Rev. A cad. Canar. Cienc., IX (Núm. 1), 9-13 (1997)

A MEASURE OF WEAK NONCOMPACTNESS IN $L^1(\Omega,\Sigma,\lambda)$

I.J. Cabrera and K.B. Sadarangani

Departamento de Matemáticas, Universidad de Las Palmas de G.C. Campus de Tafira Baja, 35017 LAS PALMAS.

We introduce a measure of weak noncompactness in the space $L^{1}(\Omega,\Sigma,\lambda)$ and we prove that this measure is less or equal to the classical De Blasi measure of weak noncompactness of $L^{1}(\Omega,\Sigma,\lambda)$. Moreover, we give a sufficient condition related with λ and Σ for that both measures are egua!.

l. INTRODUCTION

The theory of measures of weak noncompactness was initiated by De Blasi in the paper [5]. This measure was applied successfully to nonlinear functional analysis, to operator theory and to the theory of differential and integral equations (see $[1,2,3,7,8]$, for axample).

In the paper [4], a formula is given to express the De Blasi measure of weak noncompactness in the Lebesgue space $L^1(0,1)$. Following the same ideas of [4], in this paper we give a measure of weak noncompactness in the space $L^{1}(\Omega,\Sigma,\lambda)$, where λ is a nonnegative measure on a set Ω with Σ a σ -field of subsets of Ω , which is less or equal to the classical De Blasi measure of weak non-compactness of $L^1(\Omega,\Sigma,\lambda)$. Moreover, we give a sufficient condition for that both measure are egua!.

2. NOTATION ANO DEFINITIONS

Let E be a n infinite dimensional real Banach space with norm $\|\cdot\|$ and zero element Θ . Denote by B_E the closed unit ball of the space E.

Next, let M_E be the family of all nonempty and bounded subsets of E and let N_E^{ω} be its subfamily consisting of all relatively weakly compact sets.

The so-called De Blasi measure of weak noncompactness $\beta : M_E \to [0, \infty)$ is defined in the following way:

$$
\beta(X) = \inf \{ \varepsilon > 0 : \exists Y \in N_{+} \; / \; X \subset Y + \varepsilon B_{+} \}
$$

Let us observe that in the case when E is a reflexive Banach space then $\beta(X) = 0$, for every $X \in M_F$. Hence it is only of interest to consider the function β in a nonreflexive Banach space. Recall that $\beta(B_E) = 1$ when E is nonreflexive. For other properties of the De Blasi measure of noncompactness we refer to [5,8], for example.

In what follows, suppose Ω is a set, Σ is a σ -field of Ω and λ a nonnegative measure on (Ω,Σ) . By $L^1(\Omega,\Sigma,\lambda)$ we denote the following set:

$$
L^1(\Omega,\Sigma,\lambda)=\left\{f:\Omega\to C,\ \text{measurable with}\ \int\limits_\Omega \lvert f\rvert\,d\lambda<\infty\right\}
$$

Now, based on the paper [4], we introduce the function H defined on the family $M_{L^{1}(\Omega;\Sigma)}$ by the formula:

$$
H(X) = \lim_{\lambda(A) \to 0} H_A(X)
$$

where $A \in \Sigma$ and $H_A(X) = \sup_{f \in X} \left(\int_A |f| d\lambda \right)$.

The properties of the function **H** will be investigated in the next section. In particular, we show that **H** provides a lower estimate for $\beta_{\text{L}(\alpha, \Sigma)}$

3. RESULTS

ness. We start with the following result which proves that **H** is a measure of weak noncompact-

THEOREM 1. The function H satisfies the following conditions:

- (a) $H(X) = 0 \Leftrightarrow X \in N_{E}^{w}$
- (b) $X \subset Y \Rightarrow H(X) \leq H(Y)$
- (c) $H(cX) = |c| H(X), \forall c \in R$
- (d) $H(X + Y) \le H(X) + H(Y)$
- (e) $H(\text{conv}X) = H(X)$
- (f) $H(B_{L^1(\Omega,\Sigma,\lambda)}) \leq 1$

Proof.

(a) is consequence of a result of [6, pag 93], while (b) follows inmediately from the definition of the function H.

In order to prove (c) let us take a set $X \in M_{L'(\Omega,\Sigma,\lambda)}$ and $A \in \Sigma$, and assume that $c \in R$ and $c \neq 0$, then we have

$$
H_A(cX) = \sup_{f \in X} \left(\int_A |cf| d\lambda \right) = \sup_{f \in X} \left(|c| \int_A |f| d\lambda \right) = |c| \sup_{f \in X} \left(\int_A |f| d\lambda \right) = |c| H_A(X)
$$

and, consequently, $H(cX) = |c| H(X)$.

In the case when $c = 0$, we have that cX is zero function and, thus, $H_A(cX) = 0$ and in this case the equality (c) is also satisfied.

In order to prove (d), let us take a set $A \in \Sigma$, $f \in X$ and $g \in Y$. Then we have

$$
\int\limits_{A}\Big|f+g\Big|d\lambda\leq \int\limits_{A}\Big|f\Big|d\lambda+\int\limits_{A}\Big|g\Big|d\lambda\leq H_{_{A}}\left(X\right)+H_{_{A}}\left(Y\right)
$$

and, thus

$$
H_A(X+Y) \le H_A(X) + H_A(Y)
$$

consequently, $H(X + Y) \leq H(X) + H(Y)$

For the proof of (e) it is sufficient to prove the inequality $H(\text{conv}X) \leq H(X)$. In fact, we take $f = \sum_i \lambda_i f_i$ with $\sum_i \lambda_i = 1$, $\lambda_i \ge 0$, $f_i \in X$ and, moreover, $A \in \Sigma$.

Then we can obtain

$$
\int\!\left|\sum_i \lambda_i\,f_i\right|d\lambda\leq \sum_i \lambda_i\int\! \left|f_i\right|d\lambda\leq \sum_i \lambda_i\,H_A\left(X\right)
$$

consequently, H_A (convX) $\leq H_A(X)$ and, thus, $H(\text{convX}) \leq H(X)$.

Finally, as $H_A(X) \le ||X||$, where $||X|| = \sup_{f \in X} \left(\int_{0}^{\infty} |f| d\lambda \right)$, we have that $\mathbf{H}_{\mathrm{A}}\left(\mathbf{B}_{\mathrm{L}^1\left(\Omega,\Sigma,\lambda\right)}\right)\leq\left\|\mathbf{B}_{\mathrm{L}^1\left(\Omega,\Sigma,\lambda\right)}\right\|\leq1$

and, thus, $H(B_{L^1(\Omega,\Sigma,\lambda)}) \leq 1$.

This following result proves that the function H is a lower estímate for the classical De Blasi measure of weak noncompactness β in $L^1(\Omega,\Sigma,\lambda)$.

THEOREM 2. $H(X) \leq \beta(X)$ for any $X \in M_{1,100,8,31}$

Proof.

Suppose that $\beta(X) = r$. Then for any $\varepsilon > 0$ we can find a set $Y \in N^{\omega}_{1, (\Omega, \Sigma, \lambda)}$ such that $X \subset Y + (r + \varepsilon)B_{1/(\Omega, \Sigma, \lambda)}$ (see section 2). Hence, using theorem 1, we obtain

 $H(X) \leq H(Y) + (r + \varepsilon) H(B_{\frac{1}{r}(\Omega, \Sigma, \lambda)}) \leq r + \varepsilon$

in virtue of the arbitrariness of ε , this implies $H(X) \leq \beta(X)$.

Our last result will be to give a sufficient condition related with the σ -field Σ and the measure λ for that both measure H and β are equal. This condition has been taken following the same ideas of the paper [4].

THEOREM 3. Suppose that exists a sequence (A_n) of elements of Σ such that $\lambda(A_n)$ tends to zero when $n \to \infty$, and, moreover, for any bounded subset X of $L^1(\Omega, \Sigma, \lambda)$, $X_{\Omega-A_n} = \{f\chi_{\Omega-A_n}: f \in X\}$ is relatively weakly compact in $L^1(\Omega,\Sigma,\lambda)$ for every n. In these conditions $H = \beta$.

Proof.

It's sufficient prove that $\beta \leq H$, in virtue of theorem 2. In fact, every function $f \in L^1(\Omega, \Sigma, \lambda)$ may be written in the form:

$$
f = f\chi_{A_n} + f\chi_{\Omega - A_n} \quad (1)
$$

where χ_A denotes the characteristic function of the set A.

Using the representation (1) it may be easily show that

$$
X \subset X_{\Omega - A_n} + H_{A_n}(X) B_{L^1(\Omega, \Sigma, \lambda)}
$$

Hence, in view of the properties of the De Blasi measure of weak noncompactness β , we get

$$
\beta(X) \le \beta(X_{\Omega - A_n}) + H_{A_n}(X) \beta(B_{L^1(\Omega, \Sigma, \lambda)})
$$

In virtue of the hipothesis, $\beta(X_{\Omega-A_n}) = 0$ and as we consider the case of $L^1(\Omega, \Sigma, \lambda)$ a nonreflexive space, because the other case is trivial, we obtain

$$
\beta(X) \leq H_{A_n}(X) \beta(B_{L^1(\Omega,\Sigma,\lambda)}) = H_{A_n}(X)
$$

and thus $\beta(X) \leq H(X)$.

REFERENCES

[l] J. Apell and E. De Pascale, "Su alcuni parametri connessi con la misura di non compatezza de Hausdorff in spazi di funzioni misurabili", Boll. Un. Math. Ital. B6 (1984), 497-515.

[2] J. Banás, "Integrable solutions of Hammerstein and Urysohn integral equations", J. Austral. Math. Soc. 46 (1989), 61-68.

[3] J. Banás and J. Rivero, "On measures of weak noncompactness", Ann. Math. Pura Appl. 151 (1988), 213-224.

[4] J. Banás and K.B. Sadarangani, "Remark on a measure of weak noncompactness in the Lebesgue space", Bull. Austral. Math. Soc. 52 (1995), 279-286.

[5] F.S. De Blasi, "On a property of the unit sphere in Banach spaces", Bull. Math. Soc. Sci. Math. R.S. Roumaine 21 (1977), 353-358.

[6] J. Diestel, "Sequences and series in Banach spaces", Springer-Verlag, New York, 1985.

[7] G. Emmanuele, "Measure of weak noncompactness and fixed point theorems", Bull. Math. Soc. Sci. Math. R.S. Roumaine 25 (1981), 353-358.

[8] V. Lakshmikanthan and S. Leela, "Nonlinear differential equations in abstract spaces", Pergamon Press, New York, 1981.