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ABSTRACT. The paper discusses control theoretic optimization of a functional
with restrictions on the domain of definition of the functional, in the sense
that, the domain is an open manifold with boundary, where the boundary is a
differentiable variety. The paper also shows a realistic application of such an
optimal control problem.
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1. INTRODUCTION

Optimal control problems are of two types - (i) when the restrictions are only
in the parameter domain and (#7) when the restrictions are in the stable domain
and also in the parameter domain. The necessary condition of optimality type (%)
is known as Pontryagin’s maximum principle [14], similar conditions of optimality
in type (¢) is given in [1, 2, 13, 17]. So far as type () optimal control problem are
concerned, their applications in real world problems and the corresponding analysis
are found in [6, 7, 8, 9]. But it is very difficult to have realistic applications of
type (ii) optimal control problems owing to arbitrary restrictions on the domain
of the functional expressed by inequalities of differentiable functions. In realistic
applications, it is found that the domain of restriction of the functional is a manifold
with boundary [10, 15], where the manifold is an open set of R™ (n > 1) and the
boundary is a differentiability variety in R™ [10]. Naturally it remains open to
formulate type (ii) optimal control problem with the aforesaid type of restrictions
on the state domain and apply it in realistic optimal control problem. The present
chapter deals with such control problems and their applications.

The whole matter of the paper is divided into four main sections, where sec-
tion 1 gives the introduction. Section 2 gives the idea of differentiable manifold
and differentiable variety and contains some results in this connection. In section’
3, some constrained optimal control problem in parameter domain are given and
discussing some real world problems on the domain of definition of the functional,
in the sense that, the domain is a manifold with boundary, where the boundary is’
a differentiable variety. Section 4 discusses the stability analysis and the control-
theoretic optimization of a functional of replicator dynamics on the same domain
of definitions.
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2. SOME KNOWN DEFINITIONS AND RESULTS [10]

Definition 2.1. [10] A differentiable variety in R"*! is defined as {f~1(0)},
where f : R""' — R is a differentiable function such that at each z € M, the
matrix [f ;(z)] has rank one, j =1,2,.....,n

It can be shown that it is a differentiable manifold of dimension n.

Example 2.2. [10] A 2-sphere S? = {(21,202,23) E R®: 22 + 22+ 22 -1=0} isa
differentiable variety in R® and it is a manifold of dimension 2.

3. CONSTRAINED OPTIMAL CONTROL PROBLEM WITH RESTRICTIONS IN THE
STATE SPACE

Statement of the problem and its solution

t1

(3.1) Maximize Ji(u) = ¢(t,zy, ) + F(z,t,u)dt Y(z,u) € X
0

where X = {(z,u): corresponding to each u, z(t) is an integral curve of 2’ =
f(t,z,u) and G(z,u) < 0}; G(z,u) < 0 denotes a manifold with boundary in R"+™
whose interior is open sub-manifold of R"*™ and whose boundary is a differentiable
variety given by G(z,u) =0; u € R™, t € [0,t1], z = z(t) € R" is C!, z = 27 when
t=0; further f: RXxR"XR™ > R",¢: RxR"— R, F: RXxR"xXR™— R are
all C'-maps.

Proceeding as in [2, 17], we get the following

Theorem 3.1. A necessary condition that (x*,u*) minimizes the control problem
(3.1) is that there are costate vectors A(t) and u(t) such that the following holds:
() At1) = (52)i=t,, (ii) Fo + Afo + uGz +A =0 and

(7’“) (‘Fu st /\fu =+ UGu)uzu* =0.

Remark 3.2. It is noted that the necessary conditions of optimality as given in
Theorem 3.1 reduce to the solution of a system of ordinary differential equations
in co-state variables. Naturally it becomes almost impossible to find the solution
analytically. This is why, steady state optimal solution is needed. Hence prior to
finding out the optimal solution, at least local asymptotic stability of the system is
to be assured.

Example 3.3. Suppose x,y are two non-interacting fishes and z is their predator
moving in a part of an ocean, that is given by x®> +y*> + 22 —a <0, z > 0,y >
0,z > d > 0, for some real a and d. Let the natural dynamics of motion be given
by [with standard meanings]

z=rz(l— %) —arz

(3.2) g =sy(1— %) - Byz

z2=z(—f + vz + oy)
Let the dynamics of exploited motion under control parameter u per unit biomass
be given by the following differential equations [with standard meanings]

T
i =rz(l — =) — azz — qu
& =ro( K) Qrz — QuT
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(3.3) j = sy(l - %) — Byz — qouy

i =z2(—f+vz+0y) — gzuz

u = u(t) is the effort, ¢; (i = 1,2,3) are the catchability coefficients of xz,y,z
species. In this case, the state space of the natural dynamical system (3.2) is a
manifold with boundary; the interior is the three dimensional open sub-manifold of
R3: 22+ y? + 22 — a < 0 and the boundary is a differentiable variety of R®, which
is the surface of a two dimensional sphere given by x> + y? + 2% = a. The state
space of the exploited system (3.3) is 2% + y*> + 22 + bu — a < 0 which is also a
manifold with boundary; the interior is the four dimensional open sub-manifold of
RY: 22 +y? + 22 + bu — a < 0 and the boundary is a differentiable variety of R*,
which is a paraboloid (of dimension 3) given by x? + y? + 2? + bu = a. Moreover,
the state space of the exploited system is bounded since (z,y,z,u) € R}.

Let ¢ be the cost per unit effort w. Let py,ps,ps be the prices of the species x,vy, z
respectively. Then the profit function is taken as

(3.4) m(z,y,z,u) = (P11 T + p2g2y + P3qaz — c)u(t)
where (z,y, z,u) belonging to the state space.
The control problem is as follows:
T

(3.5) Mazimize (M @1 + p2qgey + p3gsz — c)udt,u € U [the control set].
0

Remark 3.4. As mentioned in Remark 3.2, that first of all local stability analysis
of the system (3.3) is to be done and then corresponding optimal analysis is to be
performed. For this problem local stability analysis is already known in connec-
tion with fishery management problems, but the optimal analysis is definitely much
harder and completely new.

Proposition 3.5. The dynamical system (3.2) possesses equilibrium (x1,y1,21) >
(0,0,0), if

K+ 6L — K+ 0L —
L KAL) POK +6D=)

(3.6) K + 6L > f

where P = L—":.I‘ 4 28

Similarly (3.3) possgsses equilibrium (x2,ys2, 22) > (0,0,0) if (3.6), (3.7) and (3.8)
hold,

(37) <22, < 2
(3.8) . l[—(igf—_—f

where Q _ lq;K + ()q:L + g3

Proof. It follows that
1 =K[1-$(HK+06L—-f),yn=L[1—- %(7K+5L——f)], 2= 1&%5_—[ where
P = yoK + i(i_[_,

So, (.1‘1,, y1,21) > (0,0,0), if (3.6) holds. Similarly, it follows that

aQ

Ku
$2=$1—"T—(Q1" P
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BRQ

Y2 = Y1 — —(q -5
22 =21 — @
P
where Q = :/_q_ + _q_ + q3.
Clearly (xg,yg, z9) > (0 0,0), if (3.6), (3.7) and (3.8) hold. O

Proposition 3.6. The vanishing equilibrium (0,0,0) is always an unstable saddle
point and the interior equilibrium (x1,y1,21) is asymptotically stable for the system
(8:2)5

Proof. The variational matrix for the equation in model (3.2) at origin is

r 0 0
J()Z 0 s 0
00 —f

which clearly shows that (0,0,0) is an unstable saddle point.
To show the interior equilibrium (1, y1, 21) is asymptotically stable, we first rewrite
the model (3.2) as

z :m[—%(x — 1) — afz — 21)]

(3.9) §=yl-7 W —v) - Bz — =)

i =z[y(x —21) +(y — )
Consider the Liapunov function as

V(z,y,2) =z —x1 —z1log(;5) + a1y — y1 — yalog((L)] + eafz — 21 — 21 log(Z)]

where ¢, co > 0 are constants to be determined suitably. It is obvious that V(z, vy, 2)
is positive definite.

. z2—2z
yl)y+02( -

V(z,y.2) = ()i + e (2 L)z
=@ —-z)|[-f(E—z1)—alz—2z)]|+ay-—n)-—ft@—n)—B8(z—-2)]+cz -
21)[ (m—x1)+6(y y1)]

-1 -2 (y—1n)?+(cy—a)(z—z1) (2 —21) + (20 —e1B) (y — 1) (2 — 21)

Let us choose ¢ = %, then ¢; = g—% which implies that V(.'E, Y, z) is negative and
consequently the interior equilibrium (z1,y1, 21) is asymptotically stable. O

Bionomic Equilibrium and its feasibility|[3]

Let L denote the locus of dynamic equilibrium of the three species system (3.3)
and let 7 = 0 denote the zero profit function. A feasible equilibrium is the point
of intersection of L = 0 and m = 0, provided all the coordinates of this point are
positive and also the value of the control parameter u(t) is positive at this point.
It is usually denoted by (Zoc, Yoo, 2oc)-

The optimal steady state analysis is taken around the bionomic equilibrium of
the model, so its existence is to be assured. In this connection we prove the following
theorem.
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Theorem 3.7. Let the dynamic model be given by (3.3) under the restrictions (3.6),
(3.7) and (3.8). Let the objective function be given by (3.4). Then there exists a
feasible bionomic equilibrium if (3.10) and (3.11) holds separately where

(3.10) P11 P < p2q2Q + p3q3 R

(3.11) ¢ < p1q171 + P2geys + Pagsz
Proof. The locus of dynamic equilibrium (xa, y2, 22) is given by
. Tr—T Yy—Hn T2
3.12 L: = = =u
(3.12) P @  -R °
The zero profit function is given by

(3.13) T =p1q1T + p2g2y + p3gzz —c =0

If (3.12) intersects (3.13) at (z*,y*, z*) where u = w;, then it follows that
r=z"+ Pu, y* =y1 — Quy, 2* =21 — Ruy

Again from 7 = 0, it follows that

P1q1%1 + P2geys + p3gsz1 — ¢ = (p2g2@Q + p3gz R — p1q1 P)u;.

Hence

. P1q1Z1 + Pp2qa¥1 + p3q3z1 — ¢

3.14 Uy =

(3:14) ! P2q2Q + p3qz R — prqy P
Obviously, we get u; > 0 if (3.10) and (3.11) hold. O

Statement of the optimal control problem and its solution

Let the state space of the exploited system (3.3) be given by

X = {(z,y, z,u): corresponding to each u, (z(t), y(t), z(t)) is an integral curve of the
exploited system (3.3) and G(x,y, z,u) < 0} where G(z,y, z,u) = 22+y>+22+bu—a
then G(z,y,z,u) < 0 denotes a manifold with boundary in R* whose interior is
an open sub-manifold of R* and whose boundary is a differentiable variety given
by G(z,y,z,u) = 0; u € R, t € [0,T], (z(t),y(t),2(t)) € R® is C, (z,y,2) =
(70, Y0, 20) when t = 0; further let f : R* x R — R, 7 : R®> x R — R be all
Cl-maps where f = (f1, fa, f)

fil@y.z,0) = olr(1 = ) - az -

falw.y.zu) = yl(1 = ) = Bz = 2]

fl‘l('rv yvz?u) — Z[—f + yr =} 6?:/ i (IS’U«}
We assume that the total time taken to control the biomass is 7. Then the
control problem is to maximize

T
(3.15) J :/ w(z,y, z,w)dt Y(z,y,z,u) € X
0

over the control parameter u, where u € (0, #mq,) and to find a suitable v = u* in
(0, Umaz) for which J is maximum where

m(z,y, z,u) = (P11 + p2q2y + P3gsz — c)u(t)

Before going to the main theorem we want to find out the particular solution of a
3- system of ordinary differential equation with constant coefficients. Such solution

37

wttores. Digitalizacion realizada por ULPGC. Biblioteca Universitaria, 2017

© Del documento, de los a



of differential equation in co-state variable will be necessary in our subsequent
realistic example.

Particular Solution of a 3- system of ordinary differential equation

Let us consider the 3-system of ordinary differential equations

(I) 9o = a1y + bida + c1A3 + dy
(1]) dﬂ;\f = a1 + ba Ao + o3 + do
(III) dé\t —a,)\l—i-b /\2+C;/\5+d;

Differentiating (/) with respect to t and using (/1) and (/11), we get,

(IV) X = Ay + BXs
where X = %2\51- a1 dt (b1a2 o cla;)/\l (bldg + Cldg),
A = biby + bzcy, B = bics + cyc3.

Again differentiating (I'V') with respect to ¢t and using (I1), (I11), we get,
(V) Y =CMly+ D)3

where Y = d;—tﬁl — a1 S5 dtz’ — (braz + cla;)d’\‘ (asA + azB)A\; — (do A + d3B),
C =bA+b3B, D =cyA+ c3B.

Solving (IV) and (V) we get,

DX — BY
») =I5 "Bc
AY - CX
%)= 2p—BC
provided AD — BC # 0. Putting the values of Ay(t) and A3(t) in (1), we get,
S
A(t) =—=
o dl(ClA—blB) (b1d2+01d3)(b1D—Clc)
where S = D —BC oy (doA + d3B)
al(AD == BC) = (b1a2 + Clag)(b1D == Clc)
= — (a2 A + a3B).
o2 AL E (a2A + asB)
Thus the values of Ay(t) and A3(t) are given as follows
Xo(t) = 1pipe[b1D(BE — dg) + c1 D(%E — d3) + AB(dy — 25) + B?(d3 — %))

As3(t) = spipeA2(BE — do) + AB(%E — d3) + b,0(d2 — —f;-) +c10(ds — %2)].

Theorem 3.8. Let the dynamic model be given by (3.3) with restrictions (3.7) and
(3.8) and the profit function be given by (3.4) under restrictions (3.10) and (3.11).
The problem is to maximize

T
J=/ w(x,y, z,u)dt
0

where T 1is the total time. Then there exists u = u* satisfying (3.7) and (3.8) for
which J is mazimum.

Proof. Hamiltonian for our model (3.3) is given by

H = (p1q1x + p2g2y + p3gsz — cu(t) + M fi + Aafo + Asfz + puG
where \;(t) for ¢ = 1,2,3 and u(t) are co-state variables to be determined suitably.
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For steady state solution, we have
z
1—-=)—az— =0
r( K) az —qu
5(1—3’—)—[5z—q2u=0
Yb; .

—f+yz+d0y—qau=0
By applying Pontryagin’s maximum principle we have (for a steady state solution)

W __OH o wr
a - or Piqiu K T 372 1224
d)\z o OH o )\28
(3.16) U oy T P Y- A3dz — 2uy
dA OH
d—: =-3, = Ps@sut azAy + Byrs — 2uz
S o of . 0fs  Bfs OG
T 2 3
9 +>\18 +>\2—8——+)\5—5—+ 8’!1, =="()
i.e.
(3.17) PI1T + Pagay + P3g3z — ¢ — MquT — Xagay — A3qaz + b =0
Equation (3.16) can be rewritten as
d\
d_tl = al)\l += bl)\g -+ Cl)\g + d1
dA
(3.18) d_t2 = azA1 + baA2 + c2A3 + do
d\
d—tg = (1,3.)\1 + b3/\2 - 03/\3 o d3
where a; = (% — 23,)11)25, b = —29—"1’)“—”9, c1=—(y+ —‘1-—)2 dy = Z= - piquu.
ay = =2 ) = (4 — 22Uy ) = —(6 + 2¥)z, dy = ZL — prgou.
2
az = (a— 22z, by = (B — 222y, c3 = —2B= (3 = 212 — p3qzu and

T = Pp1q1T + p2g2y + p3qzz — C.
Using the particular solution of system of ordinary differential equations as given
in the previous section, we get the particular solution of (3.18) given by

M(t) = 0= V)

where BAL(CLANE) _ (b1p2q2+21232)1(§1D—ch) — (Ap2g2 + Bpsgs)
21 A—by B)x b g byD—c,C
V= th[((iq])_éc)l _( 1y+(cif4)£b113 al) _ (Ay+BZ)]
/\Q(t) =Tu+ K

where 7 = 5l [(X5%2 + p2e2) (01D — AB) + (X2 + pses)(c1 D — B?)]
K = 25t 55((2%- —r)(01D — AB) + (%¢ —r)(c1D — B?)]

As(t) =nu+J
where 1 = o515 (X2 + p2e2) (010 = A?) + (X2 +'p3es)(e1C — AB))

J = 252 pe (% — r)(A% — 510) + (% — r)(AB — 1 0)).
A, B, C, D, S, R have their usual meanings as discussed while giving the particular
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solutions of a 3- system of ordinary differential equations mentioned above. Finally
we take U — Upqr ast — T, in Ay, Ao and Az, and have the limiting values given as

1
(319) /\1 (t) = “R‘(Xumax - V)
(320) /\Z(t) = TUmax + K
(321) /\(}(t) = NUmax +J

Using (3.17) the co-state vector u(t) is given by

1
(3.22) w(t) = 3 M () gz + A2 (t)goy + q3(t)gsz — 7]
Now, if H is maximum at u = u* (say), 0 < ¥ < Umax, then % =0 at u = u*.
Hence we have
(3.23) r—A(t)qgx — Aa(t)qy — As3(t)qzz + pu(t)b =0

where \;(t) (i = 1,2,3) and u(t) corresponds to u = w*. Hence from (3.19) to
(3.22), we get

Mlt) = £ = V)
A(t) =1u" + K
/\;;(t) = 'I]’U.* =+ J
u(t) = TPz + Aa(B)aay + As(t)asz 7]

Again, as steady state optimal solution (z*,y*, 2*) is desired, u* is given by

r—x1 _Y—-Wh _ 22— 2

(3.24) ut =

B -Q —-R
Thus finally we have
_ 1, z—x
(3.25) M) = 2 V)
(3.26) At =LA 4+ K
-Q
(3.27) ha(t) =nZ=2 4+ J
1
(3.28) u(t) = E[Al(t)fhw + A2(t)g2y + A3(t)gsz — 7]

where P, Q and R are given in proposition 3.5. Putting the values of z;,y; and 21,
we obtain the equation of the optimal path. Solving (3.12) with the above optimal
path, we obtain the optimal values x*, y*, 2* of z, y, z respectively and thus we find
the optimal value of u*. O
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4. STABILITY ANALYSIS AND THE CONTROL-THEORETIC OPTIMIZATION OF A
FUNCTIONAL OF REPLICATOR DYNAMICS

In this section we prefer to restrict our detailed analysis only to the following
replicator system of dynamics, which is completely new in all respects.

Definition 4.1. [16] Let
3
S§ ={z = (z1,22,23) € R": le =c,x; >0 for 1 <i<3}. Itis called the con-
=1
centration simplex.
The dynamics on 5% is given by the differential equations

3
. o
(4.1) i = ilgi+ ) kijas — P
j=1
3 3
where ¢ > 0, ¢; and k;; € R and ¢ = in(qi +Zk“jxi)' r; represents the
i=1 g=1

concentration of the chemical or biological species ¢ and ¢; € R corresponds to
the selfreproduction or decay of the species 7 and k;;z; represents the effect of the
species j on the reproduction of species 7 which is of mass action type, catalytic
if kj; > 0 and inhibiting if k;; < 0. (4.1) is called a replicator system on Sf; if it
keeps the boundaries and faces of S5 invariant.

Example 4.2. Let us consider an inhomaogeneous hypercycle defined on 3- concen-
tration simplexr S§ = {(x,y,2) € R®:x+y+2z=c,z,y,2z > 0} given by the system
of differential equation

b= ala+ky - 2)
o ¢
(4.2) y=ylaz+kez - 7)

b= 2lg +hsz — D)

where ¢ = kixy + kayz + kzzx is called the dillution flux. x,y,z represents the
concentrations of the chemical or biological species. qi,qz2,q3 denotes the self re-
production or decay of the species x,y and z respectively. ki, ko, ks represents the
effect of the species x ony, y on z and z on x respectively.

Let the dynamics of the exploited system of (4.2) under control parameter u be
given by

& =x(q + ky — %) — €U

(4.3) ¥ =y(g2 + k22 — %) — €auy

2 =2(qa + kzz — ?) — —€3UZ
c

where u is the effort of control per unit waste molecule.

€1, €2, €3 : coefficients of degradation product (waste) from evolution reaction ves-
sels for the molecules x,y and z respectively. In this case, the state space of the
dynamical system is a 3-simplex, which is actually a manifold with boundary, the
manifold being the open submanifold in R3 given by x +y+ 2z < ¢ and the boundary
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being the differentiable variety given by x + y + 2z = c¢. The exploited system under
the control parameter u is the 4 simplex x+y+z+u—c <0, u > 0, which is also a
manifold with boundary; the interior is a 4- simplex which is an open submanifold
of R* given by x +y+ 2+ u—c < 0 and boundary is a 3-simplex © +y+ z +u = c.

Let p1,p2,p3 be the projected profit for degradation product (waste) of molecules
x,y, z respectively from evolution reactor coming out of the vessel to avoid risks of
breaking the walls of the reactor.
The total number of waste molecules x,y,z at time t taken by the control process
are given by ejux, eauy, esuz respectively.

Therefore, the net projected profit for degradation (waste) of molecules x,y and
z are respectively piejuz, paesuy and pzesuz.

Let ¢ be the cost per unit effort u at time t.

So total effort in the process is ¢u(t). Then the profit function is taken as

(4.4) m(z,y,z,u) = (p1e1T + paeay + p3ezz — é)u(t)

where (x,y, z,u) belonging to the state space.
The control problem is as follows:

T
(4.5) Mazimize J = / m(z,y, z,u)dt V(z,y,z u) € X [the control set]
0

Proposition 4.3. The replicator system (4.2) has equilibrium (z1,y1, 21) > (0,0,0)
if ¢ is large enough. Similarly (4.3) possesses equilibrium if ¢ is large enough as
well as (4.6) hold.

€1 — €3 €3 — €2

1
0 "o +1<0

€2 — €] €1 — €3

(4.6) " T

+1<0

€3 — €2 €2 — €1
k3 k1

Proof. Equilibrium point of (4.2) can be obtained by solving the system of linear
equations given by

+1<0

¢
kiy——=0

Q1+ ky p
Q2+k22—%=0
(I3+k3$—-%=0

where qb kizy + koyz + kszx. It follows that
m_N[E%+£H%—4%QJ%LLMMMZ#[%1+Mg
where N = % + kz + ka Thus for inhomogeneous hypercycle (where ¢;’s are
unequal) the inner equilibrium (z1,y1,21) > (0,0,0) if ¢ is large enough.
For the exploited system (4.3), it follows that
o=z - B o=y — G, 2o =2 — £
where
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F = L[l __ €3—€2 4 c]—f,;]
kld kz kl
- €1—¢€ €2—€
0—2:17[1‘4’4;;3 +J‘“"7;¢2 ]
H = E[l o ezqu + cgkgez]

Clearly (x2,ys,22) > (0,0,0) if ¢ is large enough as well as (4.6) hold. - [

Proposition 4.4. The system (4.2) is globally asymptotically stable if (q1 +k1y)(x—
1)+ (g2 +k22)(y— 1) + (g3 +ksz) (2 —21) < 0V(z,y,2) > (0,0,0) and x # x1,y #
Y1, 2 # 21.

Proof. To test the global stability analysis let us consider the following Lyapunov
function

V(2,9,2) = 2 — 21 — 21log(£) + c1ly — y1 — v log(L)] + calz — 21 — 21 log(Z)],
where ¢y, cy are positive constants to be determined suitably.

We have V(z,y,2) = (252)2 + c1 (52 )y + c2(3)2. Using (4.2), we get

V=(q1+kiy— (Q)(r —x1) +c1(g2 + koz — ﬁ?)(y —y1) + co(gs + kax — ?)(z —2z1) =
(g1 +k1y) (@ — 1) +c1(qa+ k2z) (Y — y1) + ca(ga + ksz) (2 — 21) — E[(w —21) +er (y —
y) + ca(z — 2)].
~ Choosing ¢; = ¢z = 1, we get
V = (q1+k1y)(@ — z1) + (g2 + k22)(y — y1) + (g3 + k3z)(z — 21), since Z[(z —21) +
aly—yi)+e(z—z)]=0forz+y+z=z1+y +21 =c

Thus by LaSalle’s theorem it follows that (x1,y1,21) for the system (4.2) is
globally asymptotically stable if (q¢1 + k1y)(z — z1) + (g2 + k22)(y — y1) + (g3 +
ksx)(z — z1) < 0 Y(z,y,2) > (0,0,0) and = # 1,y # y1,2 # 21. a

Theorem 4.5. Let the dynamic model be given by (4.3) under the restrictions (4.6)
and ¢ be large enough. Let the objective function be given by (4.4), then there exists
a feasible bionomic equilibrium if (4.7) and (4.8) holds where

(4.7) pre1F < paeaG + p3esH

(4.8) ¢ < p1e121 + p2€2y1 + P3€s
Proof. The locus of dynamic equilibrium (z2, y2, 22) is given by

r—Z1 _Yy—Y% _ 2—2A1 _

F -G -H

The zero profit function is given by

(4.9) ox

(4.10) T =p161Z + poeay + p3ezz — ¢ =0

If (4.9) intersects (4.10) at (z*,y*, z*) where u = u;, then it follows that
r=x"+ Fuy, y* =y — Guy, 2* =21 — Huy

Again from 7 = 0, it follows that

p1€1Z71 + paeayr + paezzr — &= (p2e2Q + p3esR — pre1 P)us.

Hence
P1€1T1 + Pacayy + P3€zzy — C
4.11 up = -
(4.11) ! pae2G + paesH — pre I
Obviously, we get u; > 0 if (4.7) and (4.8) hold. O
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Statement of the optimal control problem and its solution

Let the state space of the exploited system (4.3) be given by
X = {(=,y, z,u): corresponding to each u, (z(t),y(t),2(t)) is an integral curve of
the exploited replicator system (4.3) and G(z,y, z,u) < 0} where G(z,y,z,u) =
z+y+2z+u—cthen G(z,y,2,u) < 0 denotes a manifold with boundary in R*

whose interior is open sub-manifold of R* and whose boundary is a differentiable .

variety given by G(z,y,z,u) = 0; u € R, t € [0,T], (z(t),y(t),2(t)) € R is C!,
(z,y,2) = (0, Yo, 2z0) when t = 0; further let f: R® x R — R?, m: R®> x R — R be
all C'-maps where f = (f1, f2, f3)

kizy + koyz + kazzx

filz,y,z,u) = z[q1 + kry — B — €qu]
kixzy + koyz + kazx

f2($5y= Z7u) = y[qQ + koz — = 2(:;/ ‘ o 62“]
kizy + koyz + kszx

ﬁ%(l’-,l/,zau) =Z[Q3+k1$— e QCy ; —€3u}

We assume that the total time taken to control waste molecules is T". Then the
control problem is to maximize

T
(4.12) 7 :/ w(x,y, z,u)dt V(x,y,z,u) € X
0

over the control parameter u, where u € (0, Uy,q.) and to find a suitable u = v* in
(0, Umaz) for which J is-maximum where
m(z,y, 2,u) = (pr€1Z + p2e2y + paesz — E)u(t)

Theorem 4.6. Let the dynamic model be given by (4.3) with restrictions (4.6) and
the profit function be given by (4.4) under restrictions (4.7) and (4.8). The problem
18 to maximize

T
J=/ m(z,y, z,u)dt
0

where T is the total time. Then there exists u = u* satisfying (4.6) for which J is
mazimum. Further the optimal path is given by

(&1 — gz (XEFE — V) + (€2 — @2)y[T 8 + K] + (€3 — g3)2[n=f + J] =0
where F', G and H are given in proposition (4.3) and (x1,y1,21) is the nontrivial
equilibrium of the model (4.2). Lastly, the optimal values of x,y and z are obtained
as the point of intersection of (4.9) with the above optimal path.

Proof. Hamiltonian for our model (4.3) is given by
H = (pre12 + pae2y + paezz — &)u(t) + A fi + Aafa + A fs + uG

where \;(t) for ¢ = 1,2,3 and pu(t) are co-state variables to be determined suitably.
For steady state solution, we have

kizy + kayz + kszzx

G +kiy — 5 —au=0
k k kg z:
g2 + koz — 1Y + Noyz + 62T eu=20
¢
k k k
q3 + kix — 109 Papie kel esu =0
€

44

iversitaria, 2017

witores. Digitalizacion realizada por ULPGC. Biblioteca Uniy

© Del documento, de los a



By applying Pontryagin’s maximum principle we have (for a steady state solu-
tion)

d\  0H M
E— = —*87 = [plelu ?(klxy = k:;Z.’l’) ot ,U.]
d)\g _ OH o )\2
(4.13) - oy —lp2eau = = (kizy + k2y2) + 4
d\ OH
df‘ =~% —[psegu — == (koyz + kszx) + p
and o of . 0fs . 0fs 0G
7T 1 2 3
— A=+ A==+ A =0
gu "My T T80 T
i.e.
(4.14) P1E1T + Pa€oly + P3€sz — ¢ — Aj€1x — Ao€ay — Az€zz +pu =0
Equation (4.13) can be rewritten as
kizy + kzzx
(D - —1—y—z—i———))\1 +prau—u=0
k k
(4.15) (D — Lj?.yﬁm +prequ—p =0
koyz + kzzx
(D — = . JA3 + p3ezu — p =0

where D = (;—lt Again using (4.14), the system (4.15) becomes

d\
‘d?l =a A +bi a4z +d;
dA

(4.16) d_t2 = azA1 +bad2 + 23 + do
d:
—cﬁi = azA1 + b3da + c3A3 + d3

where a; = = ﬂﬂ%—M + ez, b] = bg = €Y, C1 = C2 = €32, A2 = A3 = €17,
b2 =m = kizytkayz tk'gyz + €2Y, C3 =N = —'—k21’z'+jkszan + €32
L=—-d =piequ+r, M = —dy = poesu+1, N = —d3 = pgesu+r
T = P1€1T + p2eay + p3ezz — C.

Solving the system of differential equation (5.4.16) we get the particular solutions
by using the particular solution of the system of ordinary differential equations as
given earlier given by

1
M(t) = gxu=V)
where x = (Apaea + Bpses) + —E——-—l———b‘ sheliiii ____L______m ad25)

c1A—b1 B D—-BC ’
V =r[(c1A - b B) — iredbilDoa) (g4 B)]
Ao(t) =Tu+ K

where 7 = 5zlas (352 + p2e2) (1D — AB) + (%52 + pses)(c1 D — B?)]
K = 55 50 (%Y — r)(01D — AB) + (%Y — r)(c1 D — B?)]
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where 1) = 25255 (%52 + p262)(01C — A?) + (%32 + p3e3)(c:C — AB)]

Ji— riBC[(ﬂRLV - r)(4A%2 - b,C) + (%Z —1)(AB — ¢10)].

A, B, C, D, S, R have their usual meanings as deduced in previous sections.
Finally we take & — Uqz ast — 7', in Aj, A2 and A3, we have the limiting values

as
1

(4.17) Ai(t) = ﬁ(xumax -V)
(418) )\2(t) = TUmax + K
(4.19) A3(t) = Numax + J
Using (4.14) the co-state vector p(t) is given by
(4.20) w(t) = A(t)erz + Aa(t)eay + Az(t)esz —r

Now, if H is maximum at u = u* (say), 0 < v < Umax, then %—f{ =0 at u = u*.
Hence we have
(421) == /\1(t)ql.’L‘ = )\z(t)QQy — )\;;(t)q;;Z + ,u(t) =0
where \;(t) (i = 1,2,3) and p(t) corresponds to u = w*. Hence from (4.17) to
(4.20), we get
1
M) = 50w’ ~ V)
Aa(t) =Tu" + K
As(t) =nu* +J
u(t) = A(t)erx + Aa(t)eay + Az(t)esz — v
Again, as steady state optimal solution (z*,y*, 2*) is desired, u* is given by
T—T1 _Y—h _Z—=

(4.22) W=t =t =
Thus finally we have

(4.23) Ai(t) = %(xm ;fl =T

(4.2) do(t) =i+ K

(4.25) Balt) A= nz__Hzl Al

(4.26) w(t) = A (t)erx + Aa(t)eay + Az(t)esz —r

Under (4.23)-(4.26), (4.21) reduces to 7

(€1 — @)z (t) + (€2 — @2)yA2(t) + (e3 — g3)2A3(t) = 0.

This implies that

(g ~ ‘h)xé(X%‘ —T) + (€2 — @)y[T =4 + K] + (€3 — g3)z[n=F + J] =0

where F', G and H are given in proposition 4.3. Putting the values of z;,y; and 2z,
we obtain the equation of the optimal path. Solving (4.9) with the above optimal
path, we obtain the optimal values x*, y*, z* of x,y, 2z respectively and thus obtain
the optimal value of u*. O
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Discussion

Theory of constrained optimization of a functional on a subset of R™ was known

earlier. But realistic application of this theory and performance of corresponding
analysis to determine the optimal effort and optimal bio-masses was not attempted
earlier. This is the first instance where such problem of reality has been tackled
nicely.
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