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Abstract.
The aim of this paper is to present an new and simple approach

to nonstandard analysis.

Preface.

The nonstandard analysis is the modern version of Newton and
Leibniz's old mathematical analysis in which unlimitedly big or
unlimited and unlimitedly small or infinitesimal numbers are
used. The most significant rediscoverer of such numbers is
Abraham Robinson [3] and, later on, there are relevant people
such as Edward Nelson [2] and Georges Reeb.

In my opinion, apart from its theoretical value that, doubtless,
nonstandard ideas have, such ideas have a paramoﬁnt practical
interest.

But for it to be shown and so, first, the above mentioned ideas,
come to be known, then accepted and, finally, normally used not
only by mathematicians but also by other professionals that as
it is the case with physicists, chemists, engineers, economists,
etc., use mathematics and, even, nonstandard analysis come to be
used in a systematic way in University mathematical analysis
programs, it is essential to simplify more and more its approach.
To present an new, simple and didactic approach to nonstandard

analysis, so that the nonstandard ideas are easy and attractive
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to reader, it is the main objetive of this paper, which contains
three parts.

The first part aim is to fundameﬁt, in the theory of sets, the
non standard theorems of the second part, which, on its part,
fundaments the non standard principles of the third in which
there appear non standard definitions of some basic concepts of
infinitesimal calculus.

Posing and reasoning of everyone of the above mentioned parts,
are original, as well as the non standard principles stated in
the third of them (though this principles could be proved also
in [2]) and, in this paper (as in [2]), the non standard universe
of sets is the same as the standard universe of sets.

And if what the reader wishes is just to know with the slightest
possible effort a non standard theory to, for example, use it in
infinitesimal calculus, can pay attention only to the third part
(without reading either the first or the second) notwithstanding
he must know ZF (Zermelo-Fraenkel set theory). And, to understand
the fist part, he must know ZFC (Zermelo-Fraenkel set theory with

axiom of choice!?).

The axioms of ZFC are (according to [1]) the extensionality
axiom, the power set axiom, the union set axiom, the class of
axioms of subtitution, the axiom of infinity, the statement
«there exists some set» and the axiom of choice. Specific sings
that we use (in a simple way, as much as possible) are, for T,
model, and, in order to symplify the denotations, also are for
Ty model, the usual signs,

A-v=edVed==CegUN ()\N{)]| <s<+-.]/
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First part: A model of ZFC valid for nonstandard analysis.?

In this Firs part we present an original proof that if T, is a
consistent model of ZFC then there exists a consistent model T,
of ZFC valid for the nonstandard analysis because the classic set
of natural numbers (of T, model), besides the classic (or
standard) "limited" natural numbers, has "unlimited" natural
numbers®, so that «zero is a limited natural number», «if n is
a limited natural number then n+l is a limited natural number»
and «there exist unlimited natural numbers» (by virtue of which
and of the classic recurrence principle , the limited natural

numbers do not constitute a set of T, model).

The T, theory.

We suppose that T, is a model of ZFC for which W is the set of

natural number, F, is a Fréchet's ultrafiiter‘ of model T, and,

from the before mentioned T, model, we define a "theory of
sets", that we call T;, in the following way:

+ We suppose that if a,(g,,..,;) is an expression whichever in
which there are j expressions {,,.., {, (bearing in mind that
JEW', W'={x|(xEW)A(x=0,)} and O, is the zero of T, model) and
n,,.., MN; are j expressions, then a,(m;,..,ny) is the

expression with m,,.., m; where in a(Cl,..,CJ), respectively,

’Even this first part, which is the least simple of the
three parts, it is easy to understand because its basic idea is
nepeated from beginning to the end.

3Consequently, the classic sets of integer, rational, real
and complex numbers (of T, model), also have unlimited elements.

‘See Appendix of First part.
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there are (,,.., G;.

-+ We suppose that the sets of T, theory are the sequences of
sets of T, model.®

« If f is a set of T, theory then, for each element n of W',
we call "component n of f" to the set f(n) of T, model.®

+ We call "variables" of T, theory, to the same signs that we
call "variables" of T, model.

- We suppose that the formulas of T, theory are the expressions
that result if we replace in the formulas of T, model, the
constants’ (of T, model) appearing in them, for constants of
Ty theory (So, for instance, if A is constant of T, model, f£
is a constant of T, theory and x is a variable then 3x(x€A) is
a formula of T, model with the constant A and 3x(x€f) is a
formula of T, theory with the constant f where in Jx(x€A)
there is the constant A).

+ If a is a formula of T, theory and n is an element of W' then,
«+ if a is with no constants then we say that "a, is the

component n of a" if and only if a, is the expression
identical to a.
+ if a is with only p constants f,,.., f (bearing in mind

P

that p€W'), then we say that "a, is the component n of a"

*So, f is a set of T, theory if and only if f is a sequence
A,, A,, A,,... of T, model. That is, f is a set of T, theory if and
only if £ is a map from W' into a set E of T, model (So, for each
element n of W' there exists an element A, of E such that
f(n)=A)).

®That is, is f is the sequence A,, A,, A,,... of T, model and
n is an element of W' then we call "component n of f" to A,.

'We call "constants" to the signs which denote sets,
"constants of T, model" to the signs which denote sets of T,
model and "constant of T, theory" to the signs which denote sets
of T, theory.
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if and only if a, is the expression such that in a, there
are the constants f,(n),.., fp(n) of T, model where in a,
respectiveiy, there are the constants f,,.., f, of T,
theory (that is, if a(fu..,fp) is a formula of T, theory
with only p constants f,,.., f, and néEW* then the expression
a(f,(n),..,£f,(n)) is the component n of a(f,,..,£f))).

+ We suppose (as in T, model) that the statements of T, theory
are the formulas of T, theory with no free variables (So, if
a is a formula of T, theory then a is a statement if and only
if for each element n of W', the component n of a, is a
statement of T, model).

+ We suppose that if a is a statement of T, theory then a is

true if and only if the set of the elements n of W' such that
the component n of a is a true statement of T, model, is an
element of (ultrafilter) F,.

«+ If a, B are statements of T, theory then (in a similar way to

realizada por ULPGC. Biblioteca Uni

T, model) we say that "a is equivalent to B", if and only if

either a is true and B is true or a is false and B is false.
And if a(x), B(x) are formulas of T, theory with the same

variables and (at least) there is a free variable x then we

© Del documento, de los autores. Di;

say that "a(x) is equivalent to B(x)" if and only if, for all
constant f of T, theory, a(f) is equivalent to B(f).

(So, for example, if f, g are constants of T, theory then the
statements f=g, f¢fg, ffg are equivalent to, respectively, the

statements —(f=g), -(f€g), —-(fCg)).

Theorem 1.1. If a is a statement of T, theory then either a is

true or a is false.

145



Proof. If a is a statement of T, theory and for each element n of

W', a, is the component n of a, then for all element n of W', a,

is a statement of T, model. So, since F, is an ultrafilter, one

and only one of the two following formulations is true:

+ The set of elements n of W' such that a, is a true statement
of T, model, is an element of F,.

+ The set of elements n of W' such that a, is a false statement
of T, model, is an element of F,.

Therefore, one and only one of the two following formulations is

verified:

+ a is a true statement of T, theory.

+ a is a false statement of T, theory.

Theorem 1.2. If a is a statement of T, theory then a is true if

and only if -a is false.

Proof. Taking into account now that F, is a filter (because F, is

an ultrafilter), similar proof to that of Theorem 1.1.

Theorem 1.3. If a, B are statements of T, theory then,
+ aAPB is true if and only if «a is true and B is true».

+ avB is true if and only if «a is true or B is true».

Proof. In similar way to proof of Theorem 1, it is proved that,

+ aAB is true if and only if a is true and B is true, taking
into account that F, is a filter.

+ avB is true if and only if a is true or B is true, taking into

account that F, is an ultrafilter.
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Lemma 1.1. If, in T, model, H is an element of F, and

A,, A,, A,,... is a sequence of sets such that for each element
n of H, A =%, (&, being the empty set of T, model) then there
exists a set f of T, theory such that for each element n of H,
the component n of f is an element of A,.

pProof. If A=U__A (that is, if A is the union of the A, of
sequence) then, by virtue of the axiom of choice (that satisfies
the T, model), there exists a map ¥ from P(A)\{®,} (set of
subsets non empty of A) into A such that for each element n of
H, W(A)) is an element of A,. And let's b an element of A.

So, if f is the map from W' into A such that for each element n
of H, f(n)=¥(a,) and for each element of W'\H, f(n)=b then f is
a set of T, theory such that for each element n of H, f(n)

(component n of f) is an element of A,.

Theorem 1.4. If, in theory T,, E is a set and a(x) is a formula

with free variable x and with no other free variables then,

« 3Jx((x€E)Aa(x)) is true if and only if there exists some set
f of T, theory such that (f€E)aa(f) is true.

+ Vx((XEE) = a(x)) is true if and only if, if f is a element

(whichever) of E then a(f) is true.

Proof. If for each element n of W', E, is the component n of E

and a,(x) is the component n of the formula a(x) then,

. 3x((xEEn)Aan(x)) is the component n of Ix((x€EE)Aa(x)) and
Ix((x€EE)Aa(x)) is true if and only if the set of elements

n of W' such that Ex((xEEn)Aan(x)) is a true statement of‘Tw
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model, is an element of F,. So,

+ 1if there exists a set f of T, theory such that (f€E)Aa(f)
is true then the set of elements n of W' such that
(f(n)EEn)Aa?(f(n)) is a true statement of T, model, is an
element of F,. Then, the set of elements n of W' such that
Jx((X€E, )Aa,(x)) is a true statement of T, model, is an
element of F, and, consequently, 3Ix((x€E)Aa(x)) is true.

. 1if, reciprocally, 3x((x€E)Aa(x)) is true and H is the set
of elements of W' such that 3x((x€E, )Aaq,(x)) is true, then
H is an element of F,. So, if for each element n of H,

A ={x| (X€E )Aq,(x)} then, by virtue of Lemma 1.1, there
exists (in T, model) a map f from W' into Um,,An (union set
of E,), such that for each element n of H, f(n)€A is true
and, consequently, for each element n of H,
(f(n)€E )Aa (f(n)) is true. Therefore, the set of element
n.of W' such that (f(n)€E )Aa(f(n)) is true, is an element
of F, and, consequently, there exists a set f (of T,
theory) such that (f€E)Aa(f) is true.

+ For each element n of W*, ﬂ3x((xEEn)Aﬂqu)) is the component
n of -3x((x€EE)A-a(x)), -Ix((x€EE )A-a,(x)) is equivalent to
Vx((xEEn):z-qu)) and this statement is the component n of
the statement Vx((xX€EE) = a(x)) (of T, theory). So,

Vx((X€EE) = a(x)) is equivalent to -3Ix((x€E)A-a(x)). Then, the
statement Vx((x€E) = a(x)) is true if and only if for all set

f (of T, theory), a(f) is a true statement.

Theorem 1.5. If f, g are sets of T, theory then f=g if and only

if, if a(x) is a formula (whichever) of T, theory with a free
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variable x then the formula a(f) is equivalent to the formula

a(g). (So, if f is a set of T, theory then f=f and if f, g are
sets of T, theory then,

- 1if f=g then f=g.

- if h is a set of T, theory, f=h and h=g then f=g.

- 1if f=g then f has the same elements and is an element of .the

same sets as g).

Proof. If f, g are sets of T, theory and f=g then the set of
elements n of W' such that f(n)=g(n), is an element of F,. So, if
a(x) is a formula of T, theory with a free variable x and for
each element n of W', a,(x) is the compénent n of a, then for all
element n of W', x is free in a,(x) and the set of elements n of
W* such that a,(f(n)) is equivalent to a,(g(n)), is an element of
F, ®. Therefore, a(f) is equivalent to a(g).

Reciprocally, if f, g are sets of T, theory such that «if a(x) is
a formula (whichever) of T, theory with a free variable x then
a(f) is equivalent to a(g)», then, since x=g is a formula of T,
theory with a free variable x, the statement f=g is equivalent

to the true statement g=g and, consequently, f=g is true.’

Theorem 1.6. If f, g are sets of T, theory then fCg if and only

if all element of f is an element of g.

®Bearing in mind that if A, B are sets of T, model, A=B and
Y(x) is a formula of T, model with a free variable x then y(A) is
equivalent to y(B).

°0f the similar way it is proved that if, in general,

A,,.., A, B,.., B, are 2p set of T, theory, then ««A;=B,..,
A,=B,» if and only 1if, «if a(x,,..,x,) is a formula of Ty theory
with p free variables X, .., X, then the formula a(Al,..,Ap)

is equivalent to the formula a(B“..,Bp)»».
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Proof. Then, If fCg then the set of elements n of W' such that
f(n)Cg(n), is an element of F,. And if h€f then the set of
elements n of W' such that h(n)€f(n), is an element of F,. So, if
fCg and h€f then the set of elements n of W' such that h(n)€g(n),
is an element of F, and, consequently, h€g. So, if fCg then all
element h of f is an element of g.

I1f £ffg then the set of elements n of W' such that f(n)Zg(n) is an
element of F,. Then, if H is the set of elements of W' such that
there exists a set h, (of T, model) such that h€f(n) and h;ﬁg(n),
then H is an element of F,. Then, by virtue of Lemma 1.1, there
exists a set h of T, theory such that for all element n of H,
h(n)€Ef(n) and h(n)&g(n). Consequently, h€f and f¢g. So, if all

element of f is an element of g then fCg.

Theorem 1.7. If f, g are sets of T, theory and f has the same

elements as g then f=g. *°

Proof. If f=g and H is the set of elements n of W' such that
f(n)=g(n) then H is the set of elements n of W' such that there
exists a set h, of T, model such that either «h,€f(n) and h&g(n)»
or «h&f(n) and h€g(n)», and H is an element of F,. Then, by
virtue of Lemma 1.1, there exists a set h of T, theory such that
for each element n of H, either «h(n)€f(n) and h(n)¢g(n)» or
«h(n)é&f(n) and h(n)€g(n)», and, consequently, either «h€f and
h#&g» or «h#f or feg».

Therefore, «if f=g then f has not the same elements as g» and,

This theorem of T, model is the extensionality axiom of T,
theory.
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consequently, if f has the same elements as g then f=g.

Theorem 1.8. The constant sequence ¢,, ®,, ¢, ... of T, model (¢,
being the empty set of T, model) is the empty set of T, theory,

which we denote &.

Easy proof.

Theorem 1.9. If f is a set of T, theory then there exists a set
P(f) (of T, theory), that we call "power set of f", such that if

g is a set (of T, theory) then ge€P(f) if and only if gCf. *?

Easy proof, taking into account that if f is a set of T, theory
then P(f) is a set of T, theory such that for each element n of
W', the component n of P(f) is P(f(n)), power set of f(n) (f(n)

being the set of T, model which is the component n of f).

Theorem 1.10. If f is a set of T, theory then there exists a set
U,ex (of T, theory) that we call "union set of elements of f",
such that if g is a set of T, theory then gEUx“x if and only if

there exists some set h (of T, theory) such that h€f and g€h. **

1By virtue of this theorem of T, model, the statement «there
exists the empty set» is an axiom of T, theory and is easy prove,
in a classical way, that this axiom is equivalent to statement
of T, theory «there exists some set».

2This theorem of T, model is the power set axiom of T,
theory.

¥This theorem of T, model is the union set axiom of T,
theory.
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Easy proof, taking into account that if f is a set of T, theory
then U, ,x is a set of T, theory such that for each element n of
W', the component n of U, x is U, ,,,x, union set of elements of
f(n) (f(n) being the set of T, model which is the component n of

f) and taking into account the Lemma 1.1 as in above proofs.

Theorem 1.11. If a(x,u) is a formula of T, theory with free
variables x, u and no other free variables, a(x,u) is a

functional formula of function u **

and f is a set of T, theory
then there exists a set f' of T, theory such that if g' is a set
of T, theory then g' is an element of f' if and only if there
exists an element g of f such that the statement a(g,g') (of T,

theory) is true.?®

Proof. It a(x,u) is a formula of T, theory with free variables x,
u, no other free variables and for each element n of W', the
component n of a(x,u) is a formula a,(x,u) then, for each element
n of W', a,(x,u) is a formula of T, model with free variables x,
u and no other free variables. If is not an element of F, the set
of element n of W' such that a,(x,u) is a functional formula of
function u then is an element of F, the set of element of W® such
that (t being a variable no en a(x,u)) the statement (of T,

model) 3IxJudt(a,(x,u)ra(x,t)A(u=t)) is true. Then the statement

M1f a(x,u) is a formula of T, theory with free variables
x, u and no other free variables, then (in a similar way to T,
model) we say that "a(x,u) is a formula functional of function
u" if and only if for all set g (of T, theory) it does not exist
more than one set g' (of T, theory) such that the statement
a(g,g') (of T, theory) is true.

This theorem of T, model is the class of axioms of
sustitution of T, theory.
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(of T, theorr) JxJudt(a(x,u)ra(x,t)r(u=t))is true and,

consequently, a(x,u) is not a functional formula of fuction u.
Therefore, if afx,u) is a fuctional formula of fuction u (of Ty
theory) then the set Qf element n of W' such that a,(x,u) is a
fuctional formula of fuction u (of T, model), is an element of
F,. So, if the formula a(x,u) is a fuctional formula of fuction
u and f is a set of T, theory, then is an element of F, the set
H of elements n of W' such that there exists a set f' of T, model
such that if g'  is a set of T, model then g'  is an element of
f', if and only if there exists an element g, of f(n) such that
a(g,,g',). Then, by virtue of Lemma 1.1, there exists a set f' of
T, theory such that if g' is a set of T; theory then g' is an

element of f' if and only if there exists an element g of f such

that a(g,g') is a true statement (of T, theory).

Lemma 1.2. If f is a set of T,y theory then there exists a set

of Ty theofy, which we denote "{f}", whose only element is f. !¢

Easy proof taking into account that {f} is the set of T, theory
such that for each element n of W', the component n of {f} is

{f(n)}.

Lemma 1.3. If f, g are sets of T, theory then there exists a set

(of Ty theory) which we denote “ng" and we call "set f union

*This theorem of T, model is a theorem of T, theory (it is
proved in the mentioned T, theory, in a classical way,
considering the power set axiom, the class of axioms of
substitution and that the empty set ¢ is a set of T, theory).
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"

g", whose elements are the elements of f and the elements of g. v
Easy proof taking into account that flg is the set of T, theory
such that for each element n of W'. the component n of fUg is

f(n)Ug(n).

Definition 1.1. If A is a set of T, model or of T, theory then we

denoted s(A) and we say "successor of A" to AU{A}.

Theorem 1.12. There exists a set N of T, theory, whose elements

we call "natural number" (of T, theory), such that,

« @€EN and we call "zero" (and "empty set" of T, theory) to
natural number ¢.

« 1if pEN then s(p)EN.

+  (Recurrence principle of T, theory) if fON, ®€f and «if p€f

then s(p)€f», then f=N. *®

Proof. We suppose that N is a set of T, theory such that for each
element n of W', the component n of N is the set W of natural
number of T, model (that is, we suppose that N is the sequence
W, W, W,... of T, model). Therefore,

- Easy proof that ®€EN, taking into account that &, is an element

of W (since ¢, is the natural number of T, model that we call

This theorem of T, model is a theorem of T, theory (it is
proved in the mentioned T, theory, in a classical way,
considering the power set axiom, the union set axiom, the class
of axioms of sustitution and that the empty set ¢ is a set of T,
theory).

®This theoren of T, model is the axiom of infinity of T,
theory.
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"zero" and also we denote 0,).

. If p is an element of N then the set of elements n of W' such
that p(n)€EW, is an element of F,. So, since if p(n)€EW then
s(p(n))€EW, the set of elements n of W* such that s(p(n))€EwW, is
an element of F,. So, s(p) is an element of N.

«+ If fON, ®€f, f=N and H is the set of elements n of W' such
that for each element n of H there exists the first element
p, of f(n) such that s(p,) is not element of f(n) then H is an
element of F,. So, if p is a set of T, theory such that for
each element n of H, p(n)=p, then pef and s(p)&f.

Therefore, if f is a subset of N, ®€f and «if p€f then

s(p)€Ef», then f=N.

Theorem 1.13. If f is a non empty set of T, theory then there
exists a map W from P(£f)\{®} (set of non empty subsets of f) into
f such that if g€P(f)\{®} then ¥ (as to map of T, theory) assigns

to g an element of g. *°

Proof. Since the T, model satisfies the axiom of choice, for each
element n of W' such that f(n)=$, (¢, being the empty set of T,
model) there exists a map ¥, from P(£f(n))\{®,} (set of non empty
subsets of f(n)) into f(n) such that, if g, is an element of
P(f(n))\{®,} then ¥, assigns to g, an element of g,.  And, since
f=® (& being the empty of T, theory), if H is the set of elements
n of W' such that f(n)=%, then H is a element of F,. So, by virtue

of Lemma 1.1, there exists a set W of T, theory such that for

¥rhis theorem of T, model is the axiom of choice of T,
theory.
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each element n of ﬁ, ¥Y(n) (component n of ¥) is a map from
P(£f(n))\{®,} into f(n) such that if g,€P(f(n))\{®,} then ¥(n)
assigns to g, a element of g,. So, since H is a element of F,, ¥
is a map from P(£f)\{®} into f such that, if g is an element of
P(£f)\{®} then ¥, as to map of T, theory, assigns to g, an element

of g.

Therefore, if T, is a model of ZFC then the empty set is a set of
T, theory and, the mentioned T, theory, satisfies the
extensionality axiom, the power set axiom, the union set axiom,
the class of axioms of sustitution, the axiom of infinity and the
axiom of choice and, consequently, if T, is a model of ZFC then

T, theory is also a model of ZFC, that we call "T, model".

Definition 1.2. If p is an element of N (set of natural number

of T, model) then we say that,

+ "p is limited" if and only if there exists an element q of W
(set of natural number of T, model) such that the set of
elements n of W' such that p(n)=q, is an element of F,.

+ "p is unlimited" if and only if p is not limited.

Theorem 1.14. & (zero of N) is limited. If f is a limited natural
number then s(f) is limited. And there exists unlimited elements

of N.
Proof. ¢ is limited since & is the sequence 0,, O,, O,, ... of T,

model (0O, being the zero of W, 0O,=¢, and &, the empty set of T,

model). If f is a limited natural number then there exists an
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element p of W such that f is equal to the sequence p, p, p,..-
of T, model. So, s(f), sucessor of f, is equal of sequence
s(p), s(p), s(é),... of T, model (s(p) being the sucessor of p)
and, consequently, s(f) is limited.

And an unlimited natural number is, for example, g such that for
all element n of W', g(n)=n (that is, g is equal to the sequence

s(®,), s(s(®,)), s(s(s(®))),... of T, model).
Appendix of first part.

A "filter" on a non empty set E is, by definition, a subset F of
P(E), such that F is not the empty set, the empty set is not an
element of F, «if A, B are elements of F then AlB is an element
of F» and if A is an element of F, B is a subset of E and A is
a subset of B then B is a element of F.

So, if F is a filter on a set E and A is an element of F then °A

(complementary of A with respect to E) is not an element of F.

An "ultrafilter" on a non empty set E is a filter U such that if
F is a filter on E and UCF then U=F.

It can be easily proved that if U is an ultrafilter on a set E,
A, B are subset of E, AUB is an element of U and A is not an
element of U then B is an element of U (So, if A is a subset of
E and A is not an element of U then “A is an element of U).
Using Zorn's lemma (valid to use in ZFC, because ZFC satisfies
the axiom of choice), it is proved that if F is a filter on a set

E then there exists a ultrafilter U containing F.
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If W is the set of natural numbers, we say that "F is a Frechét's
filter" if and only if F is a filter on W such that A is an
element of F if and only if A is a subset of W such that °A

(complementary of A with respect to W) is a finite subset of W.

We say that "F, is a Frechét's ultrafilter" on W if and only if

F, is a ultrafilter on W containing the Frechét's filter on W.

Second part: Support of some principles for nonstandard analysis.
In this Second part we denote O,, 1,, 2,, 3,,... to natural
numbers of T, model (that is, to elements of W) and we denote

0, 1, 2, 3,... to natural numbers the T, model (that is, to the
elemens of N).

In the mentioned T, model and T, model, we suppose defined in a
classical way, the structure of natural numbers and, with its

respective structures, the sets of the integer, rational, real

and complex numbers.?°

Definition 2.1. If f is a set of T, model then we say that f is

a "classic" set if and only if there exists a set A of T, model

In the T, model, apart from this classical definitions,
there exist the corresponding no classical interpretations,
specific of this mentioned model of ZFC.

For example, the non classical interpretations (specific of T,

model) of order and of addition on the set R (of real numbers of

Ty model), are the following ones:

I1f £, g are elements of R then we say that,

« f<g if and only if the set of elements n of W' such that
f(n)<g(n), is an element of F,.

+ if h is an element of R then f+g=h if and only if the set of
elements n of W' such that f(n)+g(n)=h(n), is an element of
Fy-

I58

© Del documento, de los autores. Digitalizacion realizada por ULPGC. Biblioteca Universitaria, 2017



such that the set of elements n of W' such that f(n)=A, is an
element of F,. And we say that a set of T, model is a

"nonclassic" set if and only if is not a classic set.

Theorem 2.1. If f is a natural number of T, model (is that, if £
is an element of N) then f is classic if and only if f is limited

(so, an element of N is nonclassic if and only if is unlimited).
Easy proof, considering Definition 1.2 and Definition 2.1.

Theorem 2.2. If f, g are natural numbers, f is classic and g is

nonclassic then f<g.

Proof. If f is a classic natural number, then there exists a
natural number p of T, model such that the set of elements n of
W' such that f(n)=p is an element of F,. And if h is a natural
number of T, model such that h<f then the set of element n of W
such that h(n)<f(n) is an element of F,. So, there exists an
element g of W such that g<p and the set of element n of W such
that h(n)=q, is an element of F,. So, h is 1limited and,

consequently, if g is a nonclassic natural number then f<g.
Theorem 2.3. If f is a classic non empty set (of T, model) then
there exists a classic set g (of T, model) such that g is element

of f.

Proof. If f is a classic non empty set then there exists a non

empty set A of T, model such that the set of elements n of W'
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such that f(n)=A, is an element of F,. Then, there exists a set
B (of T, model) such that B is an element of A and, consequently,
if g is a set of T, model such that for all element n of W',

g(n)=B then g is a classic set and g is and element of f.

Theorem 2.4. If f is a real number of T, model such that there
exists a classic natural number p such that |f|<p then there
exists an only classic real number g such that for all classic

natural number q=0,, |f-g|<(1/q).

Proof. If p is a classic natural number then there exists a
natural number h of T, model (that is, an element of W) such that
the set of elements n of W' such that p(n)=h, is an element of
F,- And if f is a real number of T, model such that |f|<p then
the set of elements n of W' such that -h<f(n)<h, is an element of
F,. So, if a;=-h and b,=h then the set of elements n of W' such
that a;<f(n)<b,, is an element of F,. So (since F, is an
ultrafilter), the set of elements n of W' such that either
a,<f(n)<(a,+b,)/2, is an element of F, or the set of elements n of
W' such that (a,+b,)/2,sf(n)<b,, is an element of F,. Continuing
this way, we define two sequences a,, a,, a,,... and

b,, b,, b;,..., of real numbers of T, model such that
a,<a,<33<......<b;sb,<sb, and there exists one and only one real
number r (of T, model) such that for all element n of W', a,<r<b,.
Therefore, if g is a set of T, model such that for all element n
of W', g(n)=r then (since for all natural number p=0 of T, model,
the set of elements n of W' such that -(1,/2,°)sf(n)-r<(1,/2;°), is

an element of F,;) g is a classic real number such that for all
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classic natural number q=0,, |f-g|<(1/q).

Theorem 2.5. If f is a set of Ty model then f is classic if and
only if there exists a formula a(x) with a free variable x, with
no other free variables, with no nonclassic constants?’ and such

that the statements 3I,xa(x) ** and a(f) are true.
1

Proof. If a(x) is a formula of T, model, with a free variable x,
with no other free variables and with no nonclassic constants and
for each element n of W', a,(x) is the component n of a(x), then
there exists a element p of W' such that the set of elements n of
W' such thaf; a (x) is (identical to) ap(x) is an element of F,.
So, if the statement (of T, model) lea(x) is true then the
statement (of T, model) Ellxap(x) is true and, consequently, there
exists one and only one set A (of T, model) such that a,(A) is
true. Therefore, if f is a set of T, model such that for all
element n of W', f(n)=A then f is classic and a(f) is true.

If, reciprocally, we suppose that f is a classic set (of T,
model) then x=f is a formula (of T, model) with a free variable
X, with no other free variables, with no nonclassic constants
(since f is a classic constant) and such that the statement

J,x(x=f) and f=f are true.

2'ye call "classic constants" to the signs which denote
classic sets and "nonclassic constants" to the signs which denote
nonclassic sets.

?’Bearing in mind that the statement J,a(x) is equivalent of
statement Ix(a(x)AVt(a(t) = t=x)).
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Third part: Some principles for nonstandard analysis.

We suppose all what follows in a model T, of ZFC in which some
principles for nonstandard analysis (compatible with the axioms
of the classic ZFC) are proposed and, as an example, there appear
some non standard definitions and theorems of some basic concepts
of mathematical analysis on sequences or standard functions.??
But, what it not possible at this point (because it would make
the paper too 1long) is to make a study of the properties
corresponding to the before mentioned concepts which we define.
Also we suppose all what follows, that O, 1, 2, 3,... are the
natural numbers, N is the set of natural numbers and R is the set

of real numbers, of mentioned'TN model (and that NCR).

Definition 3.1. If A is a set then we say that "a(x) is a formula
defining A" if and only if a(x) is with a free variable x and
with no other free variables and the statements I xa(x) and a(A)

are true.

Definition 3.2. If A is a set (whichever), we say that,

« "A is standard" if and only if there exists a formula

Zsuch concepts are, for the sequences of real numbers,
those of regular sequence and limit. And, for real functions of
one real variable, those of limit, continuity at a point, uniform
continuity, derivative at a point, derivative function and
Riemann integral.
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defining A, with no nonstandard constants.

. "A is nonstandard" if and only if A is not standard.?
Definition 3.3. If a is a formula (whichever) then we say that
"a is standard" if and only if a is with no nonstandard

constants.?®

Principle 1. There exists a nonstandard natural number (that is,

there exists a natural number that is a nonstandard set).?®

Principle 2. If f, g are natural numbers, f is standard and g is

nonstandard then f<g.?

Principle 3. If A is a non empty standard set then there exists

a standard set which an element of A.?®

Definition 3.4. If r is a real number then we say that,

#In this Third part we call '"standard sets" and
"nonstandard sets" to the set that in Second part we call,
respectively, "classic set" and "nonclassic sets". And (in this
Third part) we call "standard constans" and "nonstandard
constants" to the constants that in Second part, we call,
respectively, "classic constants" and "nonclassic constants".

%50, if a is a formula with no constants then a is a
standard formula. And if A is a set such that there exists a
formula defining A with no constants then A is a standard set.

*The Principle 1 is supported in Theorem 1.14, Theorem 2.1,
Theorem 2.5, Definition 3.1 and Definition 3.2.

“’The Principle 2 is supported in Theorem 2.2, Theorem 2.5,
Definition 3.1 and Definition 3.2.

®The Principle 3 is supported in Theorem 2.3, Theorem 2.5,
Definition 3.1 and Definition 3.2.
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- "r is limited" if and only if there exists a standard natural
number p such that |r|<p.

+ "r is unlimited" if and only if r is not limited.

+ "r is infinitesimal" if and only if either r=0 or 1/r is
unlimited.

+ "r is appreciable" if and only if r is limited and is not

infinitesimal.

Principle 4. If r is a limited real number then there exists an
only standard real number °r, that we call "standard part of r",

such that r-°r is infinitesimal.?®

Theorem 3.1. If E is a set then «E is standard if and only if
there exists a standard formula B(t) with only a free variable

t and such that E={t|B(t)}».

Proof. If E is a standard set then t€E is a standard formula with
only a free variable t and such that E=(t|tEE}.

Reciprocally, if E is a set and B(t) is a standard formula with
only a free variable t and such that E={t|B(t)} then

Vt(tex <> B(%*)) is a standard formula with only a free variable

x and is a formula defining E. So, E is standard.

Theorem 3.2. 0O is a standard natural number, 1 is a standard
natural number and if n, p are standard natural numbers then,

+ n+p, n.p are standard.

The Principle 4 is supported in Theorem 2.4, Theorem 2.5,
Definition 3.1, Definition 3.2 and Definition 3.4.
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«+ 1if r=0 then n? is standard.

Poof. Vt(té#x) is a standard formula (since is with no constants)
defining O (since 0=% and the statements 3,xVt(t&x) and Vt(t&e)
are true) and, consequently, O is standard.

Vt(t€x <> t=0) is a standard formula defining 1 (since O is a

standard constant and 1={0}). So, 1 is standard.

And if a(x) is a standard formula defining n (with free variable

X and with no variables t, u) and B(t) is a standard formula

defining p (with free variable t and with no variables x, u)

then,

« Ax3It((u=x+t)ra(x)AB(t)) is a sténdard formula defining n+p
(with free variable u) and IxIt((u=x.t)Ara(x)AB(t)) is a
standard formula defining n.p (with free variable u).
Consequently, n+p and n.p are standard.

+ Similar proof to the preceding.

Theorem 3.3. N and R are standard sets and the class of standard

natural number is not a set (of T, model).

Proof. By virtue of axiom of infinity, there is a standard
formula defining N *° and, consequently, N is standard.

By virtue of classic construction of real numbers, there is a
standard formula defining R and, consequently, R is standard.

By virtue of Thorem 3.1, O is standard and if n is a standard

%S0, for example, the formula (®€x)AVt(t€x = s(t)Ex)A
AVU( ((UX)A((®Eu)AVY(yEu = s(y)€u))) = u=x) (with only free
variable x and with only standard constant ¢) is a standard
formula defining N.
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natural number then n+l is standard. And, by virtue of
Principle 1, there exists a nonstandard natural number. Then,
considering the classic recurrénce principle, the class of

standard natural number is not a set (of T, model).

Theorem 3.4. If p is a natural number then p is (a real number)

limited if and only if p is standard.

Easy proof considering Principle 3.2 and Definition 3.4.

Theorem 3.5. If r is a real number then,

+ r is unlimited if and only if there exists a nonstandard

natural number p such that p<|r].
«+ r is infinitesimal if and only if there exists a nonstandard
natural number such that |r|<l/p.

- r is appreciable if and only if there exists a standard

natural number p=0 such that 1/p<|r]|<p.

Easy proof considering Definition 3.4, Theorem 3.2 and recurrence

principle.

Theorem 3.6. If r is a real number then,

«+ if r is limited then -r is limited.
if r is limited and s is a limited real number then r+s, r.s
are limited.

+ 1if r is infinitesimal then r es limited.

+ 1if r is infinitesimal then -r is infinitesimal.

+ 1if r is infinitesimal and s is an infinitesimal real number
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then r+s is infinitesimal.
if r is infinitesimal and s is limited real number then r.s
is infinitesimal.
*f r is appreciable then 1/r is appreciable.
if r is appreciable and s is an appreciable natural number
then r.s is appreciable.
if r is standard then either r=0 or r is appreciable.

- 1if r is standard and é is a standard real number then r+s, r.s
are standard.

- if r is standard then «-r is standard and if r=0 then 1/r is

standard».

Easy proof considering Definition 3.1, Definition 3.2, Definition

3.4, Principle 2, Principle 4, Theorem 3.2 and Theorem 3.5.

Definition 3.5. If r, s are real numbers we say tath "r is almost

s" if and only if r-s is infinitesimal.

Definition 3.6. If r,, r,, ry,... is a standard sequence of real

numbers then we say that "r,, r,, r;,... is regular" if and only

if, for all unlimited natural numbers n, m, r, is almost r,.

Definition 3.7. If r,, r,, r,,... is a standard séquence of real
numbers then we say that "r,, r,, r;,... is convergent to r",
"r=limr " and "r is limit of r,, r,, ry,..." if and.only if -rods
a standard real number and for all ilimited natural number n, r

n

is almost r.
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Definition 3.8. If f is a standard function from an open real set
D into R and s is a standard element of adherence of D then we
say that r=limx, _f(x) and "r is the limit of f at point s", if
and only if r is a standard real number and for all element u of

D such that u is almost s and u=s, f(u) is almost r.

Definition 3.9. If f is a standard function from an open real set
D into R and s is a standard element of D then we say that "f is
continuous at point s" if and only 1if there exists

lim, f(x)=f(s).

Definition 3.10. If f is a standard function from an open real
set D into R then we say that "f is uniformly continuous" if and
only if, if r, s are points of D and r is almost s then f(r) is

almost f(s).

Definition 3.11. If f is a standard real function from an open
real set D into R and s is a standard element of D then we say
"derivative of f at point s" to limx_ ((f(x)-f(s))/(x-s)), if

there exists this limit.

Definition 3.12. If f is a standard real function from an open
real set D into R then we say that "f' is the derivative function
of £f" if and only if f' is a standard function from D into R such
that for all standard point s of D

£f'(x)=lim_ ((f(x)-f(s))/(x-s)).

Theorem 3.7. If f is a standard function from a open real set D
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into R g is a derivative function of f and h is a derivative

function of f then g=h.

Proof. Then, if E={x|(xED)A(g(x)¢h(x)} then E is standard (since
g and h are standard). So, if E=#¢ then (Principle 3) there exists
a standard element s of E and, consequently, g(s)=h(s). So (since

if s is standard then f(s)=g(s)) E=¢ and, consequently, g=h.

Definition 3.13. If b, c are standard real numbers, b<c and f is
a standard function from [b,c] into R then we say that
r=fw£]f(x)dx (x being a variable) and that "r is the Riemann
integral of f on [b,c]" if and oniy if r is a standard real
number such that if x,, x,,..., x, are n+l real numbers (n being
a natural number) such that b=x,<x,<...<x,=c and for all natural
number j such that 1<j<n, x,, is almost x; and E; is a real number
such that x,,<&;<x,, then r is almost EidL.”mf(E)(xj—xyl) (that

is, [ip.o£(x)dx=C(£(E&,). (x,-x)+-+-+£(E ). (x,-x,,))).
Remarks.

It is easy to prove that the class of real limited numbers, of
real infinitesimal numbers, of real appreciable numbers, real
standard numbers and the real unlimited numbers are not sets. And
the same happens with many other class whose elements are

sets.®

'since if, for example, there existed the set C, of the
limited complex numbers then {x|(xEN)A(xECL)} would be the set of
the standard natural numbers, a set which does not exist.
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If in definitions 3.6, 3.7, 3.8, 3.10 and 3.13 we replace the
terms "unlimited" and "is almost" for, respectively, the terms
"very advanced" and "very close",iwe get definitions often used
by teachers of mathematics and by other professionals who, as
physicists, chemists, engineers and economists, make use of
mathematics, even thoughsuch definitions of "their" mathematical
analysis (the standard one), what they are forgiven on account
of how intuitive and simple they turn out to be. And the
proverbial nuisanse of reasoning in standard analysis due to the
"paces within limit" because of the resulting consideration of
the traditional "very big" natural number n, and "very small"
real numbers € (epsilon) and & (delta), can be avoided in

nonstandard analysis and doing so get that reasoning be "more
fluent" (the way algebra does) if, for example, the definitions
expressed are used and, in particular, the Riemann integral is
defined as the standard part of a certain finite addition

(unlimited but finite).

The non standard definitions 3.6, 3.7, 3.8, 3.10 and 3.13 are
equivalent to the respective standard (or classical),
notwithstanding, to use such non standard difinitions, it is not
necessary to take into account such equivalencies, neither is,
to use the referred to classical definitions.

We will not prove here the before mentioned equivalences, but let
us say at least, that are a consequence of the above mentioned

priciples.
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