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SEMI GROUP OF QUASI-PROXIMAL MAPPINGS 
AND THEIR FIXED POINTS 

Mantu Saha', R. Chikkala2 & A. P. Baisnab' 

Abstract 

The purpose of this paper is to obtain sorne results on fixed point of certain proxirnally 

contractive semi-groups of mapping in a suppurated q -proxirnity space. 

Introduction 

On a quasi proximity space, concept of quasi-metrices and its associated topologies was 

first initialed by J. C. Kelly [ 4], R. D. Holrnes [6] had studied serni-group of rnappings of 

proximally rnappings on a metric space. Sorne systematic study of quasi-proximity spaces 

and its associated topologies was rnade by Singa! and La! [2] and Jas and Banerjee [1]. 

Sorne allied results also appear in Jas and Baisnab [3]. Chikkala and Baisnab [8] had also 

proved sorne fixed point theorerns in this connection. The aim of this paper is to obtain 

sorne results of fixed points of certain proximally contractive serni-groups of mappings in 

a separated quasi- proximity spaces. Also we demonstrate how the rnotion of gauges can 

be fruitfully employed in quasi-proxirnity spaces with positive character to derive sorne 

fixed point Theorerns. 
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Before proving the main theorems we need sorne preliminaries. 

Definition 1: A binary relation ;ron the power set P(X) of X is said to be a quasi-

proximity ( q -proximity) on X if the following axioms are satisfied. 

P.l. A;r(BUC)if and only if A;rBor A;rCand (AUB);rCif and only if A;rCor 

B;rC 

P.2. A;rB ==:> A :t. 9and B :t. 9 

P.3. A I B:t <J> ==:> A;rB 

P.4. A J( B ==:> there is a subset E of X such that A J( B and (X 1 E) J( B. 

For A e X, where (X,;r) is a q-proximity space 

g" -cl(A) = {xE X: {x};rA} describes a Kuratowski closure operator on X including a 

topology g" on X. 

A q -proximity ;r on X defines a q -proximity ;r' on X by A ;r' B iff B ;r A: ;r' 1s 

called the conjugate of ;r. 

Definition 2. A set X (:f. 9) on which there are defined two topologies r and v, is 

called a bi-topological space denoted by (X, r , v). 

Examplel. Let 7t be a quasi-proximity on X, and 1C* be its conjugate on X, then 

(X,""' r,,..) is a bitopological space, with topologies being 3,,. and g ". being T., while 

(X, 1{, 1C*) is termed as a bi-quasi-proximity space. 

Definition 3 : A bitopological space (X, T, v) is called pairwise Hausdorff (T2) if for 

distinct points x, y E X there exists a r-open set U and a v-open set V su ch that x E U 

and y E V and U íl V = 9. 

Definition 4. A subfamily g;J e rU v of a bitopological space (X, T, v) is called a 

pairwise open cover of X if it covers X. 

Definition 5. A q-proximity space (X, r) is said to be separated if and only if for 

x,yE X {x};r{y} implies x =y. 

Definition 6: A quasi pseudometric don X is called a gauge in (X,.n') if for given 

A ;r B and E> O there exists a E A and bE B such that d(a,b) <E. 
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Definition 7. A bitopological space (X, r, v) is said to be compact if each pairwise open 

cover of it has a finite subcover. 

Definition 8. Let (X, tr) and (Y, tr1) be two quasi-proximity spaces. A mapping 

f:(X,tr)~(Y,tr1 ) iscalledquasi-proximaliff AtrB implies f(A)tr¡f(B).Notethatf: 

(X, 1t) ~(Y, tri) is quasi-proximal iff f: (X ,tr*) ~ (Y,tr1• ) is quasi-proximal. 

Definition 9. Tis called proximally contractive if for any gauge d and any e> O, there 

is a member g E Tsuch that 

d(x, y)::; t: implies d (g(x), g(y)) < t: ;x, y E X. 

Definition 10. Two points and x and y of (X, tr) is said to be proximal if for any gauge 

d and for any t:> O, there is a member g E r satisfying d(g(x), g(y)) <E. 

Lemma l. For any gauge don a quasi-proximity space (X, ít) ande> O. Let 

Bd,< ={(x,y)E XxX :d(x,y)<t:}. Then Bd,eis a r,m,. neighborhood base 

for the diagonal set L1(x) in (X x X, r m<Jr) . 

Lemma 2. If (X, tr) is a separated quasi-proximity space, then 

r m' -cl(L1(X)) = L1(X). 

Theorem l. Let (X, ít) be separated and (X,""' r". ) is compact and pairwise T2 . If for 

any xE X and f E r , x andfix) are proximal, then f has a fixed point in X. 

Proof: Let L1 denote the family of gauges to generate trin X. Since x andfix) are proximal 

we find a member, say, g k E r satisfying d ( gk ( x), gk (! ( x))) <e. 

Put N ={Bd,< :dEL1,t:>O} 

where Bd,< ={(x,y)E XxX :d*(x,y)< t:} 

is a neighbourhood of (X). Then as in Lemma 1 Bd.e is a neighbourhood base for (X). 

N is directed by set inclusion relation c.. So we consider ( g k ( x), g k ( f ( x))) <e as a 

net in (X x X, r m<Jr' ) , which is compact by virtue of (X, r", r" · ) being assumed to be 
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compact. Let { g k; ( x), g k; ( f ( x)) <E} be a convergent subnet of 

{ g k (X) , g k ( f (X))} in X X X. 

Put lifU{(gk; (x), gk; (f (x))) = (z,u )E X x X}. 
Since the net is frequently in N, it follows that 

(z,u)E N T""". -ct(Bd,E ) i.e., (z,u)E T"""-Cl(~(x)) 

i.e., ( z, u) E ~ ( x), by Lemma 2 

Hence z =u. From above we have lim gk; ( x) = z and lim gk, (f ( x)) =u. 
1 1 

.. .... .. (1) 

By continuity of d : (X x X, r """. ) ~ (9\, r") and using the fact that con vergence of a 

sequence of reals to a real number with respect to usual topology of reals implies its 

convergence with respect to r"with limit unchanged. 

For d E ~we have 

d(z,u)=d(lifllgk, (x),Iif118k, (j(x))) 

= d ( lifll g k; (X) ,f ( lifll g k, (X)) ) 

=d( z,f(z)). 

As z =u by (1), we have d(u,f(u)) =O. 

That means {u}Jr{f(u)}. As Jris ~eparated we have f(u) =u. 

Theorem 2: If Jr is a quasi-proximity on X and (X, r", r"*) is pairwise T2 and compact 

and I'is commutative semigroup of quasi-proximal mapping, then each pair of points in 

(X ,Jr) is proximal. 

Proof: Let LI denote the family of all gauges to generate Jron X . 

Let x, y E X and assume that they are not proximal. Then for sorne d E O and r > O, we 

have µ=inf{d(g(x) , g(y)):gE G}. Then clearly, we have µ?.r. Take a member 

g 1 E G suchthat µ:s;d(g 1(x),g 1 (y))<2µ. 
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1 
1+- µ., ,2µ 

2 

. 1 
Then we ha ve µ., ~ µ, < min 1 + - µ 1, µ 2 , continuing this process we produce a 

2 

sequence { Ín } E G and a sequence satisfying 

(i) µ ~ µn ~ µn+I < 2µ 

('" ) 1 1 lll µn+I < +-- µ n. 
n+l 

Let us now consider sequen ces Un (x)} and Un (y)}. Sin ce (X, T,, , r,,. ) is compact, 

(X, Td) is also compact where (X, Td) is the induced topology on X by d. 

Hence there is a subsequence { n;} of positive integers such that 

{!n, ( x)}, {!n; (y)} and {µ n; } are convergent. 

Put lim fn (x) =u, Iimfn (y) =v, and limµ" =a .. 
1 1 t 1 / 1 

Clearly, a~µ~ r. 

Also we have 

µn,l ~µn,- 1 ~d(fn; (x), Ín; (y)) 
l+ -

n¡ 

1 
~ l+- µn 

n. ' 
1 

Taking limitas i ---7oc in (2) one get d (u, v) =oc. 

If gis any member of r, we ha ve by continuity of g , 

!~~ d ( g Ín, (X) , g Ín; ( Y)) = d ( g (U) , g (V)) . 

Since d(g Í n, (x), gfn;(Y))~µn; always,wehave, 
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d ( g (u), g ( v)) :;=::a, a contradiction that I' is proximally contractive. The proof is now 

complete. 

Theorem 3. Let 1í be separated quasi-proximity on X and the bitopological space 

(X , T;r, rlt') is compact and pairwise ~ . Let I' denote a commutative semigroup of quasi 

proximal mapping on (X , 7tJ such that I' is proximally contractive. Then I' has a unique 

common fixed point. 

Proof: Let f E I' and x E X. By Theorem 2, x andf(x) are proximal, and Theorem 1 

applies. If I denotes the identity mapping belonging to I' .The subfamily (/, f) now 

possesses a common fixed point. We show that every finite subfamily of I'has a common 

fixed point. 

Since z and fiz) are proximal, there is a net { g k,} , g k, E I' as can be seen in the proof of 

Theorem 1, such that lim gk, ( z) =u ( say ). 
1 

For 1 -:5.j -:5. m, we have 

= limgk, ( z) 
1 

=u. 

Hence u is a common fixed point of { J;, f 2 ,. • ., f m} . N ow suppose f E I' and let 

<l> (f) denote the set of fixed points of f in (X ,n-). If x is an accumulation point of 

<l> (f), let {xk} be a net in <l> (f) such that Iimxk = x. 
k 

By continuity of f, we have 

lim f ( xk ) = f ( x) 

i.e., lim xk = f ( x), since xk E <1> (f) 
k 

i.e., x = fix), since (X ,n,n' ) is pairwise T;_. Hence <l> (f) is T;r - closed. 

Finally, let <l>={<l> (f): f En 
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By argurnent above <I> has finite intersection property, by cornpactness of (X, r,,.), the set 

Let x, y E <I> with x =f:. y. Since (X ,1l) is separated we have 

d(x,y)=r>O 

for sorne gauge d for (X ,1l). Since I'is proxirnally contractive we have 

d(g(x), g(y)) < r for sorne rnernber g E I', 

.. .. .... .. (3) 

i.e. , d(x, y) < r. This is the desired contradiction in view of (3). Hence <I> is a singleton 

i.e. the family possesses a unique comrnon fixed point in X . 
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