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SEMI GROUP OF QUASI-PROXIMAL MAPPINGS
AND THEIR FIXED POINTS
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Abstract
The purpose of this paper is to obtain some results on fixed point of certain proximally

contractive semi-groups of mapping in a suppurated g -proximity space.

Introduction

On a quasi proximity space, concept of quasi-metrices and its associated topologies was
first initialed by J. C. Kelly [4], R. D. Holmes [6] had studied semi-group of mappings of
proximally mappings on a metric space. Some systematic study of quasi-proximity spaces
and its associated topologies was made by Singal and Lal [2] and Jas and Banerjee [1].
Some allied results also appear in Jas and Baisnab [3]. Chikkala and Baisnab [8] had also
proved some fixed point theorems in this connection. The aim of this paper is to obtain
some results of fixed points of certain proximally contractive semi-groups of mappings in
a separated quasi- proximity spaces. Also we demonstrate how the motion of gauges can
be fruitfully employed in quasi-proximity spaces with positive character to derive some

fixed point Theorems.
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Before proving the main theorems we need some preliminaries.

Definition 1: A binary relation 7 on the power set P(X)of X is said to be a quasi-
proximity ( g -proximity) on X if the following axioms are satisfied.

P.1.  Azn(BUC)if and only if AxBor AnC and (AUB)zCif and only if AxC or
BrC

P2. AnB= A+ dand B+ ¢

P3. Al B#d= AnB

P4. A x B=>thereisasubset £ of X suchthat 4 # Band(X |E)#B.

For A c X, where (X, 7) is a g-proximity space

S, —cl(A)={xe X :{x}mwA} describes a Kuratowski closure operator on X including a
topology 3, on X.

A g-proximity 7 on X defines a g-proximity 7~ on Xby Az B iff BmA: n is
called the conjugate of .

Definition 2. A set X (#¢) on which there are defined two topologies 7 and v, is
called a bi-topological space denoted by (X,7,v).

Examplel. Let © be a quasi-proximity on X, and 7* be its conjugate on X, then
(X.7,.7,.) is a bitopological space, with topologies being 3, and S . being 7, while
(X, m, *) is termed as a bi-quasi-proximity space.

Definition 3 : A bitopological space (X,7,v) is called pairwise Hausdorff (7%) if for
distinct points X,y € X there exists a 7open set U and a v-open set V' such that xe U
and ye Vand UNV = ¢.

Definition 4. A subfamily g c7Uv of a bitopological space (X ,7, v) is called a

pairwise open cover of X if it covers X.

Definition 5. A ¢-proximity space (X,7) is said to be separated if and only if for
x,y€ X {x}x{y} implies x=y.
Definition 6: A quasi pseudometric don X is called a gauge in (X,7) if for given

A 7 B and £ >0 there exists ae 4 and be B such that d(a,b)< €.
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Definition 7. A bitopological space (X, 7, v) is said to be compact if each pairwise open
cover of it has a finite subcover.
Definition 8. Let (X,7)and (Y,7,)be two quasi-proximity spaces. A mapping
f:(X,m)— (Y,m) is called quasi-proximal iff AzB implies f(A)x, f(B). Note that f:
(X, m) = (Y, m) is quasi-proximal iff f:(X,7z*)— (Y,ﬂ'l*) is quasi-proximal.
Definition 9. 7is called proximally contractive if for any gauge d and any &> 0, there
is amember g € I'such that
d(x, y) < eimplies d (g(x), g(y))<é&;x,ye X.
Definition 10. Two points and xand y of (X,r) is said to be proximal if for any gauge
d and for any &> 0, there is a member ge /I satisfying d(g(x), g(y)) < €.
Lemma 1. For any gauge d on a quasi-proximity space (X, z) and £> 0. Let

B,.={(x.y)e XxX :d(x,y)<e}. Then B,_is a ,,,. neighborhood base
for the diagonal set A(x) in (XxX,7_ .).
Lemma 2. If (X, )is a separated quasi-proximity space, then

7 —cl(AX)=A(X).

Theorem 1. Let (X, 7) be separated and (X,7,,7,. ) is compact and pairwise7, . If for
any xe X and fe I, x and f{x) are proximal, then f has a fixed pointin X .

Proof: Let A denote the family of gauges to generate zin X. Since x and f(x) are proximal

we find a member, say, g, € I satisfying d(gk (x), & (f(x))) <E&.
Put N ={B,,:deA,e>0}
where B, , ={(x,y)e XxX :d*(x,y) < €}

is a neighbourhood of  (X). Then as in Lemma 1 B,_ is a neighbourhood base for (X).
N is directed by set inclusion relation c.. So we consider (gk (x), & (f (x))) <€ asa

netin (X XX, (. ), which is compact by virtue of (X ,r,,,r,,*)being assumed to be
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compact. Let{g, (), g, (f(x))<&]be aconvergent subnet of
{2:(x). g (f(x))} inXxX.

Put li,m{(gki (), & (f(x))) =(z,u)e X x X}.
Since the net is frequently in 4, it follows that

(z,u)e | B -CI(B,, ) ie., (z.u)e7,,—Cl(A(x))
ie, (z,u)e A(x), byLemma2 (1)
Hence z = u. From above we have lim g, (x)=z and limg, (f(x))=u.

By continuity of d:(XxX ,T,W.)—>(EK, 7,)and using the fact that convergence of a

sequence of reals to a real number with respect to usual topology of reals implies its
convergence with respect to 7, with limit unchanged.

For d € Awe have

d(z.u)=d(limg, (x).limg, (f(x))
=d(limg, (x).f (limg, () )

=d(z, f(2)).

As z=u by (1), we have d(u, f(u)) = 0.

That means {u}z{f(u)}. As wis separated we have f(u)=u.

Theorem 2: If 7 is a quasi-proximity on X and (X, 7 7) is pairwise 7, and compact
and 7"is commutative semigroup of quasi-proximal mapping, then each pair of points in
(X, ) is proximal.

Proof: Let A denote the family of all gauges to generate 7on X .

Let x,ye X and assume that they are not proximal. Then for some de D and r> 0, we

have ,u=inf{d(g(x),g(y)):ge G} . Then clearly, we have x>r. Take a member

g€ G suchthat #<d(g(x).g (y))<2u
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Put u = inf{d(g g (x).8 &(y)):ge G}. Then we have r<pu<pu <2u,. Next

take a g, from 7 such that Sd(gzg1 (x), gzgl(y))<min 1+% W20

Put 4, = inf {d(g 2,8(%). 8 & gl(y)):geG}.
Then we have g </, <min '1+% M,, i, , continuing this process

sequence { f,} € G and a sequence satisfying
() usp, <l <2u
(i) p, =inf{d(gf,(x).&f,(y): g€ }, where f, =g g ..8,8;

1
il < 14— u,.
( ) #ﬂ+1 n+1 ﬂn

we produce a

Let us now consider sequences {f,(x)} and {f (y)}. Since (X ,z'”,‘r”.)is compact,

(X, 7,)is also compact where (X,7,) is the induced topology on X by d .

Hence there is a subsequence {n;} of positive integers
{ £ (x)} { £, ( y)} and { ﬂn,.} are convergent.
Put lim f, (x) =u, limf, (y)=v, and limu, =o..

Clearly, a=z u=r.

Also we have

b <, <d(f, (). £,(9)

14—
n:

i

"

Sl+i,u
n

Taking limit as i —o< in (2) one get d (u, V) =o< .

If gis any member of 7 we have by continuity of g,
limd (g £, (x). &, (v)=d(g(u). g(v))-

Since d(g £ (%), gf, (y)) > u, always, we have,
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d(g(u), g(v))=e, acontradiction that /" is proximally contractive. The proof is now

complete.

Theorem 3. Let 7 be separated quasi-proximity on X and the bitopological space

(X ,7s Tp) is compact and pairwise T2 . Let 7" denote a commutative semigroup of quasi

proximal mapping on ( X , 7) such that /" is proximally contractive. Then /" has a unique
common fixed point.

Proof: Let fe/ and x € X . By Theorem 2, x and f(x) are proximal, and Theorem 1
applies. If I denotes the identity mapping belonging to 7/~ .The subfamily (7, f) now

possesses a common fixed point. We show that every finite subfamily of /7 has a common

fixed point.
Let{f,, fo,-.. [} T.

Since z and f(z) are proximal, there is a net { gki}, 8, € I" as can be seen in the proof of
Theorem 1, such that lim g, (z)=u(say).
For 1 <j <m, we have
f;(u)=lim f,g, (z)
=limg, f,(z)

=limg, (Z)

=Uu.

Hence u is a common fixed point of {f,, f,,....f,}. Now suppose f €/ and let
@ (f)denote the set of fixed points of f in (X,z). If x is an accumulation point of
D (f), let {x;} be anetin ®(f) such that li{nxk —d
By continuity of f, we have

lim f(x,)= f(x)
ie., lilfnxk = f(x), sincex, € ®(f)
i.e., x=f(x), since (X,7,7) is pairwise T,.Hence @(f) is 7 - closed.

Finally, let ®={®(f): fe I}
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By argument above @ has finite intersection property, by compactness of (X,7,), the set

o=(1 O(f): feN#P

Letx,ye® withx#y . Since (X,r) is separated we have

dix,y)=r>0 3)

for some gauge 4 for (X,z). Since / is proximally contractive we have

d(g(x),g(y)) <r for some member ge I,

i.e., d(x, y) < r. This is the desired contradiction in view of (3). Hence @ is a singleton

i.e. the family possesses a unique common fixed point in X .

SO thl
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