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ABSTRACT

In the present paper we study the structure ot discrete
semi-dynamical system on a set X without any kind of topological
structure.

In the first section we do not impose any structure on the
set X. Some results are then obtained relative to the
classification of solutions and to the invariance ot subsets.

In the second section we assume X 1is a partially ordered
set. This allows us to introduce the weak notions which are
adequate for systems without uniqueness. Ot particular interest in
the characterization of the weak positive invariance presented

here.
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O. INTRODUCTION
In recent years multiple applications of the theory of
systems have been found, that motivate the wide expansion of the
abstract study of systems.
In 1970, G.P. Szegb and G. Treccani [9] have introduced the

notion of discrete semi-dynamical system without uniqueness 1in
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order to pertorm an axiomatic study ot some algorithms ot
optimization. Later on new applications ot such a theory have been
found.

The semi-dynamical systems used in such applications are
defined on the family of the non-empty compact subsets of an
Euclidean space [9], or of a Hilbert space [4], where several
structures are then defined. Many otf the results that have been
found tor such semi-systems do not require so much structure. This
is the reason why in this paper we consider a discrete semi-
dynamical system on an arbitrary set X. We introduce the necessary
algebraic notions and we obtain some results related to them. We
then impose on X a partial order and this allows us to introduce
the corresponding weak notions. Of particular interest 1is the
study of the weak invariance and the characterization ot the
weakly positively invariant subsets, that play a so important role

in the applications.

1. DISCRETE SEMI-DYNAMICAL SYSTEMS

1.1 Detinition _and properties

Notation: X denotes an intinite set; 1" denotes the set of
nonnegative integers, 1 denotes the set of nonpositive integers;
[ denotes a map trom the product set Xx[* into X; the image [l¢x, t)

of an element (x,t» in Xx1' will be written simply as xt.

The triplet (X,1*,I1» is called a discrete semi-dynamical

.system on X, if the two tollowing conditions hold:
i) x0=x, =x€X.
1i) (Xt)s=x(t+s), x€X and t,sel*.
In the last definition, 1) can be replaced by

i')> Image I = X.
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lLet t be a map trom X into X; we define the map Il trom

XxI* into X, with [l,«x,t)=xt=1*x). Then the triplet X, 1",lly» is
a discrete semi-dynamical system on X, and we say that it |is
induced by t. Keciprocally: it X, I, 11> is a discrete semi-
dynamical system on X, (X,I*,I[l) 1s the one induced by the map

fn: X=X, with t, ,x)=x1.

In _the following discussion we_ suppose that it is given a

discrete semi-dynamical system on X, which we denote by (X, 1*,1.

Definition: 1) «X,I*, 11>, or I, is said to have negative
existence, 1t tfor every x€X there is some y€X and tel*, t>0, such
that yt=x.

2> I is said to have negative unicity, if for any x,,x.€X,
x,t=x.t it and only it x,=x.

3) An element x€¢X is said to be a start point, it x#yt tor

any y€X and tel", t>O0.

4) An element x€X is said to be a singular point, it there

exist x,,x,€X, X,#X., and t€l* with x,t=x.t=x.

5) An element x€X is said to be a critical point, if =xt=x

for every tel-.

Notice that [I has: negative existence, it and only if for
every x€X there exists y€X such that yl=x; negative existence, if
and only it it has no start points; negative unicity, if and only

if it has no singular points.

Consider McX, and Acl'. As usual, we represent:
MM, Ay={xt: xeM, teAa} , Mix,A»={xt: tea}.

Furthermore, the tollowing relations hold:
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ﬂ[(yMi),(jAJ)] = (M, A

]
H[(ﬂMi),t] < NlM, t)
El £

N[(M-N>,t] > 1M, t>-TICN, t>.

1.2 Solutions and trajectories

Let x€X be arbitrary: The positive trajectory through x, is

the set xI+, also denoted Cdx). The right maximal solution

throught x is the map .I:1*—X detined by the assignment ,[[(ty=xt.

It is clear that the set of all right solutions determines Ii

Roughly speaking, right maximal solutions are obtained by
fixing x in_xt. This also suggest tixing t and allowing x to vary.
This 1s how the translations, whose detfinitions tollows, are
obtained.

For every tel*, we define the map [ :X—>X with He(x)=xt, and
call it a translation of II.

It is clear that the set ot all translations of [1 determines II

Notice that [ ellg=I(.,s and [ (x)=_11Ct).

Definition: Given x€X and s,te€¢l*, with s<t,
1> The set Tx)={yeX: x€C(y» } is <called the negative
trajectory funnel trough x.
2) The set T;(x)={y€X: x€y[s,t]} is called a section of the
negative trajectory funnel through x.

3) The set T:(x)={y€X: x=yt} 1is called a cross-section of

the negative trajectory funnel through x.

4) The set T.x)=T(x)vC(x) is called the complete trajectory

funnel through x.

Finally, for any subset McX we define

CM=v{C(x): xeM}, ..., T.M=uv{T_(x>: xe€M}.
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Theorem. Let x€X and yeC(x», then Cw)2C(y), Tx)eT(y) and
T.(x)eT.(y).

The proot is quite inmediate.

Theorem. It =x€X, there exi1sts an additive subgroup ot the
integers, G, and A€l*, such that xt,=xt., t,>t., it and only if
t,-t.€G, t.2A. Furthermore, G and AN are determined uniquely by x.

Proot: Let us see that tfor each tel", the set A, with

A={s€l*: xt=x(t+s) }
is the trace on I* of a subgroup G, ot the integers.

We only need to show that it s,,s:€A, with s,2s., then
S1—Sx€A,, and we have xt=x(t+s,)=x(t+s,+s.-5.. =[x&t+sr)](s.—s?)=
(xt) (s,-s.)=x(t+s,-s5).

Let us now show that if tel*, rel* with t¢<r, then A.,cA..

If sS€A,, Xt=x(t+s) and hence XKr=x(t+r—tr=(xt) (r—-tr=
=[x(t+s)] (r-t)=x(r+s). Then s€A,. and A,cA..

Let us see, finally, that if tir, and A,#{0}, then A.,=A..

We only need to prove that A.,2A.. Let o€A.. By assumption,

there 1is s>0, s€A,, and hence tor some n with n€l*, we have
r<t+ns. If seA,, also nse€eA,, and xt=x(t+ns). Furthermore, it
r<t+ns then o€A.cA,.,.s, and x(t+s>=x(t+ns+c). So we have proved

that if A={0}, and rel*, A.=A..
The result just established shows that there are two cases:
Either for every t 1is G.={0}, and then the theorem is
fulfilled with G={0} and x=0.
Or there exists a A€I*, and a nontrivial subgroup G of the
integers, such that
{0}, if O¢t<xn
Ge =
G, 1if Ast
The above theorem leads to the tollowing classification of

the positive trajectories:
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Detinition. Let x€X, and G and A be the same as in the last
theorem, it

1> A=0, and G={0}, C(x> is called a non-self-intersecting

trajectory.
2> »=0, and G a proper nontrivial subgroup of the integers,

Cx) 1s called a periodic or ciclic positive trajectory <«with

primitive period the least positive element of G).
3> X=0, and G the group ot the integers, C(x) is called a

critical positive trajectory, and we have C(x)=x.

4) X>0, hence G#{0}, C(x) is said to lead to a cicle, if G

is a proper subgroup of the integers; and to lead to a critical

point, it G is the group of the integers.

Theorem. Let x€X, if [l has negative unicity

a) Only the cases 1), 2), 3) may occur.

b> If Cx» 1is periodic, with primitive period =t,, and
y€C(x>, there is a p,€I*, p,<T., such that the solutions of the
equation y=xt in I* are nt.+p, with n any element of [*.

c) It Cx) is periodic, then C(x)=T_ (x).

d) If x is a critical point, then {x}=C(x>)=T_.(x)>.

The proof is quite simple.

Theorem. Let x€X,

a) x is a critical point, it and only if x=x1, i.e. if x is
invariant under the map II,.

b> C(x> is periodic, if and only if xl#x, and there is tel~*
such that x=xt, 1.e. 1t x is invariant under some I,, but not
under II,.

Sometimes, it is said that a critical positive trajectory is
periodic with primitive period 1. This would produce a change of

notation.
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we have detined the right maximal solution through x as the
map .[lI, we shall give a more general concept.

An object o is a solution__ot II, it the two tfollowing
conditions hold:

i) o0: 12X, with I an interval ot 1 vI"'.

i1) o(s+tr=[o(td]s, if tst+s, t,t+sel.

Lemma. a) If o is a solution defined on [t,,t.] and k is an
integer, o* defined by the assignment o*(t)>=oc(t+k), is a solution
defined on [t.—k, t.—k].

b) If {c.} is a monotonous sequence ot solutions, I, being
the domain ot o; (i.e. for any 1i>j, 1,21, and o,(t)=0,<(t) for
every t in I,), then vo, is a solution with domain I=vI,.

Both assertions are easy to verity.

Definition. Let x€X; a solution o ot Il is called:
1> A left-solution, it [domaino|nI*={0}. A left-solution
through x, if [domain o]nI*={0} and o(0O>=x.

2> A right-solution, if [domain o}nI"={0}. A right-solution

through %, if [domain o]nI-={0} and o(V)=x.
3> A left maximal solution, it it is a right-solution, and
is maximal with respect to the property ot being a left-solution.
4> A right maximal solution, if it is a right-solution, and
is maximal with respect to the property ot being a right-solution.

5) A maximal solution, it it is a solution, and 1its

restriction to I- is a left maximal solution; and its restriction

to I* is a right maximal solution.

Remarks: A solution, maximal relative to the property of

being a solution, is called a maximal solution as above defined,
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only if 1its domain contains I". Let x be a start point of X; the
map a:[5,+w)—>x with o(t)=x(t-5) 1s a solution, maximal relative
to the property of being a solution, but o is not a maximal
solution according to 5) because its restriction to I' is not a
right maximal solution.

A right maximal solution through x is precisely "the" right
maximal solution through x, .II, defined by .[I<(t)=xt

For any x there exists some maximal solution.

A subset of X is called a negative trajectory, if it is the

range of a left maximal solution; and a negative trajectory

through x if it is the range of a left maximal solution through x.
A left solution with domain I~ is necessarily a left maximal
solution. Such left solutions, and the corresponding trajectories,
will be called principal.
Notice that if N is a negative trajectory through x, then
NcT(x), and that if [ has negative unicity N=T(x», but it x is a

singular point, then N#T(x).

Theorem. Let o be a left maximal solution, and N=range o the
corresponding negative trajectory, then one and only one ot the
following alternatives holds:

a) o and N are principal.

b)> Domaino = [«,0], with -o<a$0. Then o(x> is a start
point. We say that o and N lead from the start point oo0.

The proof is quite simple.

Notice that if n has negative existence, the only
alternative is a).

It should be observed that different left maximal solutions

can define the same negative trajectory.
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If N is a negative trajectory through x, the set NvC(x) is

called a complete trajectory through _x. NnCx0#{x} 1is not

excluded. If N is principal, the complete trajectory NvC(x) is

also called principal.

Let x€X, and o be a lett maximal solution through x, we
write:

o = — sup {tel*: xel(x,t)}

s = inf {domain o}

and call «, the negative escape time of x, and «. the negative

escape time of o. It is clear that -wsta.¢x,¢0. It may well happen

that o.{a, for all left maximal solutions o through x.

1.3 Invariance

Let McX: M is called positively invariant, if C(M)cM; M is called

negatively invariant, if T(M)cM; M is called invariant if T.(M)cM,

i.e. if M is both, negatively and positively invariant.

Lemma. The following assertions are equivalent:

a) M is positively invariant.

b> xteM, for any x€M, tel".

c) MMM, 1>cM.

d)> M=C(M).

e) x1€M, for any xe€M.

The proof is quite simple.

Theorem. McX is positively invariant, it and only if X-M is
negatively invariant.

Proof: Let M be positively invariant. If x€X-M, then we must
show that T(x>cX-M. Suppose not. Then there is yeT(x), with y£X-M,

but then there is t€l* with yt=x, and by positive invariance of M,
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x€M. This contradiction shows that X-M is negatively invariant.
The proof ot the converse is entirely similar.

Theorem. A set McX is negatively invariant, if and only if
x1€M implies x€M.

The prootf is quite simple.

Theorem. a)> X and ¥ are both invariant.

b> A subset consisting of one element 1is positively
invariant, if and only it it is a critical point.

c)> If I has negative unicity, a subset consisting of one
element 1is negatively invariant, it and only 1if it 1is either
critical or a start point.

d> If M;cX are all positively invariant <(or all negatively
invariant, invariant), then so are nM,, and vM,.

e) The complement of a positively invariant (negatively
invariant, invariant> is negatively invariant (positively
invariant, invariant).

f> The least positively invariant subset containing a given
McX is C(M).

g> The least negatively invariant subset containing a given
McX is TM)={yeX: C(y>)nMz® }.

h)> A set McX is negatively invariant, it and only if for any

x€M, each negative trajectory N through x verifies NcM,

The negative trajectories allow to define yet another kind
of invariance, which is called quasi-invariance.

Let McX; M is called: Negatively quasi-invariant, if for
every x€M, there exists some negative trajectory through x which
is contained in M; and Quasi-invariant, if it is both positively

invariant and negatively quasi-invariant.
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Lemma. It M is negatively invariant, then M is negatively
quasi-invariant. It each M; is negatively quasi-invariant, then so
is vM,. If M, is negatively invariant, and M, is negatively quasi-—
invariant, then M,nM. is negatively quasi-invariant. A set McX is
negatively quasi-invariant, it for every non-start point =xeM,

there is yeM with yl=x.

2. DISCRETE SEMI-DYNAMICAL SYSTEMS ON A PARTIALLY ORDERED SET

2.1 Definition and properties

In this section we suppose that X is an infinite partially

ordered set, i.e. X is an infinite set, and there is a relation R
defined in X such that:

i) xAx for every xeX.

11> xRy, yKRz implies xkRz, tor every x,y,z€X

11i) xRy and yRx implies ==y.

Let m be an element of X, we say that m is a minimal element
of X if meX and yRm implies m=y.

Let M be a subset of X, we define:

M-={ye€X: there exists x€M, with yRx}

M.={y€X: y is a minimal element of X, ye€M.}.

The triplet (X,I",I> is called a discrete semi-dinamical

system on the partially ordered set X, it the following conditions

hold:

i) x0=x, x€X.

il) (xti)s=x(t+s), x€X and t,sel".

1iii> xRy implies xtRyt, tel* and x,yeX.

Notice that a discrete semi-dynamical system on a partially
ordered set X is a discrete semi-dynamical system on X.

In the rest of this section we suppose that a discrete semi-
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dynamical system on the partially ordered set X, (X,I*,01), is
given.

2.2 Weak concepts

An object I 1is called a weak solution of [, if the two

following conditions hold:
i> £:1-»X, I being an interval of I-vI-*.
1i) Z(s+tH)RZ(tds, if t<t+s; t,t+sel.

Notice that a solution is a weak solution.

Lemma. If £ is a weak solution of Il defined on [t,,t.]|, k is
an integer and Z*(t)>=Z(t+k), then X* is a weak solution ot II,
defined on [t,-k, t.—k].

If {£,} is a monotonous sequence of weak solutions ot Il with

[domain =,]=1,, then vZ, is a weak solution of II defined in vI,.

Definition. Let x€X. A weak solution Z ot Il is said to be:

1> A weak left solution if [domain Z]nI*={0}. A weak left

solution through x, if [domain £]nl1'={0} and X (0)=x.

2) A weak right solution, if [domain Z]nl ={0}. A weak right
solutiong through x, if [domain £]nI ={0} and Z(0)=x.

3) A weak left maximal solution, if 1t is a weak left
solution and is maximal with respect to the property of being a
weak left solution.

4> A weak right maximal solution, if it is a weak right
solution and is maximal with respect to the property of being a
weak right solution.

5) A weak maximal solution, if it is a weak solution, its
restriction to I~ is a weak left maximal solution, and the one to
I* is a weak right maximal solution.

Notice that not every weak solution, maximal with respect to
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the property ot being a weak solution, is a weak maximal solution.
Notice that for every xt¢X there is some weak maximal solution

through x.

Definition. A subset ot X is said to be:

1> A weak negative trajectory through x, it it is the range

of a weak left maximal solution through x. A weak lett solution,
defined on I-, is necessarily a weak left maximal solution. Such
solutions and the corresponding trajectories are caile principal.

2) A weak positive trajectory through x, if it 1is the range

of a weak right maximal solution through x.

3) A weak complete trajectory, if it is the range of a weak
maximal solution.

Definition. Let McX; M is called:

1) weakly negatively invariant, it tor every x€M there is

some weak negative trajectory through x, contained in M.

2) weakly positively invariant, it for every x¢€M there is

some weak positive trajectory through x contained in M.
3) weakly invariant, if for every x€M there exists some weak

complete trajectory through x contained in M.

Theorem. Let McX. M is a weakly positively invariant set, if
and only if for every x€M, there is some ye€M with yARxl.

Proof: It M is a weakly positively invariant set, then the
condition holds. Since if x€M there is a Z, weak right maximal
solution through x, with Zd{1*)eM, and therefore, it we take
y=Z(1>, it is clear that yRxl.

Conversely, assume the condition and take x,€M. Now, using
the hypothesis, define x,€M with x,ARxsl; and'by recurrence, for

nel*, n>1 define x.€M with x,RX,.,1. Now, consider the map Z:I*—X,
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defined by the assignment Z(n)=x,, tor every n in l'. Let t,sel".
By definition we have x..,/%.l, and therefore, Z(t+l) FZ(t)>1l. Now
we have Z(t+1>1 R [Z(t>]1, and therefore Z(t+l)l R Z(t)>2. Now,
since Xy.zRXeeyl, we have that Z(t+2) R 2(t+1)1, and by transitive
property ot K it holds that Z(t+2) RZ(trz.

Now we have Z(t+2)1 K Z(t»3, and since Z(t+3) R Z(t+2)1, we
have Z(t+3) RZ(t)3.

Proceeding in this way, we have ZZ(t+s) R Z(tys, and
therefore, X is & weak right maximal solution through x.,, with
Z(I'>cM. This shows that M is a weakly positively invariant set.

Theorem. The union of weakly positively invariant sets 1is
also a weakly positively invariant set.

Theorem. Let McX be a positively invariant set, then M: is
also a positively invariant set.

Proof: Let x€M., then there is some ye¢M. with xRy, and so
x1Ryl. Now, since M is a positively invariant set, yleM, and

theretore x1€M., and tinally M. is a positively invariant set.

Definition. Let x€X; it xAy holds only it y=x and t=0, x is
called a weak start point.

Notice that it x is a weak start point, then x is a start
point, but x can be a start point without being a weak start

point.

Theorem. Let McX. If M has no weak start points, then it is
weakly negatively invariant, if and only if for every x€M there

exists ye€M, such that xRyl.

Corollary. Let McX. M has no weak start points and is weak1y>

negatively invariant, if and only it for every x€¢M, there exists

y€M, such that xA&yl.
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lTheorem. Let x,ye€x, and t€¢l' with tru. If yAKxt holds, then
there exists some X, weak maximal solution through x, with Z(t)=y.
Proof: Let %* be the map trom |U,t] into X detined by
I*(s)=xs it s€l', with s«<t, and Z*<s)=y it s=t. 1t is clear that
I* is a weak right solution through x, and the theorem is proved,

if we take a weak maximal solution X with Z*cX,

Let x€X; x 1s called a weak critical point, if xRxt for

every tel™.
Notice that if x is a critical point, then x is a weak critical
point, but x can be a weak critical point without being a critical

point.

Theorem. Let x¢X. The tollowing assertions are equivalent:

a) x is a weak critical point.

b) xFRxl.

c> The map Z:1*"—>X with 2(t)=x tor every t in I* is a weak
right maximal solution through x.

A weak solution of Il is said to Se of minimal type, if all

its elements are minimal elements of the partially ordered set X.

Theorem. Let X be a partially ordered set, such that if xe€X,
there is some y€X with y a minimal element of X, and yRx. Let M be
a subset of X positively invariant, then M, is a weakly positively
invariant set, and, evidently, all weak trajectories contained in
M. correspond with weak solutions of minimal type.

Proof: Let ye¢M,, then there exists some x€¢M with yARx, and
ylRxl. Let z be a minimal element of X, with zARyl, then zRxl, and

theretore z€M,. Since zAyl, M, is a weak positively invariant set.
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