z - zi) = 
(q1 + k1y)(x - x1) + c1 (q2 + k2z)(y-y1) + c2(q3 + k3x)(z - zi) - ~ [(x -xi)+ c1 (y­
Yi) + c2(z - zi)]. 

Choosing ci = c2 = 1, we get 
. ~ 

V= (q1 + k1y)(x -xi)+ (q2 + k2z)(y - y1) + (q3 + k3x)(z - zi), since -c[(x - xi)+ 
c1(Y - Y1) + c2(z - z1)] = o for X+ y+ z = Zi + Yl + Z1 = c. 

Thus by LaSalle's theorem it follows that (x1,y1,zi) for the system (4.2) is 
globally asymptotically stable if (q1 + k 1y)(x - xi) + (q2 + k2z)(y - Yi) + (q3 + 
k3x)(z - zi.) < O V(x,y,z) > (0,0, 0) and xi- xi, Y i- Yi,z i- zi. O 

Theorem 4.5. Let the dynamic model be given by ( 4.3) under the restrictions ( 4.6) 
ande be large enough. Let the objective function be given by (4.4) , then there exists 
a f easible bionomic equilibrium if ( 4. 7) and ( 4.8) holds where 

(4.7) 

(4.8) 

Proof. The locus of dynamic equilibrium (x2, y2, z2) is given by 

(4.9) 
X - Xi y - Y1 z - Z¡ 

L:--=--=--=U 
F -G - H 

The zero profit function is given by 

(4.10) 

If (4.9) intersects (4.10) at (x*,y*, z* ) where u= u 1, then it follows that 
x = x* + Fu1, y* = y1 - Gui, z* = zi - H u1 

Again from 1T = O, it follows that 
P1E1X1 + P2E2Y1 + p3E3Z1 - e= (P2E2Q + p3E3R - PiE1P)u1 . 
Hence 

(4.11) 

Obviously, we get u1 > O if ( 4. 7) and ( 4.8) hold. 
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Statement of the optimal control problem and its solution 
Let the state space of the exploited system ( 4.3) be given by 

X= {(x, y ,z,u): corresponding to each u, (x(t) ,y(t ),z(t)) is an integral curve of 
the exploited replicator system (4.3) and G(x, y , z, u) :::; O} where G(x, y , z, u) = 
x +y+ z +u - e then G(x, y , z, u) :::; O denotes a manifold with boundary in R 4 

whose interior is open sub-manifold of R 4 and whose boundary is a differentiable. 
variety given by G(x, y , z, u) = O; u E R, t E [O, T ], (x(t) , y(t ), z(t)) E R3 is C 1 , 

(x,y ,z) = (xo , y0 ,z0 ) when t =O; further let f: R3 x R _, R3, 7r: R 3 x R _, R be 
all C 1-maps where f =(Ji , h , h) 

ki XY + k2YZ + k3ZX 
fi(x, y ,z,u)= x [q1+k1y- -E1u] 

e 

k1XY + k2YZ + k3ZX 
h(x, y , z, u) = y[q2 + k2z - - E2u] 

e 
k1XY + k2yz + k3ZX 

h(x, y, z, u) = z [q3 + k1x - - E3u] 
e 

We assume that the total time taken to control waste molecules is T. Then the 
control problem is to maximize 

( 4.12) J = 1T 7í(X, y , z, u)dt V(x, y , z, u) E X 

over the control parameter u , where u E (O, Umax) and to find a suitable u = u* in 
(O, Umax ) for which J is maximum where 

7í(X, y , z, u) = (P1 E1X + P2E2Y + p3E3Z - c)u(t) 

Theorem 4.6. Let the dynamic model be given by ( 4.3) with restrictions ( 4.6) and 
the profit function be given by (4.4) under restrictions (4.7) and (4.8). The problem 
is to maximize 

J = 1T 7r(x, y, z, u)dt 

where T is the total time. Then there exists u = u* satisfying ( 4.6) for which J is 
maximum. Further the optimal path is given by 

(E1 - Q1)x-k(x xp.x 1 - V)+ (E2 - Q2)y[r'1_::-J1 + K] + (E3 - q3)z[17 z_=-~1 + J] = O 

where F , G and H are given in proposition (4.3) and (x 1 , y1 ,z1 ) is the nontrivial 
equilibrium of the model ( 4.2) . Lastly, the optimal values of x, y and z are obtained 
as the point of intersection of (4.9) with the above optimal path. 

Proof. Hamiltonian for our model ( 4.3) is given by 

H = (P1E1X + P2E2Y + p3E3Z - c)u(t) + )qfi + A2Í2 + A3f3 + µG 

where Ai(t) for i = 1, 2, 3 and µ(t) are co-state variables to be determined suitably. 
For steady state solution, we have 

k k1XY + k2YZ + k3ZX Ü 
Q1+ '1Y- -E1U= 

e 
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By applying Pontryagin's maximum principle we have (for a steady state solu­
tion) 

d)q aH .\1 
dt = - ax = -(p1E1U - C(k1XY + k3 zx) + µ] 

( 4.13) 
d.\2 aH .\2 
- = - - = - (p2E2u - -(k1xy + k2yz) + µ] 
dt ay e 

d.\3 aH .\3 dt = --¡:¡; = -(p;3E3U - --;;(k2yz + k3zx ) + µ] 

and 
a-rr aJi a12 ªh ac 
-+ .A1-+.A2-+.\3-+µ- =0 
au au au au au 

i. e. 

(4. 14) P1E1x + P2E2Y + p3E3 z - e - .A1 E1x - .A2E2Y - A3E3z +µ=o 

Equation ( 4.13) can be rewritten as 

k1XY + k3 ZX 
(D- ).A1+P1E1u-µ=O 

e 

k1XY + k2yz 
(D - ).\2 + P2E2U - µ = Ü 

c 
( 4.15) 

k2YZ + k3 ZX 
(D - ).\3 + p3E3U - µ = Ü 

e 
where D = f,, . Again using (4.14) , the system (4.15) becomes 

d.\1 dt = a1.A1 + b1.A2 + c1 .\3 + d1 

(4.16) 
d.\2 dt = a2.A1 + b2.A2 + c2 .A3 + d2 

d.\3 dt = a3A1 + b3A2 + C3 A3 + d3 

where a1 = l = kixy~k3 zx + E1X, b1 = b3 = E2Y, C1 = C2 = E3Z, a2 = a3 = E1X, 
b2 = rn = k¡x71~k2yz + E2Y, C3 = n = k21/Z~ k3ZX + E:~z 

L =-di= P1E1U + r, M = -d2 = P2 E2u + r , N = -d3 = p3E3U + r 
r = P1E1X + P2E2Y + p3E3Z - c. 

Solving the system of differential equation (5.4.16) we get the particular solutions 
by using the particular solution of the system of ordinary differential equations as 
given earlier given by 

1 
.A1(t) = R(xu - V) 

where X = (Ap E + Bp E ) + b1p2<2+c1pa<3 _ P1<i(c1A-b1B) 
2 2 3 3 c1 A-b1 B AD-BC ' 

V= r[(c A - b B) - (b1+c1)(biD-c1C) - (A+ B)] 
1 1 c1 A-b1 B 

.A2 (t)=rn+K 

where T = BC~AD [(:W- + P2E2)(b1D - AB) + (~ + p3E3)(c1D - B 2)] 

K = AD~ 8c[(~ - r)(b1D -AB) + (~ - r)(c1D - B 2 )] 

A3(t) = 7]U + J 
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where r¡ = AD~BC [(~ + P2E2)(b1C - A2) + ('7f + p3E3)(c1C - AB)] 
.J = AD~80 [(~ - r)(A2 - b1C) + (~ - r)(AB - c1C)]. 
A, B, C, D , S, R have their usual meanings as deduced in previous sections. 

Finally we take u---+ Umax as t---+ T, in )q, A2 and A3, we have the limiting values 
as 

(4.17) 

( 4.18) 

(4.19) 

1 
Ai(t) = R(XUmax - V) 

A3(t) = r¡ 'Um~x + .J 

Using (4.14) the co-state vector µ(t) is given by 

(4.20) µ(t) = >-1(t)E1X + >-2(t)E2Y + A3(t)E3z - r 

Now, if H is maximum at u = u* (say), O < u < Umax , then ~!/, = O at u = u*. 
Hence we have 

( 4.21) 

where .>-;(t) (i = 1,2,3) and µ(t) corresponds to u= u*. Hence from (4.17) to 
(4.20), we get 

.A1(t) = ~(xu* - V) 

.A2(t) = rn* + K 

>.3(t) = r¡u* + .J 

µ(t) = >-1(t)E1X + >-2(t)E2Y + A3(t)E3Z - r 
Again, as steady state optimal solution (x*,y*,z*) is desired , u* is given by 

( 4.22) 

Thus finally we have 

( 4.23) 

( 4.24) 

( 4.25) 

( 4.26) 

u* = x - X1 y - y1 z - z1· 
F -G -H 

1 X - Xi 
>-1(t) = R(x-¡¡;- - T) 

>-2(t) = Ty ~;1 + K 

Z - Z ¡ 
A3(t) = r¡ -H + .J 

µ(t) = .A1(t)E1X + .A2(t)E2Y + A3(t)E3 Z - r 

Under (4.23)- (4.26), (4.21) reduces to 

(E1 - q1)x>-1(t) + (E2 - q2)Y>-2(t) + (E3 - q3)z>.3(t) =O. 

This implies that 

(Ei -qi)xj¡_(x 3'px 1 -T) + (E2 - q2)Y[T 11_:::-61 + K] + (E3 - q3) z[r¡z_:::-~1 + .J] = 0 

where F , G and H are given in proposition 4.3. Putting the values of x 1 , y 1 and z1 , 

we obtain the equation of the optimal path. Solving ( 4.9) with the above optimal 
path, we obtain the optimal values x*, y*, z* of x, y, z respectively and thus obtain 
the optimal value of u*. D 
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Discussion 

Theory of constrained optimization of a functional on a subset of Rn was known 
earlier. But realistic application of this theory and performance of corresponding 
analysis to determine the optimal effort and optimal bio-masses was not attempted 
earlier. This is the first instance where such problem of reality has been tackled 
nicely. 
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