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ABSTRACT 

In the present paper we study the structure of discrete 

semi-dynamical system on a set X without any kind of topological 

structure. 

In the fii-st section we do not impose any structure o n the 

set x. Some results then obta ined relative to the 

c lassification of solutions and to the invariance ot subsets. 

In the secon d section we assume X is a partially ordered 

set. This allows us to introduce the weak notions which are 

adequate for systems wit hout uniqueness. Ot particular interest in 

the characterization of the weak positive invariance presented 

here. 

KEY WORDS: Dynamical systems , weak solution, weak invariance. 

0. I NTRODUCTION 

In recent years multiple applications of the theory of 

systems have been found, that motivate the wide expansion of the 

abstract study of systems. 

In 1970 , G. P. Szego and G. Treccani (9] have inj;roduced the 

notion of discrete semi-dyna mical system without uniqueness in 
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order to per- t arm an axiomatic study ot some algor-ithms o t 

optimization. Later on new applications ot such a theory have been 

found. 

The semi. -dynamical systems used in such applications are 

defined on the family ot the non-empty compact subsets of an 

Euclidean space l~], or of a Hilbert space [4], where several 

structures are then defined. Many ot the results that have been 

found tor such semi-systems do not require so much structure. This 

is the reason why in this paper we consider a discrete semi­

dynami ca l system on an arbitrary set X. We introduce the necessary 

algebraic notjons and we obtain some results related to them. We 

then impose on X a partial or-der and this allows us to introduce 

the corresponding weak notions. O t particular interest is the 

study of the weak invariance and the characterization ot the 

weakly positively invariant subsets, that play a so important role 

in the applications. 

1. OI SCRETE SEMI - DYNAMICAL SYSTEMS 

1. 1 Definition and proJ?_grti_g2 

Notation: X denotes an int inite set; l' denotes the set of 

nonnegative integers, denotes the set of nonpositive integers; 

n denotes a map tram the product set Xx1 ·· into X; the image O<.x, t> 

of an element (X , t> in X >< l' will be written simply as xt. 

The trip 1 et <X I 1 .. Ill ) is called a discrete semi-dynamical 

. system on X, if the two following conditions hold: 

i) xO=x, xEX. 

ii) Cxt)s=x<t+s>, xEX and t,sEI•. 

In the last definition, 1> can be replaced by 

i') l mage n=X. 
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Let be a map from X into X; we define the map ll, trom 

X x I ' i n t o >: , w i t h n , (. ::< , t > = x t = i '· uo . T hen the t r i p l et ( X , 1 ', l l ~· · > i s 

a discrete semi-dynami c al systE~m on X, and we say that it is 

induced bv t . Ree i. pr-oc a 11 y: J 1 ( x ' I I ' rl) is a discrete semi -

dynami cal system on X , 

fn:X~X, with t 11 (x)=xl. 

( X, I', fl ) ls the one induc ed by the map 

In the fol lowllJ.g_ discussion we suppose that it is given a 

discrete semi-dynamical system on X , which we denote by (X, r·. ll>. 

Definition: 1 > ( X , l ·•· , ll ) , or ll , is said to have negative 

existence, it for every xEX there is some yEX and tEI + , t >O , such 

that yt=x. 

2) ll is said to have [.!§_g_q_tive uni c ity_, if for any x -,,x.,,EX, 

x, t = x -;,.t it and o nly it x -,=x ::,,. 

3) An element x t:X is said to be a st~oint, if x~yt tor 

any yEX and tE I •· , t >O. 

4) An element xC< is said to ~e a s ingular point, it there 

exist x -,,x 2 EX, x .,~x2 , and tEI ~ with x 1 t=x 2 t=x. 

5> An element xEX is said to be a critical point, if xt=x 

for every tE I•. 

Notice that fl has: negative existence, if and only if for 

every xEX there exists yt:X such that yl=x; negative existence, if 

and only if it has no start points; negative unicity, if and only 

if it has no singular points. 

Consider Mc X, and AcI • . As usual, we represent: 

ll <M,A >= {xt : xEM, t EA}' ll(x,A>={xt: tEA}. 

Furthermore, the following relations hold: 
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n(('.~Mi)' (~Aj)] = 1~~l(Mi,~j) 
n [ (r,~ Mi ) , t] c 7n <M 1 , t > 

n [ <M-N) , t] '.) n <M, u -n ~N, t>. 

1.2 Solutions and traiectories 

Let xEX be arbitrary: The Q_Q_sitive traiecto_r_y___t_brough x_, is 

the set xr -·, also denoted C(x> . The r i gh t ma x=i~m=a~l~~s~o~l =u~t~i~o~n~ 

throught x is the map ,Jl: i ··~x defined by the assignment ... n ( t ) =xt. 

It is clear that the set of all right solutions determines I1, 

Roughly spealdng, right maximal solutions are obtained by 

fixing x in. xt. This also suggest fixing t and allowing x to vary. 

This is how the translations, whose definitions follows, are 

obtained. 

For every ter · .. , we define the map nt. :x~x with nt,<x>=xt, and 

call it a translation of n. 

It is clear that the set of all translations of n determines ll, 

Definition: Given xEX and s,tEI", with s <t, 

The set T(x)={yEX: xE(; (y)} is called the !l§'!gatJve 

traiectory funnel trough x. 

2) The set Tt<x>={yeX: xey[s,t]} is called a section of the s . 

neg ative trajectory funnel through x. 

t 
3) The set Tt (x)={yeX: x=yt} is called a cross-sect ion of 

the neg ative traiectory funnel through x. 

4) The set T~<x)=T<x>vC(x) is called the com~lete trajectory 

funn e l through x. 

Finally, for any subset McX we define 

Crn>=v{C<x>: xEM}, Tc<M)=u{T,~(x): xEM}. 
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It1eorE;fil. Let. xC< and yEC(x>, then Ctx)=>i.., <y>, Ttx)cT ( y) and 

T.= tx) cT.., <y). 

The proof is quite inmediate. 

Theorem. I t xEX, there exists an additive subgroup ot the 

integers, G, and /...El"', such that xt,=xt <' • t,>t 2 , it and only if 

t,-t 2 EG, t 2 •A. . Furthermore, G and /... are determined uniquely by x . 

Proof : Let us see that tor each t El "', the set A ., .. with 

At={sEJ ·•· : xt=x<t+s)} 

is the trace on J• of a subgroup Gt ot the integers. 

We only need to show that if s,,s~EAt with s 1 ~s2 , then 

and we have xt=xtt+s 1 >=x<t+s,+s-.?-s 2 >=fxtt+s2 >] <s 1 - s ::.>= 

<xt)(s 1 -s2 >=x(t+s,-s2 ). 

Let us now show that if tEl'· , rEl'· with t ~ r, then A .tcA, .. . 

If xt=xtt+s> and hence xr=xtt+r-t>=<xt> <r-t>= 

=[x<t+s>] <r-t>=x(r+s>. Then sEA,. and A 1,cA,.. 

Let us see, finally, that if t ': r, and A,;t;{U ~ . then A 1., =A, . . 

We on 1 y need to prove that A 1.=>A,.. . Let aE A,.. . By assumption, 

there is s > O, and hence tor some n with nE I•, we have 

r<t+ns. If sEA .•. 1 also nsEAt, and xt=x<t+ns). Furthermore, it 

r<t+ns then aEArcAt+ns• and x <t+s)= x<t+ns+cr>. So we have proved 

that if At;t;{O} , and rEI+, A .t=Ar. 

The result just established shows that there are two cases: 

Either for every t is G 1.={0 J, 

fulfilled with G={O} and /...=O. 

and then the theorem is 

Or there exists a /...EI ... , and a nontrivial subgroup G of the 

integers, such that 

{o}, if O~t<A. 
Gt { 

G I if /...~ t 

The above theorem leads to the following classification of 

the positive trajectories: 
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Defi.nition. Let xEX, and G and >-. be the same as in the last 

theorem, if 

1 ) >-.=O, and G={O}, C( x ) is called a non-sel f- intersecting 

trajectory. 

2) >--=O, and G a proper nontrivial subgroup of the integers, 

CCx> is called a periodic o r- c i cl~si tive trajectory ( with 

primitive period the least positive element of G>. 

3> >-=O , and G the group of the integers, C<x> is ca lled a 

crit i cal positive trajectory, and we have C<x>=x. 

4 ) >-.>O , hence G=F{ Ol, Ctx> i s said .!&_Jead to a cicl e , if G 

is a p roper subgroup of the integers; and to lead to a critical 

!2QJJl:L it G is the group of the integers. 

Theorem. Let xEX, if fl has negative uni city 

a> Only the cases 1 ) , 2> , 3> may occur. 

b> If C<x) is periodi c , with primitive period T u , and 

yE C( x ), there is a P v EI'· , P v<. -c ,., , such that the solutions of the 

equation y=xt in I ·• are n-c .,, +pv wi th 

c) If Ctx> is periodic, then 

d ) lf x is a critical point, 

The proof is quite simple. 

Theorem. Let xEX, 

n any element of I .. . 

C <x> =T," ( X ). 

then {x }=C <x>=T." ( x>. 

a ) x is a cr itical poin t , if and only if x=xl, i.e. if x is 

invariant under the map n,. 

b) C(x) is periodic, if and only if xl#x, and there is tEI+ 

such that x=xt, 

under n, . 

i. e . if x is invariant under some nt, but not 

Sometimes, it is said that a critical positive trajectory is 

periodic with primitive period 1. This would produce a change of 

notation. 
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We have detined the rignt maximal so lu tion throuRh x as the 

map ~ n, we shall give a more gen eral con cept. 

An o bj ec t a is a so lJ:Lt..l_QJJ__QJ _ _D .• 

conditi ons hold: 

if the t wo following 

i ) a:l~X, with I an interval 0 1 1 v!' . 

ii) a<s+t>=(a<t>]s, if t ~ t+s, t,t+sEI. 

Lemma. a) If a is a solution defined on (t 1 ,t :~ ] and k is an 

integer, a -"· defined by the assignment a"~t)=a < t+k>, is a solution 

defined on (t 1 -k, t ;,-k]. 

b > If {a 1 } is a monotonous sequence of solutions, I ;. being 

the domain ot a; ( i . e. for any i > j , 

every t in I .i> , then ua .. is a solution with domain I=vl 1 • 

Both assertions are easy to verify. 

Definition. Let xEX; a solution a of n is c alled: 

1 ) A left-solution, it ldomaina]nr ··={O }. A left-solution 

through x, if (domain a]nr ~ =~O} and a<O )=x. 

2) A right - solution, if [domain a}nr -- ={O }. A righ t-solution 

through x, if (domain a]nr - ={O} and aW >=x. 

3) A left maximal solution, if it is a right-solution, and 

is maximal with respect to the property ot being a left-solution. 

4 ) A right maximal solution, if it is a right-solution, and 

is maxima l with respect to the property ot being a right-solution. 

5) A maximal solution, if it is a solution, and its 

restriction to r · is a left maximal solution; and its restriction 

to r· is a right maximal solution. 

Remarks: A solution, maximal relative to the property of 

being a solution, is called a maximal solution as above defined, 
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only if its domain contains r-•. Let x be a start point of X; the 

map a: [5,+ro)-+X with cr <.t)=x<.t-5) is a solution, maximal relative 

to the property of being a solution, but a i s not a ma x i ma l 

solution according to 5> because it s restriction to I' is not a 

right maxima l solution. 

A right maxima l solution through x is precisely "the" right 

maximal'solution through x, xn , defined by vn<t>=xt. 

For any x there exists some maximal solution. 

A subset of X is called a negative trajectory, if it is the 

range o f a left maximal solution; and a negative trajectory 

through x if it is the range of a left maximal solution through x. 

A left s~lution with domain r- is necessarily a left maximal 

solution. Such left solutions, and the corresponding trajectories, 

will be called ~rinci~al. 

Notice that if N is a negat ive trajectory through x, then 

NcT(x), and that if n has negative unicity N=T <x>, but if x is a 

singular point, then N;tT(x). 

Theorem. Let a be a left maxima l solution, and N=range a the 

corresponding negative trajectory, then one and on 1 y one ot the 

following alternatives holds: 

a) a and N are principal. 

b) Domaina = [o:,O], with -ro<o:~O. Then a(cx) is a start 

point. We say that a and N lead from the start point a (cx). 

The proof is quite simple . 

Notice that if n has negative existence, the only 

alternative is a). 

It should be observed that different left maximal solutions 

can define the same negative trajectory. 
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If N is a negative trajectory through x, the set NuC ( x) is 

called a complete Nr.C<x>~{x} is not 

excluded. If N is principal, the complete trajectory NuC<x> is 

also called principal. 

Let xEX, and a be a let t maximal solution through x, we 

write: 

O:x - sup { t E I +· : x € n ( x' t) 

o:.,,. inf {domain a} 

and call o: x the negative escape time of x, and ex<,. the negative 

escape time of a. It is clear that -oo ~ a ,,., ~ cx .... ~O. It may well happen 

that o:x<o:.,,. for all left maximal solutions a through x. 

1.3 Invariance 

Let McX: Mis called positively invaria·nt, if C<M)cM; Mis called 

negatively invariant, if T<M>cM; M is called invariant if T,=( M)c M, 

i. e. if M is both, negatively and positively invariant. 

Lemma. The following assertions are equivalent: 

a) M is positively invariant. 

b) xtEM, for any xEM, tEI'- . 

c)D<M,t>cM. 

d) M=C <M>. 

e) xlEM, for any xEM. 

The proof is quite simple. 

Theorem. McX is positively invariant, if and only if X-M is 

negatively invariant. 

Proof: Let M be positively invariant. If xE.X-M, then we must 

show that T(x)cX-M. Suppose not. Then there is yET(x), ~ith y~X-M, 

but then there is tEI~ with yt=x, and by positive invariance of M, 
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xe:M. This contradiction shows that X-M is negatively invariant. 

The proof of the converse is entirely similar. 

Theorem. A set McX is negatively invariant, if and only if 

xlEM implies xe:M. 

The proof is quite sJmple. 

1~eorem. aJ X and 0 are both invariant. 

b) A subset consisting of one element is positively 

invariant, it and only if it is a critical pojnt. 

c) If n has negative unicity, a subset consisting of one 

element is negatively invariant, 

critical or a start point. 

if and only if it is either 

d) If M;c:X are all positively invariant (or all negatively 

invariant, invariant), then so are nM;_, and vM,. 

e> The complement of a positively invariant 

invariant, invariant) is negatively invariant 

invariant, invariant>. 

<negatively 

<positively 

f) The least positively invariant subset containing a given 

McX is C (M>. 

g> The least negatively invariant subset containing a given 

McX is T<M>={ye:X: C<.y>nM:;t0"f. 

h) A set McX is negatively invariant, if and only if for any 

xe:M, each negative trajectory N through x verifies NcM. 

The negative trajectories allow to define yet another kind 

of invariance, which is called quasi-invariance . 

Let McX; M is called: Negatively quasi-invariant, if for 

every xe:M, there exists some negative trajectory through x which 

is contained in M; and Quasi-invariant, if it is both positively 

invariant and negatively quasi-invariant. 
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Lemll@.. It M is negatively jnvariant, then M is negatively 

quasi -i nvariant . It each M 1 is negatively quasi-invariant, then so 

is •JM,. If M, is negatively invariant, and M.2 is negatively quasi­

invariant, then M,nM .. is negatively quasi-invariant. A set McX is 

negatively quasi-invariant, 

there is y£M with yl=x. 

it t or every non - start point xeM, 

2. DISCRETE SEMI-DYNAMICAL SYSTEMS ON A PARTIALLY ORDERED SET 

2. 1 Definition and properties 

In this section we suppose that X is an infinite partia~ 

ordered set, i. e. X is an infinite set, and there is a relation R 

defined in X such that: 

i) xRx for every xeX. 

ii) xRy, yRz implies :<il.'Z, to r every x,y,zeX 

iii) xRy and ylt'x implies >:=y. 

Let m be an element of X, we say that m is a minimal element 

of X if meX and yRm implies m=y. 

Let M be a subset of X, we define: 

M,,={yeX: there exists xt::M, with · yRx} 

M,..={yeX: y is a minimal element of X, yeMF}. 

The triplet (X, I',0) is called a discrete semi-dinamical 

system on the partially ordered set X, if the following conditions 

hold: 

i) xO=x, xeX. 

ii) (xt>s=x<t+s>, xeX and t,sEI'. 

iii) xRy implies xtRyt, te I .. and x, yeX. 

Notice that a discrete semi-dynamical system on a partially 

ordered set X is a discrete semi-dynamical system on X. 

In the rest of this section we suppose that a discrete semi-
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dynamical system on the partially ordered set X, 

given. 

2.2 Weak concepts 

(X,I + ,fl), is 

An object 2:: is called a weak solution of n, if the two 

following conditions hold: 

i) 2::: I-+X, I being an interval of 1·· ur • . 

ii) l::<s+t)fil:(t)s, if Ut+s; t, t+sEl. 

Notice that a solution is a weak solution. 

Lemma. If 2:: is a weak solution of II defined on [t , , t 2 ], k is 

an integer and l::"'· (t>=l::<t+k), then 2::-*' is a weak solution of fl, 

defined on [t .1-k, t 2 -k]. 

If {l::j_ } is a monotonous sequence of weak so 1 ut ions ot 11 with 

(domain E 1 ]=I-11 then v2:; 1 is a weak solution of n defined in vI ; . 

Definition. Let xe:X. A weak solution E of n is said to be: 

1) A weak left solution if (domain l::]nI'={O}. A weak left 

solution through x, if [domain E]nl'={O} and l::<O>=x. 

2) A weak right solution, if [domain E]nl ={O }. A weak__r:_J_gll_i 

solutiong through x, if [domain L:]nI ={O} and 2:<0 ) =x. 

3) A weak left maximal solution, if it is a weak left 

solution and is maximal with respect to the property of being a 

weak left solution . 

4) A weak right maximal solution, if it is a weak right 

solution and is maximal with respect to the property of being a 

weak right solution. 

5) A weak maximal solution, if it is a weak solution, its 

restriction to 1- is a weak left maximal solution, and the one to 

r• is a weak right maximal solution . 

Notice that not every weak solution, maximal with respect to 

98 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



the property ot being a weak solution, is a weak maximal so1uti.on. 

Notice that tor every xt:X there is some weak ma,.:imal solution 

through x. 

Definition. A subset of X is said to be: 

1) A weak negative trajectory through x, if it is the range 

of a weak left maximal solution through x. A weak left solution, 

defined on r - , is necessarily a weak left maximal solution. Such 

solutions and the corresponding trajectories are calle principal. 

2) A weak positive tra1ectory throu~, if it is the range 

of a weak right maximal solution through x. 

3) A weak complete trajectory, if it is the range of a weak 

maximal solution. 

Definition. Let McX; Mis called: 

1) weal~ly negatively invariant_, it tor every xEM there is 

some weak negative trajectory through x, contained in M. 

2) weakly positively invariant_, if for every xeM there is 

some weak positive trajectory through x contained in M. 

3) weakly invariant, if for every xeM there exists some weak 

complete trajectory through x contained in M. 

Theorem. Let McX. M is a weakly positively invariant set, if 

and only if for every xeM, there is some yeM with yRxl. 

Proof: If M is a weakly positively invariant set, then the 

condition holds. Since if xeM there is a E, weak right maximal 

solution through x, with E<l+)cM, and therefore, if we take 

y=E<l), it is clear that yRxl. 

Conversely, assume the condition and take · x 0 EM. Now, using 

the hypothesis, define x, EM with x 1 Rx 0 1; and by recurrence, for 

ner•, n>l define x,..eM with x,..Rx,.._ 1 1 . Now, consider the map 1:: r · .. ~x. 
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defined by the assignment :i<n>=xn tor every n in l'. Let t,sEl'. 

By definition we have xt.,_ .1 R"..<+. l 1 and therefore, I:<t+l> RL:<t>l. Now 

we have L:<t+l>l R [I:<t>J 1, and therefore L:<t+l>l R L:<t>2. Now, 

since X -t.+ 2 .Rx 1 , .... . ,1, we have that 2:(t+2) Rl:(t+l)l, and by transitive 

property of R it holds that I:Ct+2J RI<t>2. 

Now we have I:<t+2)1 RI:<t)3, and since L:<t+3) R2..:<t+2Jl, we 

have L:<t+3) RL:<t>3. 

Proceeding in this way, we have l.:(t+s> R I:<t>s, and 

therefore, 2: is a weak right ma~drnal solution through x 0 , with 

L:<I'JcM. This shows that M is a weakly positively invariant set. 

Theorem. The union of weakly positively invariant sets is 

also a weakly positively invariant set. 

Theorem. Let McX be a positively invariant set, then MF is 

also a positively invariant set. 

Proof: Let xEMF, then there is some yEMF with xRy, and so 

xlft'yl. Now, since M is a positively invariant set, ylEM, and 

therefore xlEMF, and finally MF is a positively invariant set. 

Definition. Let xEX; if xf..y holds only it y=x and t=O, x is 

called a weak start point. 

Notice that if x is a wealt start point, then x is a start 

point, but x can be a start point without being a weak start 

point. 

Theorem" Let McX. If M has no weak start points, then it is 

weakly negatively invariant, if and only if for every xEM there 

exists yEM, such that xRyl. 

Corollary. Let McX. M has no weak start points and is weakly 

negatively invariant, if and only if for every xEM, there exists 

yE M, such that xRy 1. 
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Th e orem . L e t x,y E/, , and tEI' w i t h t .> u . lf yHxt hold s , then 

t he r e ex i s t s some I , weak maximal s olution thr o u g h x, with 2: Ct J =y. 

Proo f : Let E~ b e the ma p trom [o , t ] into X detined by 

2:*< s >=xs it sE I' , with S \. t, and .l:*· ~s> =y it s = t. lt is c lear that 

.l:" i s a weak right solution through x, and the theorem is proved, 

if we take a weak maximal solution I with I * c2:. 

Let xEX; x is called a weal{ critical point, if xRxt for 

every tE J-•·· , 

Not.ice that if x is a critical point, then x is a weak critical 

point, but x can be a weak critical point without being a critical 

point. 

Theorem. Let x EX. The following assertions are equivalent: 

a > x i s a weak criti c al point. 

b ) xRxl. 

c ) The map 2:: I +--)x with l:<t>=x tor every t in r ~ is a weak 

right maximal solution through x. 

A weak solution of n is said to be of minimal type, if all 

its elements are minimal elements of the partially ordered set X. 

Theorem . Let X be a partially ordered set, such that if xEX, 

there is some yEX with y a minimal element of X, and yRx. Let M be 

a subset of X positively invariant, then MP is a weakly positively 

invariant se t , and, evidently, all weak trajectories contained in 

MP correspond with weak solutions of minimal type. 

Proof: Le t yEMP , then there exists some xEM with yRx, and 

ylRxl. Let z be a minimal element of X, with z .Ryl, then zRxl, and 

therefore zEMP . Since zRyl, MP is a weak positively invariant set. 

101 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



REFERENCES 

[1] BHATIA, N. P.; HAJEK, 0.: "local semi-dynamical systems". 

Lecture Notes in Mathematics, Vol. 90, Springer, 1969. 

[2] BHATIA, N.P.; SZEGO, G.P. "Stabi 1 i ty Theory or Dynamical 

systems". Grund. Math. Wiss., Vol. 161, Springer, 1970. 

[3] CASTILLO, F.: "Semi-sistemas dinami cos discretos". Tesis 

Doc tor a 1 , Un i v er s i dad de Mad r i d ; A b r i 1 , 1 9 7 2 . 

[ 4] CASTILLO, F. "Semi - Dynamical systems and optimization". 

Towards Global Optimization, North Holland, Amsterdam, 1975. 

[5] CASTILLO, F. LLORENS, E. "Semisis temas dinamicos 

debiles en espacios de Hilbert". XIl Reuni6n Matematicos 

Espaftoles, Malaga, 1976 <Actas 1983). 

[6] HAJEK, 0.: "Dynamical Systems in the Plane". Academic 

Press, 1968. 

[7] ROXIN, E.: "Stability in general control systems". J. 

Di ff. Eqs., pp. 115-150, 1965. 

[8] SZEGO, G. P.; TRECCANI, G.: "Semigruppi di trasrormazioni 

multivoche", Lecture Notes in Mathematics, Vol , 101, Springer 1969, 

[9] SZEGO, G. P.; TRECCANI, G · "An abstract formulation or 

minimization algorithms" . In Differential Games and Related 

Topics. Kuhn-Szego eds., North Holland Publishing Comp., 1971. 

Recibido: 28 de Abri l de 1991 

102 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7




