Rev. Acad. Canar. Cienc., XX (Núms. 1-2), 25-31 (2008) (publicado en septiembre de 2009)

SEMI GROUP OF QUASI-PROXIMAL MAPPINGS AND THEIR FIXED POINTS

Mantu Saha¹, R. Chikkala² & A. P. Baisnab³

Abstract

The purpose of this paper is to obtain some results on fixed point of certain proximally contractive semi-groups of mapping in a suppurated q-proximity space.

Introduction

On a quasi proximity space, concept of quasi-metrices and its associated topologies was first initialed by J. C. Kelly [4], R. D. Holmes [6] had studied semi-group of mappings of proximally mappings on a metric space. Some systematic study of quasi-proximity spaces and its associated topologies was made by Singal and Lal [2] and Jas and Banerjee [1]. Some allied results also appear in Jas and Baisnab [3]. Chikkala and Baisnab [8] had also proved some fixed point theorems in this connection. The aim of this paper is to obtain some results of fixed points of certain proximally contractive semi-groups of mappings in a separated quasi- proximity spaces. Also we demonstrate how the motion of gauges can be fruitfully employed in quasi-proximity spaces with positive character to derive some fixed point Theorems.

 Key Words: Semi group, quasi proximity space, proximally contractive mapping, fixed point
AMS Subject Classification: 47H10, 54H25.

¹Corresponding Author: Tel: +91 342 2657741; Fax: (091) 342 2530452 E-mail: mantusaha@yahoo.com (Mantu Saha) Before proving the main theorems we need some preliminaries.

Definition 1: A binary relation π on the power set P(X) of X is said to be a quasiproximity (q-proximity) on X if the following axioms are satisfied.

P.1. $A\pi(B \cup C)$ if and only if $A\pi B$ or $A\pi C$ and $(A \cup B)\pi C$ if and only if $A\pi C$ or $B\pi C$

P.2. $A\pi B \Rightarrow A \neq \phi \text{ and } B \neq \phi$

P.3. AI $B \neq \phi \Rightarrow A\pi B$

P.4. $A \not \pi B \Rightarrow$ there is a subset E of X such that $A \not \pi B$ and $(X | E) \not \pi B$.

For $A \subset X$, where (X, π) is a *q*-proximity space

 $\mathfrak{I}_{\pi} - cl(A) = \{x \in X : \{x\}\pi A\}$ describes a Kuratowski closure operator on X including a topology \mathfrak{I}_{π} on X.

A q-proximity π on X defines a q-proximity π^* on X by $A \pi^* B$ iff $B \pi A$: π^* is called the conjugate of π .

Definition 2. A set $X(\neq \phi)$ on which there are defined two topologies τ and v, is called a bi-topological space denoted by (X, τ, v) .

Example1. Let π be a quasi-proximity on X, and π^* be its conjugate on X, then $(X, \tau_{\pi}, \tau_{\pi^*})$ is a bitopological space, with topologies being \mathfrak{I}_{π} and \mathfrak{I}_{π} being T_1 while (X, π, π^*) is termed as a bi-quasi-proximity space.

Definition 3: A bitopological space (X, τ, v) is called pairwise Hausdorff (T_2) if for distinct points $x, y \in X$ there exists a τ -open set U and a v-open set V such that $x \in U$ and $y \in V$ and $U \cap V = \phi$.

Definition 4. A subfamily $\wp \subset \tau U \upsilon$ of a bitopological space (X, τ, υ) is called a pairwise open cover of X if it covers X.

Definition 5. A q-proximity space (X, τ) is said to be separated if and only if for $x, y \in X \{x\}\pi\{y\}$ implies x = y.

Definition 6: A quasi pseudometric d on X is called a gauge in (X,π) if for given $A \pi B$ and $\varepsilon > 0$ there exists $a \in A$ and $b \in B$ such that $d(a,b) < \varepsilon$.

Definition 7. A bitopological space (X, τ, v) is said to be compact if each pairwise open cover of it has a finite subcover.

Definition 8. Let (X,π) and (Y,π_1) be two quasi-proximity spaces. A mapping $f:(X,\pi) \to (Y,\pi_1)$ is called quasi-proximal iff $A\pi B$ implies $f(A)\pi_1 f(B)$. Note that f:

 $(X, \pi) \to (Y, \pi_1)$ is quasi-proximal iff $f: (X, \pi^*) \to (Y, \pi_1^*)$ is quasi-proximal.

Definition 9. Γ is called proximally contractive if for any gauge d and any $\varepsilon > 0$, there is a member $g \in \Gamma$ such that

 $d(x, y) \le \varepsilon$ implies $d(g(x), g(y)) < \varepsilon; x, y \in X$.

Definition 10. Two points and x and y of (X, π) is said to be proximal if for any gauge d and for any $\varepsilon > 0$, there is a member $g \in \Gamma$ satisfying $d(g(x), g(y)) < \varepsilon$.

Lemma 1. For any gauge d on a quasi-proximity space (X, π) and $\varepsilon > 0$. Let

 $B_{d,\varepsilon} = \{ (x, y) \in X \times X : d(x, y) < \varepsilon \}.$ Then $B_{d,\varepsilon}$ is a $\tau_{\pi \times \pi^*}$ neighborhood base for the diagonal set $\Delta(x)$ in $(X \times X, \tau_{\pi \times \pi^*})$.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Lemma 2. If (X, π) is a separated quasi-proximity space, then

 $\tau_{\pi \times \pi^*} - cl(\Delta(X)) = \Delta(X) \,.$

Theorem 1. Let (X, π) be separated and $(X, \tau_{\pi}, \tau_{\pi^*})$ is compact and pairwise T_2 . If for any $x \in X$ and $f \in \Gamma, x$ and f(x) are proximal, then f has a fixed point in X.

Proof: Let Δ denote the family of gauges to generate π in X. Since x and f(x) are proximal we find a member, say, $g_k \in \Gamma$ satisfying $d(g_k(x), g_k(f(x))) < \varepsilon$.

Put $N = \{B_{d,\varepsilon} : d \in \Delta, \varepsilon > 0\}$

where $B_{d,\varepsilon} = \{(x, y) \in X \times X : d * (x, y) < \varepsilon\}$

is a neighbourhood of (X). Then as in Lemma 1 $B_{d,\epsilon}$ is a neighbourhood base for (X). *N* is directed by set inclusion relation \subset .. So we consider $(g_k(x), g_k(f(x))) < \epsilon$ as a net in $(X \times X, \tau_{\pi \times \pi^*})$, which is compact by virtue of $(X, \tau_{\pi}, \tau_{\pi}^*)$ being assumed to be compact. Let $\{g_{k_i}(x), g_{k_i}(f(x)) < \varepsilon\}$ be a convergent subnet of $\{g_k(x), g_k(f(x))\}$ in $X \times X$. Put $\lim_{i} \{(g_{k_i}(x), g_{k_i}(f(x))) = (z, u) \in X \times X\}$.

Since the net is frequently in *N*, it follows that

$$(z,u) \in \int_{\mathbf{N}} \tau_{\pi \times \pi^*} - Cl(B_{d,\varepsilon}) \text{ i.e., } (z,u) \in \tau_{\pi \times \pi} - Cl(\Delta(x))$$

i.e., $(z,u) \in \Delta(x)$, by Lemma 2(1)

Hence z = u. From above we have $\lim_{k \to 0} g_{k_i}(x) = z$ and $\lim_{k \to 0} g_{k_i}(f(x)) = u$.

By continuity of $d: (X \times X, \tau_{\pi \times \pi^*}) \to (\Re, \tau_u)$ and using the fact that convergence of a sequence of reals to a real number with respect to usual topology of reals implies its convergence with respect to τ_{π} with limit unchanged.

For $d \in \Delta$ we have

$$d(z,u) = d\left(\lim_{i} g_{k_{i}}(x), \lim_{i} g_{k_{i}}(f(x))\right)$$
$$= d\left(\lim_{i} g_{k_{i}}(x), f\left(\lim_{i} g_{k_{i}}(x)\right)\right)$$
$$= d(z, f(z)).$$

As z = u by (1), we have d(u, f(u)) = 0.

That means $\{u\}\pi\{f(u)\}$. As π is separated we have f(u) = u.

Theorem 2: If π is a quasi-proximity on X and $(X, \tau_{\pi}, \tau_{\pi^*})$ is pairwise T_2 and compact and Γ is commutative semigroup of quasi-proximal mapping, then each pair of points in (X, π) is proximal.

Proof: Let Δ denote the family of all gauges to generate π on X.

Let $x, y \in X$ and assume that they are not proximal. Then for some $d \in D$ and r > 0, we have $\mu = \inf\{d(g(x), g(y)) : g \in G\}$. Then clearly, we have $\mu \ge r$. Take a member $g_1 \in G$ such that $\mu \le d(g_1(x), g_1(y)) < 2\mu$.

Put $\mu_1 = \inf \left\{ d \left(g \ g_1(x), g \ g_1(y) \right) : g \in G \right\}$. Then we have $r \le \mu \le \mu_1 < 2\mu_1$. Next take a g_2 from Γ such that $\mu_1 \le d \left(g_2 g_1(x), g_2 g_1(y) \right) < \min 1 + \frac{1}{2} \ \mu_1, 2\mu$. Put $\mu_2 = \inf \left\{ d \left(g \ g_2 g_1(x), g \ g_2 \ g_1(y) \right) : g \in G \right\}$.

Then we have $\mu_1 \le \mu_2 < \min(1 + \frac{1}{2} \ \mu_1, \ \mu_2)$, continuing this process we produce a sequence $\{f_n\} \in G$ and a sequence satisfying (i) $\mu \le \mu_n \le \mu_{n+1} < 2\mu$

(ii) $\mu_n = \inf\{d(gf_n(x), gf_n(y) : g \in \}, \text{ where } f_n = g_n g_{n-1} \dots g_2 g_1;$

(iii)
$$\mu_{n+1} < 1 + \frac{1}{n+1} \ \mu_n.$$

Let us now consider sequences $\{f_n(x)\}$ and $\{f_n(y)\}$. Since $(X, \tau_{\pi}, \tau_{\pi}, \tau_{\pi})$ is compact, (X, τ_d) is also compact where (X, τ_d) is the induced topology on X by d.

Hence there is a subsequence $\{n_i\}$ of positive integers such that $\{f_{n_i}(x)\}, \{f_{n_i}(y)\}$ and $\{\mu_{n_i}\}$ are convergent.

Put $\lim_{i} f_{n_i}(x) = u$, $\lim_{i} f_{n_i}(y) = v$, and $\lim_{i} \mu_{n_i} = \alpha$.

Clearly, $\alpha \ge \mu \ge r$.

Also we have

$$\frac{\mu_{n_i}}{1+\frac{1}{n_i}} \leq \mu_{n_i-1} \leq d\left(f_{n_i}\left(x\right), f_{n_i}\left(y\right)\right)$$
$$\leq 1+\frac{1}{n_i} \quad \mu_{n_i}$$

.....(2)

Taking limit as $i \to \infty$ in (2) one get $d(u, v) = \infty$.

If g is any member of Γ , we have by continuity of g,

$$\lim_{i\to\infty} d\left(g f_{n_i}(x), gf_{n_i}(y)\right) = d\left(g(u), g(v)\right).$$

Since $d(g f_{n_i}(x), g f_{n_i}(y)) \ge \mu_{n_i}$ always, we have,

 $d(g(u), g(v)) \ge \alpha$, a contradiction that Γ is proximally contractive. The proof is now complete.

Theorem 3. Let π be separated quasi-proximity on X and the bitopological space $(X, \tau_{\pi}, \tau_{\pi^*})$ is compact and pairwise T_2 . Let Γ denote a commutative semigroup of quasi proximal mapping on (X, π) such that Γ is proximally contractive. Then Γ has a unique common fixed point.

Proof: Let $f \in \Gamma$ and $x \in X$. By Theorem 2, x and f(x) are proximal, and Theorem 1 applies. If I denotes the identity mapping belonging to Γ . The subfamily (I, f) now possesses a common fixed point. We show that every finite subfamily of Γ has a common fixed point.

Let
$$\{f_1, f_2, \dots, f_m\} \subset \Gamma$$
.

Since z and f(z) are proximal, there is a net $\{g_{k_i}\}, g_{k_i} \in \Gamma$ as can be seen in the proof of Theorem 1, such that $\lim_{i \to k_i} g_{k_i}(z) = u(\text{say})$.

For $1 \le j \le m$, we have

$$f_{j}(u) = \lim_{i} f_{i}g_{k_{i}}(z)$$
$$= \lim_{i} g_{k_{i}}f_{i}(z)$$
$$= \lim_{i} g_{k_{i}}(z)$$
$$= u.$$

Hence *u* is a common fixed point of $\{f_1, f_2, ..., f_m\}$. Now suppose $f \in \Gamma$ and let $\Phi(f)$ denote the set of fixed points of *f* in (X, π) . If *x* is an accumulation point of $\Phi(f)$, let $\{x_k\}$ be a net in $\Phi(f)$ such that $\lim_{k \to \infty} x_k = x$.

By continuity of f, we have

$$\lim f(x_k) = f(x)$$

i.e., $\lim_{k} x_{k} = f(x)$, since $x_{k} \in \Phi(f)$

i.e., x = f(x), since (X, π, π^*) is pairwise T_2 . Hence $\Phi(f)$ is τ_{π} -closed.

Finally, let $\Phi = \{ \Phi(f) : f \in \Gamma \}$

By argument above Φ has finite intersection property, by compactness of (X, τ_{π}) , the set

 $\Phi = \{ I \ \Phi(f) : f \in \Gamma \} \neq \phi$

Let $x, y \in \Phi$ with $x \neq y$. Since (X, π) is separated we have

d(x, y) = r > 0(3)

for some gauge d for (X,π) . Since Γ is proximally contractive we have

d(g(x), g(y)) < r for some member $g \in \Gamma$,

i.e., d(x, y) < r. This is the desired contradiction in view of (3). Hence Φ is a singleton i.e. the family possesses a unique common fixed point in *X*.

References:

- 1. Jas Manoranjan and Banerjee Chhanda, Quasi-proximity and associated bitopological spaces, Indian J. Pure Appl. Math, 1988, 12(8), 945.
- 2. Singal M. K. and Lal Sundar, Biquasi-proximity spaces and compactification of a pairwise proximity space, Kyunpook Math. Jr.,1973, 13 (1), 41.
- 3. Jas Manoranjan and Baisnab A. P., Positive definiteness in Quasi-proximity spaces and Fixed point theorems ,Bull. Cal. Math. Soc. 1988, 80, 153.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

- 4. Kelly J. C., Bitopological spaces, Proc. Lond. Math. Soc., 1963, 13(3), 71.
- 5. Kelly J. L., General Topology, D. Van Nostrand Company. Inc., 1955.
- 6. Holmes R. D., On contractive semigroups, Pacific Jr. of Math., 1971, 37 (3), 701.
- 7. Bhakta P.C. and Chakrabarti B., On contractive semigroups of mappings on uniform spaces, Bull of the institute of Mathematics Academia Sinica, 1990,18.
- Chikkala Raghu and Baisnab A. P., Fixed point theorems in quasi –proximity spaces, Journal of the Indian Math. Soc., 1997, 63(1-4), 235.

Address for communication:

- Department of Mathematics, The University of Burdwan, Burdwan-713104, W. B., India.
- Department of Mathematics ,Burdwan Raj College , Burdwan 713 104, West Bengal, India.
- Department of Mathematics, Bengal Engineering and Science University, Shibpur, Howrah-711 103, West Bengal, India