Rev. Acad. Canar. Cienc., XX (Núms. l-2), 25-31 (2008) (publicado en septiembre de 2009)

SEMI GROUP OF QUASI-PROXIMAL MAPPINGS AND THEIR FIXED POINTS

Mantu Saha', R. Chikkala2 & A. **P. Baisnab'**

Abstract

The purpose of this paper is to obtain some results on fixed point of certain proximally contractive semi-groups of mapping in a suppurated q-proximity space.

Introduction

On a quasi proximity space, concept of quasi-metrices and its associated topologies was first initialed by J. C. Kelly [4], R. D. Holmes [6] had studied semi-group of mappings of proximally rnappings on a metric space. Sorne systematic study of quasi-proximity spaces and its associated topologies was made by Singal and Lal [2] and Jas and Banerjee [1]. Sorne allied results also appear in Jas and Baisnab [3]. Chikkala and Baisnab [8] had also proved sorne fixed point theorerns in this connection. The aim of this paper is to obtain sorne results of fixed points of certain proximally contractive serni-groups of mappings in a separated quasi- proximity spaces. Also we demonstrate how the rnotion of gauges can be fruitfully employed in quasi-proximity spaces with positive character to derive some fixed point Theorems.

Key Words: Semi group, quasi proximity space, proximally contractive mapping, fixed point **AMS Subject Classification:** 47H10, 54H25.

¹Corresponding Author: Tel: +91 342 2657741; Fax: (091) 342 2530452 E-mail: **mantusaha@yahoo.com** (Mantu Saha)

Before proving the main theorems we need some preliminaries.

Definition 1: A binary relation π on the power set $P(X)$ of X is said to be a quasiproximity (*q* -proximity) on *X* if the following axioms are satisfied.

P.1. $A\pi(BUC)$ if and only if $A\pi B$ or $A\pi C$ and $(AUB)\pi C$ if and only if $A\pi C$ or $B\pi C$

P.2. $A\pi B \Rightarrow A \neq \phi$ and $B \neq \phi$

P.3. *A* I $B \neq \phi \Rightarrow A \pi B$

P.4. *A* π *B* \Rightarrow there is a subset *E* of *X* such that *A* π *B* and $(X | E) \pi B$.

For $A \subset X$, where (X,π) is a q-proximity space

 \Im _r $-cl(A) = \{x \in X : \{x\} \pi A\}$ describes a Kuratowski closure operator on X including a topology \mathfrak{S}_π on X.

A *q*-proximity π on *X* defines a *q*-proximity π ^{*} on *X* by *A* π ^{*}*B* iff *B* π *A*: π ^{*} is called the conjugate of π .

Definition 2. A set $X(\neq \phi)$ on which there are defined two topologies τ and v , is called a bi-topological space denoted by (X, τ, v) .

Example1. Let π be a quasi-proximity on X, and π^* be its conjugate on X, then $(X, \tau_{\pi}, \tau_{\pi^*})$ is a bitopological space, with topologies being \mathfrak{S}_{π} and \mathfrak{S}_{π} being T_1 while (X, π, π^*) is termed as a bi-quasi-proximity space.

Definition 3 : A bitopological space (X, τ, v) is called pairwise Hausdorff (T_2) if for distinct points $x, y \in X$ there exists a *t*-open set U and a v-open set V such that $x \in U$ and $v \in V$ and $U \cap V = \emptyset$.

Definition 4. A subfamily $\wp \subset \tau U \nu$ of a bitopological space (X, τ, ν) is called a pairwise open cover of *X* if it covers *X.*

Definition 5. A q-proximity space (X, τ) is said to be separated if and only if for $x, y \in X \{x\}$ $\pi \{y\}$ implies $x = y$.

Definition 6: A quasi pseudometric d on X is called a gauge in (X,π) if for given *A* π *B* and ε > 0 there exists $a \in A$ and $b \in B$ such that $d(a,b) < \varepsilon$.

Definition 7. A bitopological space (X, τ, v) is said to be compact if each pairwise open cover of it has a finite subcover.

Definition 8. Let (X, π) and (Y, π) be two quasi-proximity spaces. A mapping $f:(X,\pi)\to(Y,\pi_1)$ is called quasi-proximal iff $A\pi B$ implies $f(A)\pi_1 f(B)$. Note that f:

 $(X, \pi) \rightarrow (Y, \pi_1)$ is quasi-proximal iff $f:(X, \pi^*) \rightarrow (Y, \pi_1^*)$ is quasi-proximal.

Definition 9. *T* is called proximally contractive if for any gauge d and any $\varepsilon > 0$, there is a member $g \in \Gamma$ such that

 $d(x, y) \leq \varepsilon$ implies $d(g(x), g(y)) < \varepsilon$; $x, y \in X$.

Definition 10. Two points and x and y of (X,π) is said to be proximal if for any gauge d and for any $\varepsilon > 0$, there is a member $g \in \Gamma$ satisfying $d(g(x), g(y)) < \varepsilon$.

Lemma 1. For any gauge d on a quasi-proximity space (X, π) and $\varepsilon > 0$. Let

 $B_{d,\varepsilon} = \{(x,y) \in X \times X : d(x,y) < \varepsilon\}$. Then $B_{d,\varepsilon}$ is a $\tau_{\pi \times \pi^*}$ neighborhood base for the diagonal set $\Delta(x)$ in $(X \times X, \tau_{\pi \times \pi^*})$.

Lemma 2. If (X, π) is a separated quasi-proximity space, then

 $\tau_{\tau \circ \tau^*} -cl(\Delta(X)) = \Delta(X)$.

Theorem 1. Let (X, π) be separated and $(X, \tau_{\pi}, \tau_{\pi^*})$ is compact and pairwise T_2 . If for any $x \in X$ and $f \in \Gamma$, x and $f(x)$ are proximal, then f has a fixed point in X.

Proof: Let Δ denote the family of gauges to generate π in X. Since x and $f(x)$ are proximal we find a member, say, $g_k \in \Gamma$ satisfying $d(g_k(x), g_k(f(x))) < \varepsilon$.

Put $N = \{B_{d,\varepsilon} : d \in \Delta, \varepsilon > 0\}$

where $B_{d,\varepsilon} = \{(x, y) \in X \times X : d^*(x, y) < \varepsilon\}$

is a neighbourhood of (X). Then as in Lemma 1 $B_{d,\epsilon}$ is a neighbourhood base for (X). N is directed by set inclusion relation \subset .. So we consider $(g_k(x), g_k(f(x))) < \varepsilon$ as a net in $(X \times X, \tau_{\tau \times \tau^*})$, which is compact by virtue of $(X, \tau_{\tau}, \tau_{\tau}^*)$ being assumed to be

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017 © Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017 compact. Let ${g_k(x), g_k(f(x)) < \varepsilon}$ be a convergent subnet of ${g_k(x), g_k(f(x))\}\$ in $X\times X$. Put $\lim_{k \to \infty} \{ (g_{k_k}(x), g_{k_k}(f(x))) = (z, u) \in X \times X \}.$

Since the net is frequently in N , it follows that

$$
(z, u) \in \mathcal{T}_{\pi \times \pi^*} - Cl(B_{d, \varepsilon}) \text{ i.e., } (z, u) \in \mathcal{T}_{\pi \times \pi} - Cl(\Delta(x))
$$

i.e., $(z, u) \in \Delta(x)$, by Lemma 2

Hence $z = u$. From above we have $\lim_{i} g_{k_i}(x) = z$ and $\lim_{i} g_{k_i}(f(x)) = u$.

By continuity of $d:(X\times X,\tau_{\pi\times\pi^*})\to (\Re,\tau_u)$ and using the fact that convergence of a sequence of reals to a real number with respect to usual topology of reals implies its convergence with respect to τ_{π} with limit unchanged.

For $d \in \Delta$ we have

$$
d(z, u) = d\left(\lim_{i} g_{k_i}(x), \lim_{i} g_{k_i}(f(x))\right)
$$

= $d\left(\lim_{i} g_{k_i}(x), f\left(\lim_{i} g_{k_i}(x)\right)\right)$
= $d(z, f(z)).$

As $z = u$ by (1), we have $d(u, f(u)) = 0$.

That means $\{u\}\pi\{f(u)\}\)$. As π is separated we have $f(u) = u$.

Theorem 2: If π is a quasi-proximity on *X* and (*X,* τ_{π} , τ_{π^*}) is pairwise T_2 and compact and Γ is commutative semigroup of quasi-proximal mapping, then each pair of points in (X,π) is proximal.

Proof: Let Δ denote the family of all gauges to generate π on X .

Let $x, y \in X$ and assume that they are not proximal. Then for some $d \in D$ and $r > 0$, we have $\mu = \inf \{d(g(x), g(y)) : g \in G\}$. Then clearly, we have $\mu \ge r$. Take a member $g_1 \in G$ such that $\mu \le d(g_1(x), g_1(y)) < 2\mu$.

Put $\mu_1 = \inf \{ d(g g_1(x), g g_1(y)) : g \in G \}$. Then we have $r \le \mu \le \mu_1 < 2\mu_1$. Next take a g_2 from Γ such that $\mu_1 \leq d(g_2 g_1(x), g_2 g_1(y)) < \min \{1 + \frac{1}{2} \mu_1, 2\mu \}$. Put $\mu_2 = \inf \{ d(g g_2 g_1(x), g g_2 g_1(y)) : g \in G \}.$

Then we have $\mu_1 \le \mu_2 < \min$ $1 + \frac{1}{2}$ μ_1 , μ_2 , continuing this process we produce a sequence ${f_n} \in G$ and a sequence satisfying (i) $\mu \le \mu_n \le \mu_{n+1} < 2\mu$

(ii) $\mu_n = \inf \{ d(gf_n(x), gf_n(y) : g \in \mathbb{R}^n : g_n g_{n-1} \dots g_2 g_1 : g_n g_n \}$

(iii)
$$
\mu_{n+1} < 1 + \frac{1}{n+1} \mu_n
$$
.

Let us now consider sequences $\{f_n(x)\}\$ and $\{f_n(y)\}\$. Since (X, τ_π, τ_π) is compact, (X, τ_d) is also compact where (X, τ_d) is the induced topology on X by d.

Hence there is a subsequence $\{n_i\}$ of positive integers such that ${f_{n_i}(x)}$, ${f_{n_i}(y)}$ and ${u_{n_i}}$ are convergent.

Put $\lim f_{n_i}(x) = u$, $\lim f_{n_i}(y) = v$, and $\lim \mu_{n_i} = \alpha$.

Clearly, $\alpha \geq \mu \geq r$.

Also we have

$$
\frac{\mu_{n_i}}{1 + \frac{1}{n_i}} \le \mu_{n_i - 1} \le d \left(f_{n_i} (x), f_{n_i} (y) \right)
$$

$$
\le 1 + \frac{1}{n_i} \mu_{n_i}
$$

......... (2)

Taking limit as $i \rightarrow \infty$ in (2) one get $d(u, v) = \infty$.

If g is any member of Γ , we have by continuity of g ,

$$
\lim_{i\to\infty}d\left(g\,\,f_{n_i}\left(x\right),\,\,g\,f_{n_i}\left(y\right)\right)=d\left(g\left(u\right),\,g\left(v\right)\right).
$$

Since $d(g f_{n_i}(x), g f_{n_i}(y)) \geq \mu_{n_i}$ always, we have,

 $d(g(u), g(v)) \ge \alpha$, a contradiction that Γ is proximally contractive. The proof is now complete.

Theorem 3. Let π be separated quasi-proximity on X and the bitopological space (X, τ_{π} , τ_{π}) is compact and pairwise T_2 . Let Γ denote a commutative semigroup of quasi proximal mapping on (X, π) such that Γ is proximally contractive. Then Γ has a unique common fixed point.

Proof: Let $f \in \Gamma$ and $x \in X$. By Theorem 2, *x* and $f(x)$ are proximal, and Theorem 1 applies. If I denotes the identity mapping belonging to Γ . The subfamily (I, f) now possesses a common fixed point. We show that every finite subfamily of Γ has a common fixed point.

Let
$$
\{f_1, f_2, ..., f_m\} \subset \Gamma
$$
.

Since *z* and $f(z)$ are proximal, there is a net $\{g_{k_i}\}\,$, $g_{k_i} \in \Gamma$ as can be seen in the proof of Theorem 1, such that $\lim_{k_i} g_{k_i}(z) = u(\text{say}).$

For $1 \leq j \leq m$, we have

$$
f_j(u) = \lim_i f_i g_{k_i}(z)
$$

=
$$
\lim_i g_{k_i} f_i(z)
$$

=
$$
\lim_i g_{k_i}(z)
$$

= u.

Hence *u* is a common fixed point of $\{f_1, f_2, ..., f_m\}$. Now suppose $f \in \Gamma$ and let $\Phi(f)$ denote the set of fixed points of f in (X,π) . If x is an accumulation point of $\Phi(f)$, let $\{x_k\}$ be a net in $\Phi(f)$ such that $\lim_k x_k = x$.

By continuity of f , we have

$$
\lim f\left(x_{k}\right) = f\left(x\right)
$$

i.e., $\lim_k x_k = f(x)$, since $x_k \in \Phi(f)$

i.e., $x = f(x)$, since (X, π, π^*) is pairwise T_2 . Hence $\Phi(f)$ is τ_{π} -closed.

Finally, let $\Phi = {\Phi(f) : f \in \Gamma}$

By argument above Φ has finite intersection property, by compactness of (X, τ_{π}) , the set

 $\Phi = \{ \overline{I} \ \Phi(f) : f \in \Gamma \} \neq \emptyset$

Let *x*, $y \in \Phi$ with $x \neq y$. Since (X, π) is separated we have

$$
d(x, y) = r > 0 \tag{3}
$$

for some gauge *d* for (X,π) . Since *I* is proximally contractive we have

 $d(g(x), g(y)) < r$ for some member $g \in \Gamma$,

i.e., $d(x, y) < r$. This is the desired contradiction in view of (3). Hence Φ is a singleton i.e. the family possesses a unique comrnon fixed point in *X* .

References:

- l. Jas Manoranjan and Banerjee Chhanda, Quasi-proximity and associated bitopological spaces, Indian J. Pure Appl. Math, 1988, 12(8), 945.
- 2. Singal M. K. and Lal Sundar, Biquasi-proximity spaces and compactification of a pairwise proximity space, Kyunpook Math. Jr.,1973, 13 (1), 41.
- 3. Jas Manoranjan and Baisnab A. P., Positive definiteness in Quasi-proximity spaces and Fixed point theorerns ,Bull. Cal. Math. Soc. 1988, 80, 153.

© Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

- 4. Kelly J. C., Bitopological spaces, Proc. Lond. Math. Soc.,1963, 13(3), 71.
- 5. Kelly J. L., General Topology, D. Van Nostrand Company. Inc., 1955.
- 6. Holmes R. D., On contractive semigroups, Pacific Jr. of Math.,1971, 37 (3), 701.
- 7. Bhakta P.C. and Chakrabarti B., On contractive semigroups of rnappings on uniform spaces, Bull of the institute of Mathematics Academia Sinica, 1990,18.
- 8. Chikkala Raghu and Baisnab A. P., Fixed point theorerns in quasi -proximity spaces, Joumal of the Indian Math. Soc., 1997, 63(1-4), 235.

Address for communication:

- 1. Department of Mathematics, The University of Burdwan, Burdwan-713104, W. B., India.
- 2. Department of Mathematics ,Burdwan Raj College, Burdwan 713 104, West Bengal, India.
- 3. Departrnent of Mathernatics, Bengal Engineering and Science University, Shibpur, Howrah-711 103, West Bengal, India