A NEW APPROACH TO NONSTANDARD ANALYSIS Manuel Suárez Fernández Profesor de Matemáticas de la U.C.L.M.

Abstract.

The aim of this paper is to present an new and simple approach to nonstandard analysis.

Preface.

The nonstandard analysis is the modern version of Newton and Leibniz's old mathematical analysis in which unlimitedly big or unlimited and unlimitedly small or infinitesimal numbers are used. The most significant rediscoverer of such numbers is Abraham Robinson [3] and, later on, there are relevant people such as Edward Nelson [2] and Georges Reeb. Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

In my opinion, apart from its theoretical value that, doubtless, nonstandard ideas have, such ideas have a paramount practical interest.

But for it to be shown and so, first, the above mentioned ideas, come to be known, then accepted and, finally, normally used not only by mathematicians but also by other professionals that as it is the case with physicists, chemists, engineers, economists, etc., use mathematics and, even, nonstandard analysis come to be used in a systematic way in University mathematical analysis programs, it is essential to simplify more and more its approach. To present an new, simple and didactic approach to nonstandard analysis, so that the nonstandard ideas are easy and attractive

to reader, it is the main objetive of this paper, which contains three parts.

The first part aim is to fundament, in the theory of sets, the non standard theorems of the second part, which, on its part, fundaments the non standard principles of the third in which there appear non standard definitions of some basic concepts of infinitesimal calculus.

Posing and reasoning of everyone of the above mentioned parts, are original, as well as the non standard principles stated in the third of them (though this principles could be proved also in [2]) and, in this paper (as in [2]), the non standard universe of sets is the same as the standard universe of sets.

And if what the reader wishes is just to know with the slightest possible effort a non standard theory to, for example, use it in infinitesimal calculus, can pay attention only to the third part (without reading either the first or the second) notwithstanding he must know ZF (Zermelo-Fraenkel set theory). And, to understand the fist part, he must know ZFC (Zermelo-Fraenkel set theory with axiom of choice¹). Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

¹The axioms of ZFC are (according to [1]) the extensionality axiom, the power set axiom, the union set axiom, the class of axioms of subtitution, the axiom of infinity, the statement «there exists some set» and the axiom of choice. Specific sings that we use (in a simple way, as much as possible) are, for $T_{\rm N}$ model, and, in order to symplify the denotations, also are for $T_{\rm N}$ model, the usual signs, $\land \neg \ v \Rightarrow \Leftrightarrow \exists \ \forall \ \varepsilon \notin = \neq \subset \not\subset \ \ \cap \ (\) \setminus \ \{ \ \} \ | \ \leq \ < \ + \ - \ . \ /$

First part: A model of ZFC valid for nonstandard analysis.²

In this Firs part we present an original proof that if T_v is a consistent model of ZFC then there exists a consistent model T_N of ZFC valid for the nonstandard analysis because the classic set of natural numbers (of T_N model), besides the classic (or standard) "limited" natural numbers, has "unlimited" natural numbers³, so that «zero is a limited natural number», «if n is a limited natural number then n+1 is a limited natural number» and «there exist unlimited natural numbers» (by virtue of which and of the classic recurrence principle , the limited natural numbers do not constitute a set of T_N model).

The T_N theory.

We suppose that T_w is a model of ZFC for which W is the set of natural number, F_w is a Fréchet's ultrafilter⁴ of model T_w and, from the before mentioned T_w model, we define a "theory of sets", that we call T_w , in the following way:

Del documento, de los autores. Digitalización realizada por ULRGC. Biblioteca Universitaria, 2017

• We suppose that if $\alpha_n(\zeta_1, ..., \zeta_j)$ is an expression whichever in which there are j expressions $\zeta_1, ..., \zeta_j$ (bearing in mind that $j \in W^*$, $W^* = \{x \mid (x \in W) \land (x \neq 0_w)\}$ and 0_w is the zero of T_w model) and $\eta_1, ..., \eta_j$ are j expressions, then $\alpha_n(\eta_1, ..., \eta_j)$ is the expression with $\eta_1, ..., \eta_j$ where in $\alpha(\zeta_1, ..., \zeta_j)$, respectively,

 $^3 \text{Consequently},$ the classic sets of integer, rational, real and complex numbers (of T_{N} model), also have unlimited elements.

⁴See Appendix of First part.

²Even this first part, which is the least simple of the three parts, it is easy to understand because its basic idea is nepeated from beginning to the end.

there are ζ_1, \ldots, ζ_1 .

- We suppose that the sets of $T_{\scriptscriptstyle N}$ theory are the sequences of sets of $T_{\scriptscriptstyle u}$ model. 5
- If f is a set of T_N theory then, for each element n of W^* , we call "component n of f" to the set f(n) of T_W model.⁶
- We call "variables" of T_N theory, to the same signs that we call "variables" of T_N model.
- We suppose that the formulas of T_N theory are the expressions that result if we replace in the formulas of T_w model, the constants⁷ (of T_w model) appearing in them, for constants of T_N theory (So, for instance, if A is constant of T_w model, f is a constant of T_N theory and x is a variable then $\exists x(x \in A)$ is a formula of T_w model with the constant A and $\exists x(x \in f)$ is a formula of T_N theory with the constant f where in $\exists x(x \in A)$ there is the constant A).

• If α is a formula of T_N theory and n is an element of W^* then,

- if α is with no constants then we say that " α_n is the component n of α " if and only if α_n is the expression identical to α .
- if α is with only p constants f_1, \ldots, f_p (bearing in mind that $p\in W^*$), then we say that " α_n is the component n of α "

⁵So, f is a set of T_N theory if and only if f is a sequence A_1, A_2, A_3, \ldots of T_w model. That is, f is a set of T_N theory if and only if f is a map from W^* into a set E of T_w model (So, for each element n of W^* there exists an element A_n of E such that $f(n)=A_n$).

⁶That is, is f is the sequence A_1 , A_2 , A_3 ,... of T_w model and n is an element of W^* then we call "component n of f" to A_n .

⁷We call "constants" to the signs which denote sets, "constants of T_w model" to the signs which denote sets of T_w model and "constant of T_N theory" to the signs which denote sets of T_N theory.

if and only if a_n is the expression such that in a_n there are the constants $f_1(n), \ldots, f_p(n)$ of T_W model where in a, respectively, there are the constants f_1, \ldots, f_p of T_N theory (that is, if $\alpha(f_1, \ldots, f_p)$ is a formula of T_N theory with only p constants f_1, \ldots, f_p and $n \in W^*$ then the expression $\alpha(f_1(n), \ldots, f_p(n))$ is the component n of $\alpha(f_1, \ldots, f_p)$.

- We suppose (as in T_w model) that the statements of T_N theory are the formulas of T_N theory with no free variables (So, if α is a formula of T_N theory then α is a statement if and only if for each element n of W^* , the component n of α , is a statement of T_w model).
- We suppose that if α is a statement of $T_{_{N}}$ theory then α is true if and only if the set of the elements n of W^{*} such that the component n of α is a true statement of $T_{_{W}}$ model, is an element of (ultrafilter) $F_{_{W}}$.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

• If α , β are statements of T_N theory then (in a similar way to T_w model) we say that " α is equivalent to β ", if and only if either α is true and β is true or α is false and β is false. And if $\alpha(x)$, $\beta(x)$ are formulas of T_N theory with the same variables and (at least) there is a free variable x then we say that " $\alpha(x)$ is equivalent to $\beta(x)$ " if and only if, for all constant f of T_N theory, $\alpha(f)$ is equivalent to $\beta(f)$. (So, for example, if f, g are constants of T_N theory then the statements $f \neq g$, $f \notin g$, $f \notin g$ are equivalent to, respectively, the statements $\neg(f=g)$, $\neg(f \in g)$, $\neg(f \in g)$).

Theorem 1.1. If α is a statement of T_N theory then either α is true or α is false.

Proof. If α is a statement of T_N theory and for each element n of W^* , α_n is the component n of α , then for all element n of W^* , α_n is a statement of T_w model. So, since F_w is an ultrafilter, one and only one of the two following formulations is true:

- The set of elements n of W^* such that α_n is a true statement of T_{u} model, is an element of $F_{u}.$
- The set of elements n of W^* such that α_n is a false statement of T_u model, is an element of F_u .

Therefore, one and only one of the two following formulations is verified:

- α is a true statement of T_N theory.
- α is a false statement of T_N theory.

Theorem 1.2. If α is a statement of T_N theory then α is true if and only if $\neg \alpha$ is false.

Proof. Taking into account now that F_{ψ} is a filter (because F_{ψ} is an ultrafilter), similar proof to that of Theorem 1.1.

Theorem 1.3. If α , β are statements of T_N theory then,

- $\alpha \land \beta$ is true if and only if « α is true and β is true».
- $\alpha \lor \beta$ is true if and only if « α is true or β is true».

Proof. In similar way to proof of Theorem 1, it is proved that,

- $\alpha \land \beta$ is true if and only if α is true and β is true, taking into account that F_{α} is a filter.
- $\alpha \vee \beta$ is true if and only if α is true or β is true, taking into account that F_{ω} is an ultrafilter.

Lemma 1.1. If, in T_{ψ} model, H is an element of F_{ψ} and A₁, A₂, A₃,... is a sequence of sets such that for each element n of H, A_n $\neq \Phi_{\psi}$ (Φ_{ψ} being the empty set of T_{ψ} model) then there exists a set f of T_{N} theory such that for each element n of H, the component n of f is an element of A_n.

Proof. If $A=\bigcup_{n\in W}A_n$ (that is, if A is the union of the A_n of sequence) then, by virtue of the axiom of choice (that satisfies the T_w model), there exists a map Ψ from $P(A)\setminus\{\Phi_w\}$ (set of subsets non empty of A) into A such that for each element n of H, $\Psi(A_n)$ is an element of A_n . And let's b an element of A. So, if f is the map from W^* into A such that for each element n of H, $f(n)=\Psi(A_n)$ and for each element of $W^*\setminus H$, f(n)=b then f is a set of T_N theory such that for each element n of H, f(n)

Theorem 1.4. If, in theory T_N , E is a set and $\alpha(x)$ is a formula with free variable x and with no other free variables then,

- $\exists x((x \in E) \land a(x))$ is true if and only if there exists some set f of T_N theory such that $(f \in E) \land a(f)$ is true.
- $\forall x((x \in E) \Rightarrow \alpha(x))$ is true if and only if, if f is a element (whichever) of E then $\alpha(f)$ is true.

Proof. If for each element n of W^* , E_n is the component n of E and $\alpha_n(x)$ is the component n of the formula $\alpha(x)$ then,

• $\exists x((x \in E_n) \land \alpha_n(x))$ is the component n of $\exists x((x \in E) \land \alpha(x))$ and $\exists x((x \in E) \land \alpha(x))$ is true if and only if the set of elements n of W^{*} such that $\exists x((x \in E_n) \land \alpha_n(x))$ is a true statement of T_w Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

model, is an element of F_w. So,

• if there exists a set f of T_N theory such that $(f \in E) \land \alpha(f)$ is true then the set of elements n of W^* such that $(f(n)\in E_n)\wedge \alpha_n(f(n))$ is a true statement of T_{ω} model, is an element of $F_{\omega}.$ Then, the set of elements n of W^{\ast} such that $\exists x((x \in E_n) \land \alpha_n(x))$ is a true statement of T_w model, is an element of F_{ω} and, consequently, $\exists x((x \in E) \land \alpha(x))$ is true. • if, reciprocally, $\exists x((x \in E) \land \alpha(x))$ is true and H is the set of elements of W^* such that $\exists x((x \in E_n) \land \alpha_n(x))$ is true, then H is an element of F_w . So, if for each element n of H, $A_n = \{x \mid (x \in E_n) \land \alpha_n(x)\}$ then, by virtue of Lemma 1.1, there exists (in T_{ω} model) a map f from W^* into $\bigcup_{n \in W^*} A_n$ (union set of E_n), such that for each element n of H, $f(n) \in A_n$ is true and, consequently, for each element n of H, $(f(n)\in E_n)\wedge \alpha_n(f(n))$ is true. Therefore, the set of element n of W⁺ such that $(f(n)\in E_n)\wedge \alpha(f(n))$ is true, is an element of F_w and, consequently, there exists a set f (of T_w theory) such that $(f \in E) \land \alpha(f)$ is true.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

• For each element n of W^* , $\neg \exists x((x \in E_n) \land \neg \alpha_n(x))$ is the component n of $\neg \exists x((x \in E) \land \neg \alpha(x))$, $\neg \exists x((x \in E_n) \land \neg \alpha_n(x))$ is equivalent to $\forall x((x \in E_n) \Rightarrow \alpha_n(x))$ and this statement is the component n of the statement $\forall x((x \in E) \Rightarrow \alpha(x))$ (of T_N theory). So,

 $\forall \mathbf{x}((\mathbf{x}\in \mathbf{E}) \Rightarrow \alpha(\mathbf{x}))$ is equivalent to $\neg \exists \mathbf{x}((\mathbf{x}\in \mathbf{E}) \land \neg \alpha(\mathbf{x}))$. Then, the statement $\forall \mathbf{x}((\mathbf{x}\in \mathbf{E}) \Rightarrow \alpha(\mathbf{x}))$ is true if and only if for all set f (of T_N theory), $\alpha(f)$ is a true statement.

Theorem 1.5. If f, g are sets of T_N theory then f=g if and only if, if $\alpha(x)$ is a formula (whichever) of T_N theory with a free

variable x then the formula $\alpha(f)$ is equivalent to the formula $\alpha(g)$. (So, if f is a set of T_N theory then f=f and if f, g are sets of T_N theory then,

- if f=g then f=g.
- if h is a set of T_N theory, f=h and h=g then f=g.
- if f=g then f has the same elements and is an element of the same sets as g).

Proof. If f, g are sets of T_N theory and f=g then the set of elements n of W⁺ such that f(n)=g(n), is an element of F_w . So, if $\alpha(x)$ is a formula of T_N theory with a free variable x and for each element n of W⁺, $\alpha_n(x)$ is the component n of α , then for all element n of W⁺, x is free in $\alpha_n(x)$ and the set of elements n of W⁺ such that $\alpha_n(f(n))$ is equivalent to $\alpha_n(g(n))$, is an element of F_w ⁸. Therefore, $\alpha(f)$ is equivalent to $\alpha(g)$.

Reciprocally, if f, g are sets of T_N theory such that «if $\alpha(x)$ is a formula (whichever) of T_N theory with a free variable x then $\alpha(f)$ is equivalent to $\alpha(g)$ », then, since x=g is a formula of T_N theory with a free variable x, the statement f=g is equivalent to the true statement g=g and, consequently, f=g is true.⁹ Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Theorem 1.6. If f, g are sets of T_N theory then fCg if and only if all element of f is an element of g.

⁸Bearing in mind that if A, B are sets of T_w model, A=B and $\gamma(x)$ is a formula of T_w model with a free variable x then $\gamma(A)$ is equivalent to $\gamma(B)$.

⁹Of the similar way it is proved that if, in general, A₁,.., A_p, B₁,.., B_p are 2p set of T_N theory, then ««A₁=B₁,.., A_p=B_p» if and only if, «if $\alpha(x_1,..,x_p)$ is a formula of T_N theory with p free variables $x_1,.., x_p$ then the formula $\alpha(A_1,..,A_p)$ is equivalent to the formula $\alpha(B_1,..,B_p)$ »».

Proof. Then, If fCg then the set of elements n of W^{*} such that f(n)Cg(n), is an element of F_w . And if hff then the set of elements n of W^{*} such that h(n)ff(n), is an element of F_w . So, if fCg and hff then the set of elements n of W^{*} such that h(n)fg(n), is an element of F_w and, consequently, hfg. So, if fCg then all element h of f is an element of g.

If $f \not\subset g$ then the set of elements n of W^{*} such that $f(n) \not\subset g(n)$ is an element of F_w . Then, if H is the set of elements of W^{*} such that there exists a set h_n (of T_w model) such that $h_n \notin f(n)$ and $h_n \not\notin g(n)$, then H is an element of F_w . Then, by virtue of Lemma 1.1, there exists a set h of T_N theory such that for all element n of H, $h(n) \notin f(n)$ and $h(n) \notin g(n)$. Consequently, $h \notin f$ and $f \notin g$. So, if all element of f is an element of g then $f \subseteq g$.

Theorem 1.7. If f, g are sets of $T_{\scriptscriptstyle N}$ theory and f has the same elements as g then f=g. 10

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Proof. If f≠g and H is the set of elements n of W^{*} such that f(n)≠g(n) then H is the set of elements n of W^{*} such that there exists a set h_n of T_w model such that either $\ll h_n \in f(n)$ and $h_n \notin g(n) \gg$ or $\ll h_n \notin f(n)$ and $h_n \notin g(n) \gg$, and H is an element of F_w . Then, by virtue of Lemma 1.1, there exists a set h of T_N theory such that for each element n of H, either $\ll h(n) \notin f(n)$ and $h(n) \notin g(n) \gg$ or $\ll h(n) \notin f(n)$ and $h(n) \notin g(n) \gg$, and, consequently, either $\ll h \notin f$ and $h \notin g \gg or \ll h \notin f$ or $f \in g \gg$.

Therefore, «if $f \neq g$ then f has not the same elements as g» and,

 $^{10}\mathrm{This}$ theorem of T_w model is the extensionality axiom of T_N theory.

consequently, if f has the same elements as g then f=g.

Theorem 1.8. The constant sequence Φ_w , Φ_w , Φ_w , ... of T_w model (Φ_w being the empty set of T_w model) is the empty set of T_N theory, which we denote Φ . ¹¹

Easy proof.

Theorem 1.9. If f is a set of T_N theory then there exists a set P(f) (of T_N theory), that we call "power set of f", such that if g is a set (of T_N theory) then $g\in P(f)$ if and only if $g\subset f$.¹²

Easy proof, taking into account that if f is a set of T_N theory then P(f) is a set of T_N theory such that for each element n of W^{*}, the component n of P(f) is P(f(n)), power set of f(n) (f(n) being the set of T_W model which is the component n of f). Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Theorem 1.10. If f is a set of T_N theory then there exists a set $\bigcup_{x \in f} x$ (of T_N theory) that we call "union set of elements of f", such that if g is a set of T_N theory then $g \in \bigcup_{x \in f} x$ if and only if there exists some set h (of T_N theory) such that h \in f and g \in h. ¹³

 $^{12}\mathrm{This}$ theorem of T_w model is the power set axiom of T_N theory.

 $^{13}\mathrm{This}$ theorem of T_{w} model is the union set axiom of T_{N} theory.

 $^{^{11}\}text{By}$ virtue of this theorem of T_{ψ} model, the statement «there exists the empty set» is an axiom of T_N theory and is easy prove, in a classical way, that this axiom is equivalent to statement of T_N theory «there exists some set».

Easy proof, taking into account that if f is a set of T_N theory then $\bigcup_{x \in f} x$ is a set of T_N theory such that for each element n of W^* , the component n of $\bigcup_{x \in f} x$ is $\bigcup_{x \in f(n)} x$, union set of elements of f(n) (f(n) being the set of T_W model which is the component n of f) and taking into account the Lemma 1.1 as in above proofs.

Theorem 1.11. If $\alpha(x,u)$ is a formula of T_N theory with free variables x, u and no other free variables, $\alpha(x,u)$ is a functional formula of function u¹⁴ and f is a set of T_N theory then there exists a set f' of T_N theory such that if g' is a set of T_N theory then g' is an element of f' if and only if there exists an element g of f such that the statement $\alpha(g,g')$ (of T_N theory) is true.¹⁵

Proof. It $\alpha(\mathbf{x}, \mathbf{u})$ is a formula of \mathbf{T}_{N} theory with free variables \mathbf{x} , u, no other free variables and for each element n of W^* , the component n of $\alpha(\mathbf{x}, \mathbf{u})$ is a formula $\alpha_n(\mathbf{x}, \mathbf{u})$ then, for each element n of W^* , $\alpha_n(\mathbf{x}, \mathbf{u})$ is a formula of \mathbf{T}_{W} model with free variables \mathbf{x} , u and no other free variables. If is not an element of F_{W} the set of element n of W^* such that $\alpha_n(\mathbf{x}, \mathbf{u})$ is a functional formula of function u then is an element of F_{W} the set of element of W^* such that (t being a variable no en $\alpha(\mathbf{x}, \mathbf{u})$) the statement (of T_{W} model) $\exists \mathbf{x} \exists \mathbf{u} \exists t(\alpha_n(\mathbf{x}, \mathbf{u}) \land \alpha(\mathbf{x}, t) \land (\mathbf{u} \neq t))$ is true. Then the statement Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

 $^{15} This$ theorem of T_{ψ} model is the class of axioms of sustitution of T_{N} theory.

¹⁴If $\alpha(\mathbf{x}, \mathbf{u})$ is a formula of \mathbf{T}_{N} theory with free variables \mathbf{x} , \mathbf{u} and no other free variables, then (in a similar way to \mathbf{T}_{ω} model) we say that " $\alpha(\mathbf{x}, \mathbf{u})$ is a formula functional of function \mathbf{u} " if and only if for all set g (of \mathbf{T}_{N} theory) it does not exist more than one set g' (of \mathbf{T}_{N} theory) such that the statement $\alpha(g,g')$ (of \mathbf{T}_{N} theory) is true.

(of T_N theory) $\exists x \exists u \exists t (\alpha(x, u) \land \alpha(x, t) \land (u \neq t))$ is true and,

consequently, $\alpha(\mathbf{x}, \mathbf{u})$ is not a functional formula of fuction \mathbf{u} . Therefore, if $\alpha(\mathbf{x}, \mathbf{u})$ is a fuctional formula of fuction \mathbf{u} (of T_{N} theory) then the set of element n of W⁺ such that $\alpha_{n}(\mathbf{x}, \mathbf{u})$ is a fuctional formula of fuction \mathbf{u} (of T_{u} model), is an element of F_{u} . So, if the formula $\alpha(\mathbf{x}, \mathbf{u})$ is a fuctional formula of fuction \mathbf{u} and f is a set of T_{N} theory, then is an element of F_{u} the set H of elements n of W⁺ such that there exists a set f'_{n} of T_{u} model such that if g'_{n} is a set of T_{u} model then g'_{n} is an element of f'_{n} if and only if there exists an element g_{n} of f(n) such that $\alpha(g_{n}, g'_{n})$. Then, by virtue of Lemma 1.1, there exists a set f' of T_{N} theory such that if g' is a set of T_{N} theory then g' is an element g of f such that $\alpha(g, g')$ is a true statement (of T_{N} theory).

Lemma 1.2. If f is a set of $T_{\scriptscriptstyle N}$ theory then there exists a set of $T_{\scriptscriptstyle N}$ theory, which we denote "{f}", whose only element is f. 16

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Easy proof taking into account that $\{f\}$ is the set of T_N theory such that for each element n of W^* , the component n of $\{f\}$ is $\{f(n)\}$.

Lemma 1.3. If f, g are sets of $T_{\scriptscriptstyle N}$ theory then there exists a set (of $T_{\scriptscriptstyle N}$ theory) which we denote "fUg" and we call "set f union

¹⁶This theorem of T_w model is a theorem of T_N theory (it is proved in the mentioned T_N theory, in a classical way, considering the power set axiom, the class of axioms of substitution and that the empty set Φ is a set of T_N theory).

g", whose elements are the elements of f and the elements of g. $^{\rm 17}$

Easy proof taking into account that f Ug is the set of T_N theory such that for each element n of W^* . the component n of f Ug is f(n) Ug(n).

Definition 1.1. If A is a set of T_y model or of T_N theory then we denoted s(A) and we say "successor of A" to $AU\{A\}$.

Theorem 1.12. There exists a set N of T_N theory, whose elements we call "natural number" (of T_N theory), such that,

- $\Phi \in N$ and we call "zero" (and "empty set" of $T_{_N}$ theory) to natural number $\Phi.$
- if $p \in N$ then $s(p) \in N$.
- (Recurrence principle of T_N theory) if $f \subseteq N$, $\Phi \in f$ and \ll if $p \in f$ then $s(p) \in f$, then f = N.¹⁸

Del documento, de los autores. Digitalización realizada por ULRGC. Biblioteca Universitaria, 2017

Proof. We suppose that N is a set of T_N theory such that for each element n of W^{*}, the component n of N is the set W of natural number of T_W model (that is, we suppose that N is the sequence W, W, W,... of T_W model). Therefore,

• Easy proof that $\Phi \in \mathbf{N}$, taking into account that Φ_{w} is an element of W (since Φ_{w} is the natural number of T_{w} model that we call

 $^{^{17}} This theorem of <math display="inline">T_{\rm w}$ model is a theorem of $T_{\rm N}$ theory (it is proved in the mentioned $T_{\rm N}$ theory, in a classical way, considering the power set axiom, the union set axiom, the class of axioms of sustitution and that the empty set Φ is a set of $T_{\rm N}$ theory).

 $^{^{18} \}mathrm{This}$ theorem of T_{w} model is the axiom of infinity of T_{N} theory.

"zero" and also we denote 0_{w}).

.

- If p is an element of N then the set of elements n of W^{*} such that $p(n)\in W$, is an element of F_w . So, since if $p(n)\in W$ then $s(p(n))\in W$, the set of elements n of W^{*} such that $s(p(n))\in W$, is an element of F_w . So, s(p) is an element of N.
- If $f \subseteq N$, $\Phi \in f$, $f \neq N$ and H is the set of elements n of W^{*} such that for each element n of H there exists the first element p_n of f(n) such that $s(p_n)$ is not element of f(n) then H is an element of F_w . So, if p is a set of T_N theory such that for each element n of H, $p(n)=p_n$ then $p \in f$ and $s(p) \notin f$. Therefore, if f is a subset of N, $\Phi \in f$ and «if $p \in f$ then $s(p) \in f_N$, then f=N.

Theorem 1.13. If f is a non empty set of T_N theory then there exists a map Ψ from $P(f) \setminus \{\Phi\}$ (set of non empty subsets of f) into f such that if $g \in P(f) \setminus \{\Phi\}$ then Ψ (as to map of T_N theory) assigns to g an element of g.¹⁹

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Proof. Since the T_w model satisfies the axiom of choice, for each element n of W^{*} such that $f(n) \neq \Phi_w$ (Φ_w being the empty set of T_w model) there exists a map Ψ_n from P(f(n))\{ Φ_w } (set of non empty subsets of f(n)) into f(n) such that, if g_n is an element of P(f(n))\{ Φ_w } then Ψ_n assigns to g_n an element of g_n . And, since $f \neq \Phi$ (Φ being the empty of T_N theory), if H is the set of elements n of W^{*} such that $f(n) \neq \Phi_w$ then H is a element of F_w . So, by virtue of Lemma 1.1, there exists a set Ψ of T_N theory such that for

 $^{^{19}\}mathrm{This}$ theorem of T_{w} model is the axiom of choice of T_{N} theory.

each element n of H, $\Psi(n)$ (component n of Ψ) is a map from $P(f(n)) \setminus \{\Phi_w\}$ into f(n) such that if $g_n \in P(f(n)) \setminus \{\Phi_w\}$ then $\Psi(n)$ assigns to g_n a element of g_n . So, since H is a element of F_w , Ψ is a map from $P(f) \setminus \{\Phi\}$ into f such that, if g is an element of $P(f) \setminus \{\Phi\}$ then Ψ , as to map of T_N theory, assigns to g, an element of g.

Therefore, if T_{w} is a model of ZFC then the empty set is a set of T_{N} theory and, the mentioned T_{N} theory, satisfies the extensionality axiom, the power set axiom, the union set axiom, the class of axioms of sustitution, the axiom of infinity and the axiom of choice and, consequently, if T_{w} is a model of ZFC then T_{N} theory is also a model of ZFC, that we call " T_{N} model".

Definition 1.2. If p is an element of N (set of natural number of $T_{_{\rm N}}$ model) then we say that,

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

• "p is limited" if and only if there exists an element q of W (set of natural number of T_w model) such that the set of . elements n of W⁺ such that p(n)=q, is an element of F_w .

"p is unlimited" if and only if p is not limited.

Theorem 1.14. Φ (zero of N) is limited. If f is a limited natural number then s(f) is limited. And there exists unlimited elements of N.

Proof. Φ is limited since Φ is the sequence 0_{ψ} , 0_{ψ} , 0_{ψ} , ... of T_{ψ} model (0_{ψ} being the zero of W, $0_{\psi}=\Phi_{\psi}$ and Φ_{ψ} the empty set of T_{ψ} model). If f is a limited natural number then there exists an

element p of W such that f is equal to the sequence p, p, p,... of T_w model. So, s(f), successor of f, is equal of sequence s(p), s(p), s(p),... of T_w model (s(p) being the successor of p) and, consequently, s(f) is limited.

And an unlimited natural number is, for example, g such that for all element n of W^* , g(n)=n (that is, g is equal to the sequence $s(\Phi_u)$, $s(s(\Phi_u))$, $s(s(s(\Phi_u)))$,... of T_u model).

Appendix of first part.

A "filter" on a non empty set E is, by definition, a subset F of P(E), such that F is not the empty set, the empty set is not an element of F, «if A, B are elements of F then A \cap B is an element of F» and if A is an element of F, B is a subset of E and A is a subset of B then B is a element of F. So, if F is a filter on a set E and A is an element of F then ^cA

(complementary of A with respect to E) is not an element of F.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

An "ultrafilter" on a non empty set E is a filter U such that if F is a filter on E and UCF then U=F.

It can be easily proved that if U is an ultrafilter on a set E, A, B are subset of E, $A \cup B$ is an element of U and A is not an element of U then B is an element of U (So, if A is a subset of E and A is not an element of U then ^cA is an element of U). Using Zorn's lemma (valid to use in ZFC, because ZFC satisfies the axiom of choice), it is proved that if F is a filter on a set E then there exists a ultrafilter U containing F.

If W is the set of natural numbers, we say that "F is a Frechét's filter" if and only if F is a filter on W such that A is an element of F if and only if A is a subset of W such that ^{c}A (complementary of A with respect to W) is a finite subset of W.

We say that " F_w is a Frechét's ultrafilter" on W if and only if F_w is a ultrafilter on W containing the Frechét's filter on W.

Second part: Support of some principles for nonstandard analysis.

In this Second part we denote 0_{ψ} , 1_{ψ} , 2_{ψ} , 3_{ψ} ,... to natural numbers of T_{ψ} model (that is, to elements of W) and we denote 0, 1, 2, 3,... to natural numbers the T_{N} model (that is, to the elements of N).

In the mentioned T_w model and T_N model, we suppose defined in a classical way, the structure of natural numbers and, with its respective structures, the sets of the integer, rational, real and complex numbers.²⁰

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Definition 2.1. If f is a set of T_N model then we say that f is a "classic" set if and only if there exists a set A of T_W model

 $^{^{20}}In$ the $T_{\scriptscriptstyle N}$ model, apart from this classical definitions, there exist the corresponding no classical interpretations, specific of this mentioned model of ZFC. For example, the non classical interpretations (specific of $T_{\scriptscriptstyle N}$ model) of order and of addition on the set R (of real numbers of $T_{\scriptscriptstyle N}$ model), are the following ones:

If f, g are elements of R then we say that,

[•] $f \le g$ if and only if the set of elements n of W^* such that $f(n) \le g(n)$, is an element of F_u .

if h is an element of R then f+g=h if and only if the set of elements n of W⁺ such that f(n)+g(n)=h(n), is an element of F_w.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Theorem 2.1. If f is a natural number of T_N model (is that, if f is an element of N) then f is classic if and only if f is limited (so, an element of N is nonclassic if and only if is unlimited).

such that the set of elements n of W^{+} such that f(n)=A, is an

Easy proof, considering Definition 1.2 and Definition 2.1.

Theorem 2.2. If f, g are natural numbers, f is classic and g is nonclassic then $f \leq g$.

Proof. If f is a classic natural number, then there exists a natural number p of T_w model such that the set of elements n of W' such that f(n)=p is an element of F_w . And if h is a natural number of T_N model such that $h\leq f$ then the set of element n of W such that $h(n)\leq f(n)$ is an element of F_w . So, there exists an element q of W such that $q\leq p$ and the set of element n of W such that h(n)=q, is an element of F_w . So, h is limited and, consequently, if g is a nonclassic natural number then $f\leq g$.

Theorem 2.3. If f is a classic non empty set (of T_N model) then there exists a classic set g (of T_N model) such that g is element of f.

Proof. If f is a classic non empty set then there exists a non empty set A of T_{ψ} model such that the set of elements n of W^{\star}

such that f(n)=A, is an element of F_w . Then, there exists a set B (of T_w model) such that B is an element of A and, consequently, if g is a set of T_N model such that for all element n of W^* , g(n)=B then g is a classic set and g is and element of f.

Theorem 2.4. If f is a real number of T_N model such that there exists a classic natural number p such that $|f| \le p$ then there exists an only classic real number g such that for all classic natural number $q \ne 0_{u}$, $|f-g| \le (1/q)$.

Proof. If p is a classic natural number then there exists a natural number h of T_u model (that is, an element of W) such that the set of elements n of W' such that p(n)=h, is an element of F_u . And if f is a real number of T_n model such that $|f| \le p$ then the set of elements n of W' such that $-h \le f(n) \le h$, is an element of F_u . So, if $a_1=-h$ and $b_1=h$ then the set of elements n of W' such that $a_1 \le f(n) \le b_1$, is an element of F_u . So (since F_u is an ultrafilter), the set of elements n of W' such that either $a_1 \le f(n) \le (a_1+b_1)/2_u \le f(n) \le b_1$, is an element of F_u or the set of elements n of W' such that $(a_1+b_1)/2_u \le f(n) \le b_1$, is an element of F_u . Continuing this way, we define two sequences a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots , of real numbers of T_u model such that $a_1 \le a_2 \le a_3 \le \ldots \le b_3 \le b_2 \le b_1$ and there exists one and only one real number r (of T_u model) such that for all element n of W', $a_n \le r \le b_n$.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Therefore, if g is a set of T_N model such that for all element n of W^* , g(n)=r then (since for all natural number $p\neq 0$ of T_w model, the set of elements n of W^* such that $-(1_w/2_w^{-p})\leq f(n)-r\leq (1_w/2_w^{-p})$, is an element of F_w) g is a classic real number such that for all

classic natural number $q \neq 0_{u}$, $|f-g| \leq (1/q)$.

Theorem 2.5. If f is a set of T_N model then f is classic if and only if there exists a formula $\alpha(\mathbf{x})$ with a free variable x, with no other free variables, with no nonclassic constants²¹ and such that the statements $\exists_1 \mathbf{x} \alpha(\mathbf{x})$ ²² and $\alpha(\mathbf{f})$ are true.

Proof. If $\alpha(\mathbf{x})$ is a formula of T_N model, with a free variable x, with no other free variables and with no nonclassic constants and for each element n of W, $\alpha_n(\mathbf{x})$ is the component n of $\alpha(\mathbf{x})$, then there exists a element p of W such that the set of elements n of W such that $\alpha_n(\mathbf{x})$ is (identical to) $\alpha_p(\mathbf{x})$ is an element of F_W . So, if the statement (of T_N model) $\exists_1 \mathbf{x} \alpha(\mathbf{x})$ is true then the statement (of T_W model) $\exists_1 \mathbf{x} \alpha_p(\mathbf{x})$ is true and, consequently, there exists one and only one set A (of T_W model) such that $\alpha_p(A)$ is true. Therefore, if f is a set of T_N model such that for all element n of W, f(n)=A then f is classic and $\alpha(f)$ is true. If, reciprocally, we suppose that f is a classic set (of T_N model) then x=f is a formula (of T_N model) with a free variable x, with no other free variables, with no nonclassic constants (since f is a classic constant) and such that the statement $\exists_1 \mathbf{x}(\mathbf{x}=f)$ and f=f are true.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

²¹We call "classic constants" to the signs which denote classic sets and "nonclassic constants" to the signs which denote nonclassic sets.

²²Bearing in mind that the statement $\exists_1 \alpha(x)$ is equivalent of statement $\exists x(\alpha(x) \land \forall t(\alpha(t) \Rightarrow t=x))$.

Third part: Some principles for nonstandard analysis.

We suppose all what follows in a model T_N of ZFC in which some principles for nonstandard analysis (compatible with the axioms of the classic ZFC) are proposed and, as an example, there appear some non standard definitions and theorems of some basic concepts of mathematical analysis on sequences or standard functions.²³ But, what it not possible at this point (because it would make the paper too long) is to make a study of the properties corresponding to the before mentioned concepts which we define. Also we suppose all what follows, that 0, 1, 2, 3,... are the natural numbers, N is the set of natural numbers and R is the set of real numbers, of mentioned T_N model (and that NCR).

Definition 3.1. If A is a set then we say that " $\alpha(x)$ is a formula defining A" if and only if $\alpha(x)$ is with a free variable x and with no other free variables and the statements $\exists_1 x \alpha(x)$ and $\alpha(A)$ are true.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Definition 3.2. If A is a set (whichever), we say that,"A is standard" if and only if there exists a formula

²³Such concepts are, for the sequences of real numbers, those of regular sequence and limit. And, for real functions of one real variable, those of limit, continuity at a point, uniform continuity, derivative at a point, derivative function and Riemann integral.

defining A, with no nonstandard constants.

"A is nonstandard" if and only if A is not standard.²⁴

Definition 3.3. If α is a formula (whichever) then we say that " α is standard" if and only if α is with no nonstandard constants.²⁵

Principle 1. There exists a nonstandard natural number (that is, there exists a natural number that is a nonstandard set). 26

Principle 2. If f, g are natural numbers, f is standard and g is nonstandard then $f \le g.^{27}$

Principle 3. If A is a non empty standard set then there exists a standard set which an element of $A.^{28}$

© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Definition 3.4. If r is a real number then we say that,

²⁴In this Third part we call "standard sets" and "nonstandard sets" to the set that in Second part we call, respectively, "classic set" and "nonclassic sets". And (in this Third part) we call "standard constans" and "nonstandard constants" to the constants that in Second part, we call, respectively, "classic constants" and "nonclassic constants".

 $^{25}\text{So},$ if α is a formula with no constants then α is a standard formula. And if A is a set such that there exists a formula defining A with no constants then A is a standard set.

²⁶The Principle 1 is supported in Theorem 1.14, Theorem 2.1, Theorem 2.5, Definition 3.1 and Definition 3.2.

 27 The Principle 2 is supported in Theorem 2.2, Theorem 2.5, Definition 3.1 and Definition 3.2.

²⁸The Principle 3 is supported in Theorem 2.3, Theorem 2.5, Definition 3.1 and Definition 3.2.

- "r is limited" if and only if there exists a standard natural number p such that $|r| \le p$.
- "r is unlimited" if and only if r is not limited.
- "r is infinitesimal" if and only if either r=0 or 1/r is unlimited.
- "r is appreciable" if and only if r is limited and is not infinitesimal.

Principle 4. If r is a limited real number then there exists an only standard real number $^{\circ}r$, that we call "standard part of r", such that r- $^{\circ}r$ is infinitesimal.²⁹

Theorem 3.1. If E is a set then «E is standard if and only if there exists a standard formula $\beta(t)$ with only a free variable t and such that $E=\{t | \beta(t)\}$ ».

Proof. If E is a standard set then tEE is a standard formula with only a free variable t and such that $E=\{t | t \in E\}$. Reciprocally, if E is a set and $\beta(t)$ is a standard formula with only a free variable t and such that $E=\{t | \beta(t)\}$ then $\forall t(t \in x \Leftrightarrow \beta(t))$ is a standard formula with only a free variable x and is a formula defining E. So, E is standard.

Theorem 3.2. 0 is a standard natural number, 1 is a standard natural number and if n, p are standard natural numbers then, • n+p, n.p are standard.

 $^{29} \rm{The}$ Principle 4 is supported in Theorem 2.4, Theorem 2.5, Definition 3.1, Definition 3.2 and Definition 3.4.

• if $r \neq 0$ then n^p is standard.

Poof. $\forall t(t \notin x)$ is a standard formula (since is with no constants) defining 0 (since 0= ϕ and the statements $\exists_1 x \forall t(t \notin x)$ and $\forall t(t \notin \phi)$ are true) and, consequently, 0 is standard. $\forall t(t \in x \Leftrightarrow t=0)$ is a standard formula defining 1 (since 0 is a standard constant and 1={0}). So, 1 is standard. And if $\alpha(x)$ is a standard formula defining n (with free variable x and with no variables t, u) and $\beta(t)$ is a standard formula defining p (with free variable t and with no variables x, u) then,

- $\exists x \exists t((u=x+t) \land \alpha(x) \land \beta(t))$ is a standard formula defining n+p (with free variable u) and $\exists x \exists t((u=x.t) \land \alpha(x) \land \beta(t))$ is a standard formula defining n.p (with free variable u). Consequently, n+p and n.p are standard.
- · Similar proof to the preceding.

Theorem 3.3. N and R are standard sets and the class of standard natural number is not a set (of T_N model).

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Proof. By virtue of axiom of infinity, there is a standard formula defining N 30 and, consequently, N is standard.

By virtue of classic construction of real numbers, there is a standard formula defining R and, consequently, R is standard. By virtue of Thorem 3.1, 0 is standard and if n is a standard

 $^{^{30}\}text{So,}$ for example, the formula $(\Phi \in x) \land \forall t (t \in x \Rightarrow s(t) \in x) \land \land \forall u (((u \subseteq x) \land ((\Phi \in u) \land \forall y (y \in u \Rightarrow s(y) \in u))) \Rightarrow u = x)$ (with only free variable x and with only standard constant Φ) is a standard formula defining N.

natural number then n+1 is standard. And, by virtue of Principle 1, there exists a nonstandard natural number. Then, considering the classic recurrence principle, the class of standard natural number is not a set (of T_{x} model).

Theorem 3.4. If p is a natural number then p is (a real number) limited if and only if p is standard.

Easy proof considering Principle 3.2 and Definition 3.4.

Theorem 3.5. If r is a real number then,

- r is unlimited if and only if there exists a nonstandard natural number p such that p < |r|.
- r is infinitesimal if and only if there exists a nonstandard natural number such that |r| < 1/p.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

 r is appreciable if and only if there exists a standard natural number p≠0 such that 1/p<|r|<p.

Easy proof considering Definition 3.4, Theorem 3.2 and recurrence principle.

Theorem 3.6. If r is a real number then,

• if r is limited then -r is limited.

if r is limited and s is a limited real number then r+s, r.s are limited.

- if r is infinitesimal then r es limited.
- if r is infinitesimal then -r is infinitesimal.
- if r is infinitesimal and s is an infinitesimal real number

then r+s is infinitesimal.

- if r is infinitesimal and s is limited real number then r.s
 is infinitesimal.
- if r is appreciable then 1/r is appreciable.
- if r is appreciable and s is an appreciable natural number then r.s is appreciable.
- if r is standard then either r=0 or r is appreciable.
- if r is standard and s is a standard real number then r+s, r.s are standard.
- if r is standard then «-r is standard and if r≠0 then 1/r is standard».

Easy proof considering Definition 3.1, Definition 3.2, Definition 3.4, Principle 2, Principle 4, Theorem 3.2 and Theorem 3.5.

Definition 3.5. If r, s are real numbers we say tath "r is almost s" if and only if r-s is infinitesimal.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Definition 3.6. If r_1 , r_2 , r_3 ,... is a standard sequence of real numbers then we say that " r_1 , r_2 , r_3 ,... is regular" if and only if, for all unlimited natural numbers n, m, r_n is almost r_m .

Definition 3.7. If r_1 , r_2 , r_3 ,... is a standard sequence of real numbers then we say that " r_1 , r_2 , r_3 ,... is convergent to r", "r=lim_n r_n " and "r is limit of r_1 , r_2 , r_3 ,..." if and only if r is a standard real number and for all ilimited natural number n, r_n is almost r.

Definition 3.8. If f is a standard function from an open real set D into R and s is a standard element of adherence of D then we say that $r=\lim x_{x+s}f(x)$ and "r is the limit of f at point s", if and only if r is a standard real number and for all element u of D such that u is almost s and uzs, f(u) is almost r.

Definition 3.9. If f is a standard function from an open real set D into R and s is a standard element of D then we say that "f is continuous at point s" if and only if there exists $\lim_{x\to s} f(x)=f(s)$.

Definition 3.10. If f is a standard function from an open real set D into R then we say that "f is uniformly continuous" if and only if, if r, s are points of D and r is almost s then f(r) is almost f(s).

Definition 3.11. If f is a standard real function from an open real set D into R and s is a standard element of D then we say "derivative of f at point s" to $\lim_{x\to s}((f(x)-f(s))/(x-s))$, if there exists this limit.

Definition 3.12. If f is a standard real function from an open real set D into R then we say that "f' is the derivative function of f" if and only if f' is a standard function from D into R such that for all standard point s of D $f'(x)=\lim_{x\to s}((f(x)-f(s))/(x-s)).$

Theorem 3.7. If f is a standard function from a open real set D

into R g is a derivative function of f and h is a derivative function of f then g=h.

Proof. Then, if $E=\{x \mid (x \in D) \land (g(x) \neq h(x))\}$ then E is standard (since g and h are standard). So, if $E \neq \Phi$ then (Principle 3) there exists a standard element s of E and, consequently, $g(s) \neq h(s)$. So (since if s is standard then f(s)=g(s)) $E=\Phi$ and, consequently, g=h.

Definition 3.13. If b, c are standard real numbers, b<c and f is a standard function from [b,c] into R then we say that $r=\int_{[b,c]}f(x)dx$ (x being a variable) and that "r is the Riemann integral of f on [b,c]" if and only if r is a standard real number such that if x_0 , x_1, \ldots, x_n are n+1 real numbers (n being a natural number) such that $b=x_0<x_1<\ldots< x_n=c$ and for all natural number j such that $1\le j\le n$, x_{j-1} is almost x_j and ξ_j is a real number such that $x_{j-1}\le \xi_j\le x_j$, then r is almost $\sum_{j\in\{1,\ldots,n\}}f(\xi)(x_j-x_{j-1})$ (that is, $\int_{[b,c]}f(x)dx=^0(f(\xi_1).(x_1-x_0)+\cdots+f(\xi_n).(x_n-x_{n-1}))).$

Remarks.

It is easy to prove that the class of real limited numbers, of real infinitesimal numbers, of real appreciable numbers, real standard numbers and the real unlimited numbers are not sets. And the same happens with many other class whose elements are sets.³¹

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

³¹Since if, for example, there existed the set C_L of the limited complex numbers then $\{x \mid (x \in \mathbb{N}) \land (x \in C_L)\}$ would be the set of the standard natural numbers, a set which does not exist.

If in definitions 3.6, 3.7, 3.8, 3.10 and 3.13 we replace the terms "unlimited" and "is almost" for, respectively, the terms "very advanced" and "very close", we get definitions often used by teachers of mathematics and by other professionals who, as physicists, chemists, engineers and economists, make use of mathematics, even thoughsuch definitions of "their" mathematical analysis (the standard one), what they are forgiven on account of how intuitive and simple they turn out to be. And the proverbial nuisanse of reasoning in standard analysis due to the "paces within limit" because of the resulting consideration of the traditional "very big" natural number no and "very small" real numbers \in (epsilon) and δ (delta), can be avoided in nonstandard analysis and doing so get that reasoning be "more fluent" (the way algebra does) if, for example, the definitions expressed are used and, in particular, the Riemann integral is defined as the standard part of a certain finite addition (unlimited but finite).

The non standard definitions 3.6, 3.7, 3.8, 3.10 and 3.13 are equivalent to the respective standard (or classical), notwithstanding, to use such non standard difinitions, it is not necessary to take into account such equivalencies, neither is, to use the referred to classical definitions. We will not prove here the before mentioned equivalences, but let us say at least, that are a consequence of the above mentioned Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

priciples.

REFERENCES

- KRIVINE, Jean-Louis: "Théorie axiomatique des ensembles".
 Presses Universitaires de France. Paris. 1969.
- [2] NELSON, Edward: "Internal set theory: A new approach to nonstandard analysis". Bulletin of the American Mathematical Society. Volume 83. Number 6. Page 1165-1198. November 1977.
- [3] ROBINSON, Abraham: "Non standard Analysis". North Holland. 1974.

Manuel Suárez Fernández Profesor de Matemáticas de la Facultad de Ciencias Económicas y Empresariales. Campus Universitario Plaza de la Universidad, 1 02071-ALBACETE

e-mail: msuarez @ ecem-ab.uclm.es