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Resumen

En este trabajo mostramos una estimacién local del gradiente de cualquier
solucién de la EDP cuasilineal
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—Au+ H(z,u,Du) = f, in Q, (E)
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bajo adecuadas hipétesis de estructura sobre los datos. Con la estimacién anterior
demostramos que existe una solucién minimal de (E), explosiva sobre 0.
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Abstract

A local estimate of the gradient of every solution to the quasilinear PDE
(E) 1is obtained in this work, under suitable structural conditions of the data. We
show the existence of a minimal solution blowing up on the boundary with the
help of this estimate.

t Partially supported by FONDECYT Grant N° 92/0249 and by DIRECCION
DE INVESTIGACION DE LA UNIVERSIDAD DE CONCEPCION Grant N°
911216-1.

{ Partially supported by DIRECCION DE PROMOCION Y DESARROLLO DE
LA UNIVERSIDAD DEL BIO-BIO DIPRODE, Grant N° 92/06061.
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I. INTRODUCTION.

In this work we consider the quasilinear equation
—Au+ H(z,u,Du) = f in Q, (E)

where Q is a bounded open set of RN, N > 1, f € L{(Q) and
H:Qx Rx RN — Rt is a function which satisfies the following structure
conditions:

E;.- The function 2 — H(z,r,q) belongs to L§2 (), for all (r,¢), and the
function (r,q) — H(z,r,q) is continuous for all z in 2.

E,.- |H(z,r,q) — H(z,7,¢")| < pu(lg — ¢'|), almost everywhere in 2, for all r
and for |¢ — ¢'| small, where py : R+ — IRy is an increasing continuous
function with pg(0%) = 0.

Es.- H(.’E,T‘,q) - H(x,s,q) 2 ’\[IB(T) - 13(5)17 r > s where ﬂ : R+ — Ry is

an increasing continuous function with 3(0%) = 0.

REMARK 1.

Some particular choices of H of relevance in the applications are:

N
Ou
~Auh) ulelge +AW)=f (E.)
—Au+ a(z)Vu* + Bu) = f (Eq)
where f : IRy — IR; is an increasing continuous function, with
B(0) =0; and f € L2 ().

DEFINITION.

Let 1 < s < co. We say that u € W2*(Q) is a strong solution of the

loc
quasilinear equation

—Au+ H(z,u,Du) = f in Q, (E)
if
—Au(z) + H(z,u(z),Du(z)) = f(z) almost everywhere in €.

We prove some results on the existence of strong solutions u € W,2OC°°( Q) of

the equation (E), blowing up on the boundary 9. Note also that only the general
condition u = +o00 on 9 is required.
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LOCAL GRADIENT ESTIMATES AND EXISTENCE OF ...

In order to prove this result, we proceed in several steps.
STEP 1.

In this first step we obtain a local estimate of the gradient in L* norm,
useful in the proof of the theorems of existence, where the topological fixed points
results of Leray-Schauder will be used (see [Gi-Tr], [La-Ur], [Se] and [Di-Lel]).

STEP 2.

In this step we construct a function u : Q@ — R' as the pointwise limit
of solutions of a suitable sequence of approximated problems. This function u is
a solution of our problem

—Au+ H(z,u,Du) = f in Q
(P)
u =400 on Of

STEP 3.

By using the local estimates obtained in the step 1 and some compactness
arguments we pass to the limit in the approximated problems showing the existence
of a strong solution of the problem (P).

Finally, we point out also that the strong solution of (P) constructed
via approximation is in addition the minimal classical solution of (P).

II. THE RESULTS.
STEP I.- A LOCAL ESTIMATE OF THE GRADIENT.

THEOREM 1 [Di-Lel].

Let uy,uz € W2°(92), be such that
—Auy(z) + H(z,u1(z), Duq(z)) < —Auy(z) + H(z,uz(z), Duz(z)) a.e.x in €,

(1)
and

lim sup % <1 when dist(z,0) — 0. (2)

Then
u1(z) < ug(z) ae. zin Q. (3)
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THEOREM 2 [Di-Lel].

Let us suppose that we have the structural hypotheses E;, 1 = 1,2,3. Let
v : RY — IR* be a continuous function with 4(0*) = 0 and satisfying the

following conditions:
®  ds
| o < 7o

where I'(r) = [7y(s)ds, satisfies the inequalities:
pon(r) < ey(T7H(@)TH(E/20)), 720, (4)

AB(r)=B(s) > (v+e)y(r—s), if r>s>0, (5)

for some positive constants ¢ and v.

Let u € W2°°() be a strong solution of (E), with f € L2(Q) and f > 0,

loc loc

then for every Q' CC Q we have
u(z) <C Vze (6)

where the constant C' depends only on the structural data of (E), €' and on the
L>°(Q') norm of f.

Furthermore, if Cy is the constant of (6) related to the date f then,

fi < fo implies Cy < Cfy,.

REMARK 2.

For the homogeneous choice ym(r) = r™, m > 0, the condition (), is
satisfied if m > 1, taking (4) the form

r2m/(m+1), (41)

ppu(r) < [c(2v)“ [1 + (u)_lN(2)(m—1)/2] m/2<m+1>]

furthermore, for this particular choice of ¥ we have that the uniform estimate (6)
can be written as:

u(z) < [(Cm(u))_l (W;_lﬁgﬁ)r/“-m

+ B (”H("Ov 0)||°°,Bn/2(-’to)

(6")

\ ) 7$€BR/2($0)7
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LOCAL GRADIENT ESTIMATES AND EXISTENCE OF ...

where ¢, (v) and 6y, are known constants that can be explicitly evaluated.
To conclude the first step, we show a local estimate of the gradient of any
strong solution of (E). As we shall see later on, this will play an essential role on

the proof of the existence of solutions of (P). We use the known method due to
S.Bernstein in 1910 (see [La-Li], [Se]). It consists in the study of the function

®(z) = |Du(z)|?, z € Q.

For the sake of simplicity, we will suppose in the proof, that the data are
smooth. We will omit the laborious processes of approximation that are needed by
the statement. Since we are interested in local estimates, we may restrict ourselves
to the class of functions of the form,

w(z) = p(2)®(z), = € Q,
with ¢ € C2°(Q) verifying 0 < ¢ < 1in 2 and ¢ = 1 in some subset of 2.

Our result is the following;:

THEOREM 3 (LOCAL ESTIMATE OF THE GRADIENT).

Let u € W2(Q)NW.L®(Q), 1< s < oo be a strong solution of (E), with

loc loc
fe Wlt’coo(g)a f>0and H: Q x Ry x RN — IR, a differentiable function
satisfying the conditions,
H"(z77'7Q) 20 qeRN (7)
ed 2 OH
H 4Ngq- 5=
im HEne) +4Ng- 5 (zne) (8)
=gl [1+ | (a,r,0)||
for every z € Q,r € R,.
Then for every § > 0 we have that:
|Du(z)| < cs if z€ Qs 9)

where Q_s5 = {¢ € Q : dist(z,00) > 6} and cs is a positive constant which
depends only on the upper estimates of u, f and Df in Q_j.
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PROOF

As in [La-Li], we consider ¢ € C°(2) verifying,
0<p<1 ¢=1in Qs and |Ap|<Cyp, |Dp}? <Cp? in Q,

where the constant C' depends only on §. Supposing that all the data are smooth,
we can argue about the function

w(z) = p(z)®(z), z €N

Our argument will use the differential expression

Lw = — Aw + 2¢|D*u|* + 20" (Dy - Dw) + 2¢ (Du . %g(:c, u, Du))

+ 2p|Du|*H,(z,u, Du) + Dw - %—H(ac,u,Du).
q

16n realizada por ULPGC. Biblioteca Uni

Using the repeated index convention, we will have the relations
Aw = Ap(D;u)? + 4D;pD;uD;ju + 2<p(ngu)é - 2<pDiuDijjy,
2¢|D?ul* = 2¢(Diju)?,
27!(Dy - D) = 2(Dy¢)(Dyu* +4DspDuDiyus

Duw - —a—{f—(z,u,Du) = (be . 6—H(:c,u,Du)) +@ (Dcp : gg(z,u,Du)) .
dq 0q 0q

Then, we can replace those terms in the definition of £ and obtain

Lw = — Ap(Diu)? — 2pD;uD;jju+ 20~ (Djp)*(Dju)?

0H
+2¢ (Du . 5ag_(z,u, Du)) + 2¢p®H,(z,u, Du) (10)

+p (Dd) . -a—Ii(:c,u,Du) + & (Dgo~ —aﬁ(x,u,Du)) .
9q 9q
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On the other hand, differentiating the equation (E) with respect to z; and
after multiplying by 2¢pD;u, we get

—2¢pD;uDjjju =2¢Du-Df — 2¢p (Du . %_H(z,u,Du)) —2¢p®H,(z,u, Du)
z
—p <D<I> . %—Z(z,u,Du))
after some simple simplifications, this last term leads to the expression

Lw = —(Ap)® + 2p(Du - Df) + |Dul? (Dcp . aa—Iq{(z,u,Du)) + 207Dy |*®.

As w is continuous in Q and vanishes on 9, there exists zo € Q such
that w(z) < w(zg), Vz € Q. Without loss of generality, we can suppose that z
belongs to the support of ¢, since, on the contrary the estimate (9) results clear.
We will show that w(zg) is bounded by a constant cs, in terms of the statement,

- since under these conditions we will have

|Du(z)|* < w(z) < w(zo) <5, Yz € s, (11)

which is what we want to prove in (9).

To simplify the notation, we can assume particularized all the computations
which follow in zy and we omit the z¢ term. As x¢ is an stationary point of the
function w, the definition of Lw leads to

£ = 8w + 26D + 26 (Du- 5L (2,0, D)) + 288, (2, u, Du)

OH
= —(Ap)®+2p(Du-Df)+ & (Dgo . —6—q—(a:,u,Du)) + 207 | Dy|?®.
(12)
Now, we try to get an upper bound of the right hand size of (12). By

using |A¢| < Cp, |Dyp|* < Cp? and the Cauchy-Schwarz inequality, we get the
relations

2¢(Du - Df) < 2¢|Du| |Df| < 2||Df||p®'/*
—(Ap)® < |Ap|® < Cp?,

® (Dgp . %—Z(z,u,Du)) < |Dy| ‘%—Z(m,u,Du) ®

aa_I:(uazaDu) ®<Cp ’%—I:(I,U,Du) (]
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(in this last estimate we use that 0 < ¢ < 1).

If we call C the maximum of the constants 2||Df|| and 3C, the expressions
(7) and (12) lead to

—Aw + 2¢|D?ul? + 2¢ (D“ . %—Z(",x,Du)) < Ce®? + Cpd

+Cy ‘a—H(x, u, Du)| ®.

Oq

The nature of the point zy implies that

3.
(13)

26iD%uf* +2¢ (Du- S (z,u,00)) < Cot+Co#7 1 ¢ ]%—f(x,u,nw

Due to Cauchy-Schwarz and Young inequalities and the equation (E) we
have

20| D2ul? > %‘P(Auf - %‘P{H(x,u,pu) pt

> (1/2N)p(H(z,u, Du))? — (1/N)p f*

= (1/2N)¢(H(z,u, Du))* — (1/N)el|fI|*.

Now, choosing ¢ as the maximum of the constants 2||f||* and 2NC, from
the previous inequality and (14) we have

@(H(z,u,Du))* + 4Ny (Du . %{{—(m,u,Du)) < cp 4 cp®!/?
T

L

+cp® + cp® laa—lqi(z, u, Du)

and therefore,

aa—H(m,u,Du) —cd—cd/?<c
q

(H(z,u,Du))* +4N (Du . %—f(m,u,Du)) —c®
(15)

(recall that ¢(z¢) > 0). *
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Finally, we can use a coercitivity argument to obtain (11). In fact, we
consider the continuous function F : RN — IR, defined by

F(@) =(H(aa,u(an), ) + 4N (0 G (aa,u(a0),))

—clgl®

OH
(o, u(z0),)| = cla” =l

from which (14) takes the form

F(|Du(zo)]) <.

The regularity hypotheses of H and (8) imply the relations:

iversitaria, 2017

OH
lim |q|? |=—(z,, ’ =0,
o lq| % (z,7,q)

and on
(H(I,T‘, q))2 + 4Nq ) E(l‘,?‘,q) —

1
=g | (z,n,q)

0.

Thus, we have proved that,

F(0) = (H(zo,u(z0),0))* and 'qlli_r‘nwf(Q)=°°,

© Del documento, de los autores. Digitalizacion realizada por ULPGC. Biblioteca Uniy

concluding (11) from the bound of the right hand size of (14).
REMARK 3.

The last result coincides with the result obtained in [La-Li, Appendix] for
the homogeneous choice H(z,r,q) = |¢|¥+ A,k > 1 and A > 0, considered there.
Results about the sublinear case are treated in [Ba-Di-Di].

REMARK 4.

The hypotheses (8) and (9) are close to the ones used in [Se], [Lil] and
[Li2].

REMARK 5.
Using approximation methods, we can extend the last result to the choice

H(z,r,q) = a(z)|q|* + AB(r), where k > 0,\ > 0, 8 is an increasing continuous
function and a € L*°(Q) is a continuous function.
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STEP II.- CONSTRUCTION OF THE FUNCTION U

PROPOSITION 4.

Let Q be a C%! domain in RN, suppose also that H verifies the structural
hypothesis E;, i =1,2,3, (7) and (8), '

H(z,0,0)=0 VzeQ

and H(z,r,q) < n(r)(1+]|q|?). Suppose furthermore that for some non decreasing
function n : R* — R*, (H),, (4) and (5) hold.

If f € Wh(Q), f > 0, then the approximated problem

loc

—Aup + H(z,u,Dugr) = fr, a.e. in £
ur =R, on 090,

(Pr)

with fr(z) = min{f(z), R}, has a unique solution ug € NC?*(Q).

PROOF.

Clearly fr € WH*°(Q), the sequence {fr} is increasing in R and fr — f,
in W;,e™(Q).

» On the other hand, the properties of H and the bounded nature of the
problem (Pg) allow us to say (via sub and super solutions method) that (Pr)
admits, at least, one classical solution ug € C%(Q) (see [AmH] and [Gi-Tr]). Also,
from Theorem 1, it follows that ug is the unique solution.

Moreover, the Comparison Theorem shows also that the sequence {ugr}g is
increasing on R. That is,

R < R, = UR, < UR,, in Q.

Now let z € §, fixed but arbitrary. We define u(z) by

u(z) = Rliinooug(x) = ;g%uR(z).

Since the sequence {ur}r is bounded by a constant which depends only on
L>™ norm of f (see Theorem 2), the monotonicity of the sequence {ugr}r allow
us to conclude that u is a well defined function in the open set 2.
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STEP III.- EXISTENCE OF THE STRONG SOLUTIONS OF (P)

THEOREM 5.
Let us suppose that H verifies the structural hypotheses E;, i = 1,2, 3, (7),
(8),
H(z,0,0) =0, Yz €Q

and H(z,r,q) < n(r)(1 + |g|?), for some increasing function n : RY — R*.
Suppose also that (H), , (4) and (5) hold.

If fe W1’°°(Q), f >0, then the problem (P) has, at least, one strong

loc

solution u € W2 ().

loc

PROOF.

We will prove that the function u constructed in the previous step is a
strong solution of (P). To do this, it is enough to prove that:

a) u€ W2P(Q) 1<p< oo

b) u verifies, in strong sense, the equation (E).

c) u satisfies the “boundary condition”.

Proof of a).

Let ' CC Q be fixed but arbitrary, we shall prove that u € W2P(Q'),
1<p<oo.

From the definition of v and Dominated Convergence Theorem, we obtain
that:
ugp — u, in LP(Q'),

On the other hand, the local estimates of ug in W1°°(Q)') and the
hypotheses H(z,r,q) < n(r)(1 + |g|?), allow us to obtain that:

u € Whe(Q)
and
Up — u, in WI’OO(Q’) (2)

Furthermore, since

Aup = H(z,ugp,Dugr) — fr

121
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is bounded in L*°(Q') independent of R. From Theorem 9.11, [Gi-Tr], we have
that if Q" cC Q' then:

[lurllwzr @y < C{llurllLe@) + ||ARlLr)} S M, 1 <p<oo, (1)
where M is independent of R.

Therefore, from (z) and (¢) (see [Br]), we have that

ueW2P(Q"), 1<p<oo
up — u, in WP(Q"), 1<p<oo (47)

Proof of b).
Let ' CcC Q.

From (i77), the continuity of the function H and from the convergence
fR — fv in LP(QI)’

we have that
Augp — H(z,ur,Dur) — fr

converges in LP(Q'), 1 < p < oo, to

Au— H(z,u,Du) — f

now, from the equation of the problem (Pg) and the uniqueness of the limit, it
follows that u verifies the equation (E) , in L?(Q'),1 < p < oo, and therefore u is
a strong solution of the equation. Moreover, from the equation (E) we obtain

that u € W2>(Q).

loc
Proof of c).
Finally, the condition

lim u(z) = oo
dist(z,00)—0

follows from the monotonicity of the sequence {ur}r, the fact that ug = R on
02 and from the continuity of u in .
This concludes the proof.
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LOCAL GRADIENT ESTIMATES AND EXISTENCE OF ...

PROPOSITION 6.

The function costructed in (15) is the minimal solution of (E). That is, if
v is a strong solution of (E) such that,

lim v(z) = 00
dist(z,00)—0

then,
u(z) <v(z), a.e. zin .

PROOF

If v is a strong solution of the problem (P), then from Theorem 1,
ugr(z) < v(z), a.e. zin .

therefore,
sup{ur(z) : R > 0} = u(z) < v(z), a.e. zinf.

REMARK 6.

Since f € C*('), for some a € (0,1), and ¢ — H(z,-,-) is Holder
continuous (see Theorem 3), we have that Au € CA(Q'), VQ' cC Q, for some
B € (0,1). From Schauder’s Theory (see for instance [Gi-Tr]) we also have that
the solution u of the problem (P), is a classical solution.
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