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Abstract

In [2] we introduced the concept of quasi-vector space as an associate of a vector
space. In this note we introduce the concept of ideal, maximal ideal, minimal ideal in
a quasi-vector space and discuss their nature in some particular quasi-vector spaces.

Some aspects of ideals in topological quasi-vector spaces are also discussed.
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1 Introduction

In a topological vector space the sum of two compact sets is compact; also scalar multiple of
a compact set is compact. So for a topological vector space X, if we consider the collection
C(X) of all nonempty compact subsets of X then the aforesaid addition of two sets and
multiplication of a set by a scalar become closed operations. Also the following results hold
for any two compact subsets A, B of X and any scalar a, /3

(i) ACB=aACaB
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(ii) (a+/)-A C aA+[A. These simple facts have induced us to find a structural beauty in the
collection C'(X) with the help of aforesaid addition, scalar multiplication and inherent set-
inclusion order. In doing so we have introduced in [2] a new structure which we call a “quasi-
vector space”. It has two structures, a semigroup structure and a partial order structure,
both being compatible with each other; also there is a scalar multiplication which generalises
the concept of vector space in the sense that every vector space can be embedded in a quasi-
vector space and every quasi-vector space contains a vector space as its subspace. In this
space some properties of a vector space are lacking and some are present; the properties
which are absent appear in a different shape with the existing properties and with the
inherent order under consideration.

The study was carried out and a topology was introduced in this new space compatible
with its existing structures; a new topological algebraic structure was thus created which
was named “Topological Quasi-vector Space”.

It has been observed that there is some novelty in the structure which is why there is an
endeavour to usher in further studies of such space.

In the present paper in §3 we have introduced the concept of ‘ideals’ in a quasi-vector
space, which is totally different from the well-known concept of ideal in a ring. In a ring,
ideal is a special type of subring whereas ideal in a topological quasi-vector space can never
be a sub-quasi-vector space, if it is to be a proper ideal. We have also defined a maximal
and minimal ideal of a quasi-vector space and shown that every quasi-vector space has a
unique maximal ideal; although a quasi-vector space may or may not have a minimal ideal.
We have also found a necessary and sufficient condition for a minimal ideal. Some simple
but useful results relating to ideal have also been obtained.

In §4 ideals in some particular examples have been discussed thoroughly.

In the last article, the topological character of an ideal has been discussed. The concept
of ideal has been utilised to find a necessary condition for a topological quasi-vector space to
be compact. In this context it should be noted that, a non-trivial topological vector-space

can never be compact; but a topological quasi-vector space may or may not be compact.

2 Prerequisites

Definition 2.1 Let X be a nonempty set and ‘<’ be a partial order in it. Let ‘+’ be a
binary operation on X and ' : K x X — X be another composition [ K being the field

of complex numbers |. If ‘<’ ‘4" and ‘- satisfy the following axioms, we call ( X, <, +,-) a
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quasi-vector space [ in short, QVS |.
Ay (X[ +) is a commutative semigroup with identity ‘6.
Ay: 2<y(ryye X)=r+z2<ytzanda-z<a-y, Vz€ X, Vae K.
Ag: (i) a-(zty)=a-z+ta-y
(i) a-(B-2)=(a-0) -z
(iii) (a+p8)-z2<a-z+06-z
iv) 1.2 =z, where ‘1’ is the multiplicative identity in K, Va,y € X, Vo, € K
Ay arx=0ifa=0o0rz=20
As: o+ (1) z=0ifeeXo={zeX: yLa, Vye X\ {z}}
Ag: Foreach x € X, 3y € Xy such that y < z.

Definition 2.2 An element z € X is said to be of order ‘1’ if y € z, Vy € X'\ {z}, otherwise

x will be said to have order greater than ‘1.

Note 2.3 (i) Every qvs contains at least one ‘17 order element viz. the additive identity 6.
(ii) One order elements are the only invertible elements in X. In-fact: a +b = 0(a,b €

X)=a+b—-b=-b+0=-b Again,a+b—-b>a+0=-b>a—=>b>-a=0=

a+b>a—a>60= amust be of order ‘1’ ( by axiom Ajs). Similarly b must be of order -

‘1. It now follows that, a 4+ b (a,b € X) will be of order ‘I'iff both a and b are of order ‘1’
(iii) We also observe that for each m € X,, 3y € X s.t y > m and y # m for, if x be an

element of order greater than ‘1’ then x —z+m > mand x —x +m # m [since x —x # 0 |.

Definition 2.4 [1] A partial order ‘<’ in a topological space Z is said to be closed if its
graph {(z,y) € Z x Z : 2 <y} is closed in Z x Z, endowed with the product topology.

Theorem 2.5 (1] A partial order ‘<’ in a topological space Z will be a closed order iff for any
x,y € Z withx £y, 3 open nbds U,V of x,y respectively in Z such that (T UYN(] V)=
where, T U={x€Z :x>u for someuecU} and |V ={x € Z:x <w for somev € V}.

Definition 2.6 A qvs X is said to be a topological qvs if X has a topological structure with
respect to which ‘+” and ‘" are continuous and ‘<’ is a closed order such that for each open

set Vin X, | V={yeX: y<uxforsomez €V} is open in X.
Proposition 2.7 Every topological qus is Hausdorff.

Proof : Let X be a topological qvs. Let z,5y € X with z # y. Then either z £ y or y £ .
Without loss of generality let, x € 3. Since the order ‘<’ is closed, 3 two open nbds U,V of
x,y respectively in X such that (T U)N (| V)= & [ by theorem 2.5]=UNV = o.
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3 Ideals in a QVS

Definition 3.1 A nonempty subset / of a qvs X is said to be an ideal of X if
DX+ICTii)al Cla#0ii)TI=1where]I={xeX:x>yforsomeye I}

Note 3.2 We observe that if ¢ € [ then [ = X; therefore [ will be proper ideal of X iff
0 ¢ 1. 1t is equivalent to say that / cannot contain any element of order ‘1’. Thus if Xg

denotes the set of all ‘1" order elements of X, then [/ is a proper ideal of X iff I N Xy = &.
Theorem 3.3 X \ Xy is a proper ideal of X.

Proof : First we have X # X. Let x € X and a € X \ Xy. Then a cannot be of order ‘1’.
We claim that + a is also not of order ‘1’; for otherwise, (z+a)—(z+a) = z—x+a—a = 6.
Againx —zx>0=>a—-atrx—x>a—a=0>a—a=a—a=0=aisof order ‘I’
which is a contradiction.

Now, let & € K, # 0 and a € X \ Xo. We show that aa € X \ X,. For, if aa € Xy then
aa—aa=0=ala—a)=0=a—a=0 (a+#0)= ae Xy which is a contradiction.

Let x € T (X \ Xo). Then 3 a € X\ Xg s.t > a. We show that x € X \ X,. If not,
reXo=>rx—2=0. Thus, z>2a=>2x—2x>2a—a=0>2a—a=a—a=0=a€ X
which is a contradiction.

Consequently T (X \ Xo) = X'\ Xp [ since (X \ Xo) € T (X \ Xo) |. Therefore X \ Xy is an
ideal of X. Clearly it is a proper ideal since Xy # ®.

Note 3.4 We note that X \ Xy is a maximal ideal of X in the sense that, there is no proper
ideal I of X such that X \ X, C I. It is also clear that X" cannot have any other maximal

ideal i.e. X'\ Xy is the unique maximal ideal.
Theorem 3.5 Arbitrary non empty intersection of ideals is an ideal.

Proof : Let {I, : @« € A} be an arbitrary family of ideals of X such that N,ex I, # .

Let I = Noca I

i) Let a € I thena € I, Voo € A

Therefore, z + a € I, Yo € A [ since I, is an ideal |= . +a € Npep la =1 V2 e X.

ii) Let a € I. Then a € [, Vo € A

Therefore, fa € I, for all non zero 3 and Voo € A | since 1, is an ideal |= fa € Naep Lo =
I VB#0

iii) Let pe 1T 1.
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Then p > gforsomege = qgel,YaeA=>pell,VaeA
=péel, Ya €A [since [, is an ideal of X, 11, =1, |.
Therefore, p € Naoep Lo = 1.

Consequently, 17 =1 [since I C 11 |

This completes the proof.

Proposition 3.6 Arbitrary union of ideals of X is an ideal.
Proof : Immediate from definition.

Theorem 3.7 Let a € X, where X is a quasi-vector space. Then I{a) = {y € X 1y >
r+aa, v € X, a€ K*} is an ideal of X containing a, where K* = K \ {0}.

Proof : Clearly, a € I(a) | since a = 0 + 1.a where 0 € X, 1 € K* |.

i) Let 1 € X and y; € I(a) Then 3 2 € X and o € K* such that y; > 25 + aa
Now, 21 + 41 > o1 + 22 + aa = 21 + 91 € I{a) | since 21 + 22 € X |

Therefore X + I(a) C I(a)

ii) Let & € K* and y € I(a). Then 3z € X and # € K* such that y > z + fa
= ay > alz + fa) = ax + afa = ay € I(a) | since ax € X and aff € K* |

= al(a) C I{a)

iii) Let p € 7 I(a). Then 3 ¢ € I(a) such that p > ¢

Now, g € I{(a) = Jx € X and o € K* such that ¢ > = + aa
Therefore p > g > v+ aa=p € I(a) =T I[(a) = I(a).

In view of (i), (ii) and (iii) the theorem follows.
Corollary 3.8 If ‘a’ be an element of order ‘1’, then I{a) = X and conversely.

Proof : Let x € X. Then there exists an element y in X of order ‘1’ such that = > y =
x>y—a+talsince a—a=40 for, ais an element of order ‘1’ |.

Now y —a € X = x € I(a). Therefore X = I(a).

Conversely, let I{a) = X for some a € X. Then # € I(a). So 3z € X and o € K* such that

0>r+aa=zr+aa=0=a'z+a=0=aisof order ‘1’ [ by note 2.3].

Note 3.9 The ideal [(a) is said to be the ideal generated by ‘a’. It is the smallest ideal
containing a; for, if J be another ideal containing a such that J C I{a) then p € I{a) = p >
x+ aa for some x € X, a € K*

Now, z +aa € J [since Jis an ideal and a € J | = pe 1 J = J.

Thus, I(a) C J = I{a) = J.

It is also clear from theorem 3.5 that I(a) is the intersection of all ideals containing a.
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Theorem 3.10 Any two proper ideals must intersect.

Proof : Let I and J be any two proper ideals of X. Now, [ +.J C Jand J + 1 C [.
Consequently I +J C JN 1

Theorem 3.11 For any ideal J C X, | J = X, where | J = {x € X : 2 < j for some
jeJ}.

Proof : Let x € X. Then either 2z € Jor z ¢ J.

Now,zeJ=zxe|J=> XC|J=>|J=X.

Let « ¢ J. Now I(z)NJ # ® [ by theorem 3.10 | = 3 p € X such that p € I(x) and
peJ=3dx; € Xand a € K*such that p > z1+ax = p—x; > x1—21+ax > 0+ax = ax.
or ap—x1) >z [ since a £ 0 |

Now, a=Y(p — ;) € J | since J is an ideal of X and p € J |

Therefore there exists an element a~'(p — ;) € J such that o™ '(p —2)) > 2= 2¢€ | J =
X C | J. Therefore | J = X.

Proposition 3.12 [fa <b (a,b € X) then I(b) C I(a)
Proof : Straight forward.
Theorem 3.13 For any ideal J C X, J = Uyes I(2).

Proof: Let x € J = v € I(x) C U,es ().

Conversely, let y € U,es [(z). Then 3 p € J such that y € I(p) = Fa € X and o € K*
such that y > a + ap.

Now, a +ap € J [ since p € J and J is an ideal |.

Therefore, y € J [since T J = J | = U,es [(x) C J. Thus U,e;s I(x) = J.

Definition 3.14 An ideal [ of a qvs X is said to be a minimal ideal of X if there does not
exist any proper ideal J of X such that J C I.

Theorem 3.15 J is a minimal ideal of X iff J = I(x) Vx € J.

Proof : Let x € J. Then [(z) C J [ by note 3.9 |. Also, J being minimal J C I(z).
Conversely, let J = [(x) Vx € J. If possible, let J; be another ideal of X such that J; C J.
Let pe Jy=pe J=J=1(p). Now, I(p) is the smallest ideal containing p.

Hence I(p) C J; = J C J;. Consequently J is minimal.

Note 3.16 Since any two ideal intersect, minimal ideal (if any) of a qvs must be unique.
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Theorem 3.17 If a qus X contains a mazimal element a, w.r.t the partial order then I(a)

18 a minimal ideal.

Proof : Let x € I(a). Then I(x) C I(a). Also x > y + aa for some y € X, a € K* =
r—y>aa=ar—y)>a=alr—aly=a]since ais a maximal element in X |
=a€ l(x)=I(a) C I(x).

Theorem 3.18 Let A be a subset of a qus X. Then
I(A)={y:y>r+Xlma, a; € K*, ;€ A, i=1,....mz e X,n=1,2,3,...} is an
ideal of X containing A.

Proof : Let a € A. Then a = 0+ l.a = a € I(A) = A C I(A). The rest of the proof is

similar to that of theorem 3.7.

Note 3.19 Arguing similarly as in note 3.9 we can say I(A) is the smallest ideal containing
A.

Proposition 3.20 1(A) = Useal(a).

Proof : let b € I(A). Then 32 € X and a1,...,a, € A, ay,...,a, € K* such that
b>2+ Y0, cas = o+ Y0 ia; + anay. Therefore, b € I(ay) [ since z + X0 aia; € X
|= b € Useal(a). Let p be an element in Uyeq/(a). Then 3 a € A such that p € I(a).
Therefore p > x4 «a for some x € X and o € K* = p € I(A).

Therefore, [(A) = Uueal(a).

4 Examples of ideals

4.1 Example

Let X be a topological vector space over the field of complex number K. Let C'(X) be the
set of all non-empty compact subsets of X'. We define addition (+) and scalar multiplication
(+) in C(X) as follows:

Let A, BeC(X)and a € K

A+B={a+b:a€Abe B}, a-A={aa:a€ A}.

Clearly A + B and aA are compact since the addition and scalar multiplication in X are
continuous, X' being a topological vectorspace and hence A+ B,a - A € C(X). It is easy to

check that C'(X) with the aforesaid operations and with respect to the usual set-inclusion
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order forms a qvs over K | {#} being the identity element in C'(X), where @ is the identity
in X.
Ideals of C(R)

Let us consider the topological vector-space R. The closed and bounded subsets of I are
the only compact subsets of R. It is easy to observe that the singleton sets {a},a € R are
the only one order elements of C(R). Also C'(R)\ S is the maximal ideal of C'(R), where
S = {{a}: a € R} ( by note 3.4).

We now discuss the ideals generated by single elements of C'(R).
Proposition 4.1.1 Let A, B be two two-point sets of R. Then I(A) = I(B).

Proof : Let A = {ay,as}, B = {by,bo}. Then I(A) CI(B)iff Ae I(B)iff ADFE+aB for
some I € C'(R) and aw € R\ {0} = R* (say)

Since A and B contains same number of elements it follows that £ must be singleton and
hence A= E+aB ... (*). Let E = {z}. Then above relation () holds iff a; = 2+ ab; and
ay = x+aby (if a; = x4 aby and ay = x4+ ab; then B can be renamed just by interchanging
by and by so that we get the above relations) which being a system of two linear equations
in two variables x and o must have a unique solution.

Consequently, 1(A) C I(B) is always true.

Similarly, I(B) C I(A).

Proposition 4.1.2 If A = {ay,...,a,}, B = {b1,...,b,} where n > 2, then I(A) = I(B)

1 a; bl
iff|1 a; b [=0for1<ijk<n, i#£j#k
1 A bk

Proof : I[(A) C I(B)iff A€ I(B)iff A D E+ aB for some F € C(R) and o € R*.
Since A and B contains same number of elements it fOllOWS that £ must be singleton and
hence A = E + aB. Let E = {z}, v € R. Therefore A = {z} + aB. This is true iff the
following system of linear equations a; = 2+ « b;, i = 1,...,n in 2 and a has a solution.
Ifa; =2 +abj, 1,5 € {1,2,...,n} instead of the said equations, then B can be renamed in

such a way that we get the above equations.
1 b
Here order of the coefficient matrix P = | ... ... | is n x 2 and that of the augmented

1 by

150

© Del documento, de los autores. Digitalizacion realizada por ULPGC. Biblioteca Universitaria, 2017




matrix @ = | ... ... ... | is n x 3. The above system has a solution iff r(P) = r(Q),
1 b, a,
where r(P) denotes the rank of P. In this case, r(P) < 2 and r(Q)) < 3. So if r(P) = r(Q)
1 b o
then 7(Q)) # 3 and hence every minor of @ of order 3 is zero ie |1 b, a; | = 0 for
1 by a
1 oa b

1<ijk<n;i#j#k =|1 a; b |=0for1<ijk<n, i#j#k.
1 ap b
. . Lob o,
Conversely, if these determinants be all zero then r(Q) # 3. Also , # 0 Vi,j(i # j)
1 b

j
[ since b; # by, Yi,j (1 # ) ]. Sor(P) = r(Q) = 2. Consequently, the above system of n

linear equations in two variables x and o has unique solution. If we interchange A and B in

above arguments then, under same condition, I(B) C I(A). This completes the proof.

Note 4.1.3 It is easy to note that if A contains n elements and B contains n+1 elements

of R, then I(A) cannot be contained in I(B). Also /(B) is not necessarily contained in I(A).

Proposition 4.1.4 If A= {ay,...,a,}, B ={b1,...,bys1} where n > 2, then I(B) C I(A)
1 a b

iffl 1 a; b |=0for1<d,jk<n;1<rst<n+l;ifj#kandr#s#t.
1 ap b

Proof : Similar as proposition 4.1.2

Note 4.1.5 (i) We observe that any ideal generated by a countably infinite compact subset
of R is contained in some ideal generated by a finite subset of R. Also, any two ideals
generated by two countably infinite compact subsets of R need not be same. For example,
I({1/p:pis prime} U{0}) and I({1/n:n=1,2,3,...} U{0}).
(ii) Each ideal generated by countably infinite compact subset of R contains an ideal gen-
erated by some uncountable compact subsets of K. Also any two ideals generated by two
uncountable compact subsets of R need not be same. For example, ({3, g : a; = 0,2})
and [({¥X2, & : a; = 0,2,4}).
Minimal Ideal Of C'(R).

The closed interval [0, 1] is an uncountable compact subset of k. We claim that ([0, 1])

is contained in any ideal of C'(R). In fact, we show ([0, 1]) C I(A) for any compact subset
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A of R. For this we are only to show that [0, 1] € I(A). Since A is a compact subset of R,
Ja, bERsuchthatAC [a,b] = {22} + ;2 A C{=} + 1[0, 0] = [0,1] = [0,1] € I(4)
We now prove that ([0, 1]) is the minimal ideal of C(R). Let B € I([0,1]). Then obviously
I(B) C 1(]0,1]). Also by above discussion, I([0,1]) C I(B) since B is a compact subset of
R. Thus I([0,1]) = I(B) VB € 1(]0,1]). Therefore by theorem 3.15, I([0, 1]) is the minimal
ideal of C(R).

4.2 Example

Let GG be the set of all 2 x 2 matrices A over R such that |A| > 1, where |A| denotes the
determinant of A. We define a relation p on G as follows :

ApB holds iff |A| = | B|. Then clearly p is an equivalence relation on (7. This determines
a partition on G. Let [A] denotes the equivalence class containing A.
Let X = {[A] : A € G}. We define addition (+), scalar multiplication (-) and a partial order

‘<’ on X as follows :
10

01
(iii) [A] < [B] iff |A| < |BJ. It is easy to verify that all operations defined above are well

defined.
Then (X, <,+,) is a qvs over the field R.
Ideal of X

Here [I] is the only one order element, i,e. Xo = {[I]}. So, X\ {[I]} is the maximal ideal
of X.
Let [A] € X\ X,. Then, I([A]) = {|B] € X : |B| > |A|}. Hence, I([A]) = I(|B])iff |A] = |B].
Also, for any two elements [A], [B] € X \ X, either I([A]) C I([B]) or I([B]) C I([A]). Thus
the collection of all ideals of X forms a chain of ideals. We claim that X has no minimal
ideal.
If possible let, J is the minimal ideal of X. Then 3 [A] € X \ X, such that J = I([A]). Let
B be a 2 x 2 square matrix over R such that |B| > |A|. Then [B] € I([A]) = J = I([B]) C J
but I([B]) # J | since |B| # |A| ]. This contradicts the minimality of .J.

(i) [A] + [B] = [AB] (ii) 4] = [@A], & # 0 and 0[A] = [I] where I =

4.3 Example

Let (S, <) be a lattice with the least element 6. We define * : S x S — S by axb = lub(a, b)
where [ub(a,b) denotes the least upper bound of a,b. Also We define “:K x S — S by
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a, fora#0 ) ]
a.a = for all a. Then (S,*,-,<) is a qvs over K (K being a field ).
0, fora=20

Ideal Of S

Here 6 is the only one order element of S.
Proposition 4.3.1 Let 0 £ a€ S. Then I{a) =1 a

Proof: Let pe fa=p>a=p>0xaaVa#0=pe l(a)
Conversely let, g € I(a) = ¢ > x % aa for some x € S and o € K \ {0} = ¢ > z*a | since

aa = a for non zero o |. Let | = x * a then | > a. Therefore g >1>a= g€ 1 a.
Proposition 4.3.2 [(a) = I(b) iffa=b

Proof : Follows immediately from proposition 4.3.1

Proposition 4.3.3 S has a minimal ideal iff it has a mazimal element.

Proof : Let a be a maximal element of S. Then /(a) = 1 a = {a} = [(a) is a minimal
ideal.

Conversely, let J be a minimal ideal of S. Then J = [(a) for some a € S.

Now, z > a(zr € S) =2 € la=J=J=1I(x)|since J is the minimal ideal |= I(z) =

I{(a) = x = a ( by proposition 4.3.2). So a is a maximal element of S.

5 Topological property of ideal in a topological qvs
Theorem 5.1 Let I be an ideal of a topological qus X. Then I is also an ideal of X.

Proof : i) Let # € X and p € I. Let V be any open nbd of 2 + p. Then 3 open nbds W,
and W, of x and p respectively in X such that Wy + Wy C V.

Now, W, is an open nbd of pand pe I = Wy N1 # ®.

Let ge WonI. Then x + g € V [since g € Wy |

Also,x +qge X +1C [ [sinceqe land [isanideal |=2x+qgeVNI=VnI+#ao.
Hence, z + p€ I. Thus, z + p€ X + [ = x+p € I. Therefore, X + 1 C I.

ii) Let & € K*,p € I and V be any open nbd of ap. Then 3 open nbds N of o in K and U
of pin X such that NU C V.

Therefore, U N [ # ® [ since p € [ and U is an open nbd of pin X |. Let t € U N 1. Then
at €1 [since t € [ and I is an ideal |

Also,at € V [sincea € Nyt e Uand NUCV = VNI#£®=apel
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iii) Let, g € 1 I. Therefore, 3 p € I such that ¢ > p.

Let W be any open nbd of q. So, p € | W [since ¢ > p |. Now | W being open in X,
IWnI#®. Let z€ | WNI. Therefore, 2 <w forsomeweWandz el =well=1
[ since [ is an ideal of X |= WNI#®=gel=11CI Consequently | =1 since
ICT1r].

In view of (i), (ii) and (iii) the theorem follows.

Definition 5.2 An ideal [ is said to be a closed minimal ideal if [ is closed and it contains

no closed ideal properly.

Proposition 5.3 If J be the minimal ideal of a topological qus X, then J will be its closed

minimal ideal.

Proof : If possible let I be a closed ideal such that I C J. Since .J is the minimal ideal,
JCICJ=J=1=1 So.Jisa closed minimal ideal.

Theorem 5.4 [(A) is path-connected for each A (C X \ Xo).

Proof : I(A) = Uaea I(a) [ by proposition 3.20]. We first show that /(a) is path connected
for each a € A. Let y1,yo € I(a). Then 3 xy, 25 € X and ay, ap € K* such that y; > 21+ oa
and 1 > 9 + aga. We define a function f : [0,1] — X by f(t) = (1 —t)y1 +tys. Clearly fis
continuous. Also, f(t) = (1=t)yi+tye > (1—t)xy+Htxe+ (1 —t)attasa = f(1) € I(a) Vi €
[0,1]. Thus [ is a continuous path in /(a) such that f(0) =y, and f(1) = y,. Consequently
I(a) is path-connected for each a € A. Since any two ideals intersect it follows that I(A) is

also path-connected.

Theorem 5.5 If X be a compact topological qus, then it has a minimal ideal which is also

compact.

Proof: We first show that X has a closed minimal ideal. Let I" be the collection of all closed
ideals of X. Since closure of an ideal is also an ideal ( by theorem 5.1 ) I' is non-empty.
Let J = Nper F. Since any two ideals intersect { by theorem 3.10 ) I' has finite intersection
property. Since X is compact, J # ®. So J must be a closed ideal ( by theorem 3.5 ). Also
from the construction it follows that J must be the closed minimal ideal.

We now prove that J is minimal. For this we have to prove J = I{a) Ya € J ( by theorem
3.15 ).

Let a € J. Then I(a) C J = I(a) = J | since J is closed minimal ideal |. If we can show

that /(a) is closed the proof is done.
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Let {yn}nep be a net in I(a) converging to y, D being a directed set. So for each n €
D 3z, € X and «,, € K* such that y, > z, + a,a

* Since X is compact, the net
{@n}nep in X has a convergent subnet {x,,}mer(say), E being a directed set. Let z,, — x.
From * we have y,,, > z,, + a,a, m € E. Here {a,, }mep 18 a net in K*. Now two cases may
arise.
Case-l : {am}mep has a bounded subnet {,},ep (say), E' being a directed set. Then
{ap}perp has a convergent subnet {ay}.ep (say), D' being a directed set. Let a, — a =
g0 — aa | since -7 is continuous |. Again J is closed and aga € J Vg€ D' = aa € J ie.
a0 since 0 £ J |
Now we have y, > 2, + aya = y > x + aa [ since the partial order ‘<’ is closed and any
subnet of a convergent net is convergent and converges to the same limit, limit being unique
for, X is Hausdorfl | where o # 0 = y € I(a).
Case-Il : {@, }mer has no bounded subnet. Then {ca,, '} er is a bounded net in K* and
hence it has a convergent subnet {a, ™ },ep, (say), By being a directed set. Let a,™' — £,
Now {a,a}yep, is a net in J and J is compact | since J is closed subset of X which is
compact |. So {apa}yep, has a convergent subnet {aqa}qepm, (say), Fs being a directed set.
Let aga — 2. Then z € J. Again, o, — . So a, 'aga — Bz = a = Bz | since limit of
a convergent net is unique |=  # 0 [ since a # 0 |= z = f~'a. Thus a,a — f~'a where
B~ # 0. Again we have y, > x,+a,a ¥q € Ey = y > v+ 37 'a | by same logic as in case-I |
=y € I(a).

Consequently, /(a) is closed.

Now J being a closed ideal it must be compact, since X is compact.
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