Rev.Acad.Canar.Cienc., XI (Nams. 1-2), 41-55 (1999)

REGULAR AND SINGULAR ELEMENTS OF A COMPLETE METRIC
I-PARA-ALGEBRA AND A METRIC I-PARA-SEMIALGEBRA

D. K. Bhattacharya and T. Roy.

ABSTRACT : The paper introduces the notions of a metric para-algebra and a metric para-
semialgebra. It studies regular and singular elements cf an unital metric para-algebra and those of
a metric para-semialgebra with S-identity. It also investigates the nature of radical of a metric para-

algebra and a metric para-semialgebra.

1. INTRODUCTION : Properties of regular and singular elements of an unital Banach algebra were
studied by C.E. Rickart, 1960; G.F. Simmons, 1963 and many others. They also investigated the
nature of radical of this algebra. D. K. Bhattacharya and A. K. Maity, 1992 studied regular and
singular elements of a nonunital Banach algebra with central idempotents. Also the radical of such

algebra was studied by D. K. Bhattacharya and T. Roy, 1996.

In the present paper, it is shown that the above discussions may be carried out for an unital algebra
by dropping the property of homogeneity of the norm or even without assuming the existence of

additive inverses of elements of the algebra.

The whole discussion is limited to four articles - the first one deals with definitions and examples of
different types of metric para-algebras and metric para-semialgebras; the second one deals with
regular and singular elements of an unital metric para-algebra; the third one studies similar elements
for a metric para-semialgebrs with S-identity; the last article investigates the nature of radical of the

above algebras.

2. SOME DEFINITIONS AND EXAMPLES :

Definition 2.1. A semilinear space X over R*U{0} is an additively commutative semigroup with
identity 0,
where for all x, ye X, o, Be R*U{0}, 1e R*, (ot + B)x = ox + Bx, o(x + y) = ox +ary, 1x = x, Ox =6.
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Definition 2.2. A semi algebra X over R*U{0} is a semilinear space over R*U{0} where there is an

additional composition o : XxX — X, called multiplication such that
@)  xo(yoz)=(xoy)oz
(i)  Xo(y+2Z)=Xoy+xoz, (X+Yy)oz=XoZ+Yyoz
(i) 8x=0=x8
(V) ofxey)=(ax)oy=xo(ay), VX,y,ze X, a e RU0}.

Definition 2.3. Let X be an unital semialgebra. The multiplicative identity | of X is called a S-identity,

if for each r € X, there exists a unique ° € X suchthatr+r=1.
Definition 2.4. A paranorm on a linear space X over a field F is a function
p: X—R'U{0} such that
i) px)=oiffx=6
(i) p(x+y) < p(x) + p(y)
(iii)  p(-x) = p(x)
(v} [A,-A—>0, p(x,-x)>0=p(L,x,-AX) >0 as n—
where {x}c X, x,y € X, {A} cF, A € F,. 6is the additive identity of X.
(X, p) is called a paranormed space over F.
Remark 2.1. Every linear metric space/metric linear space (X,p) is a paranormed space (X,p) where
p(x)=p(x , 8) , xe X [0 being the additive identity of X].
Examples of paranormed spaces
Example 2.1. |_ ()= [x:{xk}, x.€ R: Swlx[ <m]

where {r,} is a bounded sequence of reals o <r, <H, H= Stlp r,infr,>0.1_(r) is a paranormed

space over R under componentwise operations, where paranorm p is given by

42

© Del documento, de los autores. Digitalizacion realizada por ULPGC. Biblioteca Universitaria, 2017



p(x) = Sup [x /™ , M= max (1, H).
Example 2.2. | () =[x={x,(}, X €R; i]xkl exjsts], where {r} is defined as in example 2.1.
|
I(r) is paranormed space over R under componentwise operations with paranorm
o M
) = [z k)

Example 2.3. X = [x:{xk}, X, € R, Sup || <oo].
k

X is a paranormed space over R under componentwise operations, with paranorm

- sup
p(x) - S‘:p 1+|X‘l

Remark 2.2. Every normed linear space is a paranormed space, but the converse is not true.
Remark 2.3. A linear space endowed with an invariant metric may not induce a paranorm.
Examples 2.1.2.2. and 2.3. are all linear spaces with translation invariant metrics

. ™
p(xy) = sup [x -y [* . p(xy) = (Z I&-ykl) and

'xk—YKl
Xy) = sup ———
p(xy) = sup Ty —

Butif in Example 2.1. inf r, > 0 then corresponding metric p, although translation invariant, can

respectively, where all the metrics p induce p given by p(x) = p(x6).

not induce the paranorm p.

Definition 2.5. Let X be a linear space over F. A function p: X — R'U{0} is called a |-paranorm

onX ifforx,ye X, aeF

@) p)=0iff x=6 (i) p(x+y) < p(x)+p(y) (i) p(x) = p(x)

() pox) < fof o) Je] 2 1

o P < Plax) < P o<1

EXAMPLES OF I-PARANORMED SPACES.

The spaces |_(r) (example 2.1.) and X (example 2.3.) are I-paranormed spaces.

Remark 2.4. A normed linear space is not a I-paranormed space and a I-paranormed space is
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not a normed linear space.

Remark 2.5. A paranormed space may not be I-paranormed space. In fact, I(r) (example 2.2) is not

a l-paranormed space.

Remark 2.6. Every I-paranormed space (X, p) is a paranormed space.

Let {x,} = X and x e X such that p(x, ~x) > 0 as n— o

let {o,} c FandaeF be such that |o, —oj >0 asn—

Now p(a,x,—aX) < p [a,(x,—X)]|+p [(a, - a)x]

If jo| 2 1, then p o, (x,—X)] < |a,| p(x,~x) ; alsoas |, —of < 1,50

p [(@, —a)x] < p(x) , hence p [(&, —a)x] < o, - o} B.p(x) for some B> 1.
Hence p(a,x, —a X) >0 as n— c.

If |a,| < 1, then p[a,(x,-X)] < p (x,—x) and

p (e, —a)x] < |o,~ o] Bp(x), B>1L

So, p(a,x, - x)—0 as n— <. Hence X is a paranormed space.

]
a
4
4
E

Remark 2.7. Normed linear spaces and I-paranormed spaces form two distinct subsets of the set of

all paranormed spaces.
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Definition 2.6. A semiparanorm on a semilinear space X over R*U{0} is a function p : X — R*U{0}

such thatforallx,y € X

() p(x)=0iff x=0 (i) p(x+y) < p(x)+p(y).

(iii) For every {x,}cX and x e X forwhich |p(x,)-p(x|—0 asn— e
and forevery {A,}c R'U{0} , AeR'U{0} forwhich [A,—A] >0 asn— e,
it is implied that ' P(A,x,)—P(A x) ‘—9 0 asn-— .

(X,p) is called a semiparanormed space over R*U{0}.
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Remark 2.8. A semiparanorm on a semilinear space X can never induce an invariant metric on X,
asforx,y € X, x-y is undefined. However, a semilinear space X endowed with an invariant metric

p may or may not induce a semiparanorm p on X.

A semilinear space X equipped with an invariant metric p is called a metric semilinear space if p
induces a semiparanorm p on X. In this case, it is also called a semiparanormed space and is
denoted by (X, p).

EXAMPLES OF SEMIPARANORMED SPACES.
Example 2.4. I.(r) = [X={X;}. X >0 sup (%) < w]

is a semiparanormed space over R'U{0} under componentwise operations with semiparanorm

p(x) = sup (%)™ , inf >0 where {r,} is definedasin I_(r)
It is not a semiparanormed space if inf f >0.
Example 2.5. I'(r)= [x: {x}. % >0: i(xk)' <oo]
1
is a paranormed space over R'U{0} under componentwise operations with semiparanorm
- M
(9= (%))

Definition 2.7. Let X be an algebra over F with invariant metric p . It is called a metric paraalgebra

over F if it is a paranormed space with paranorm p(x)=p(x,8) , where forall x, y, z, € X,

p(xy, x2) < p(x 8) p(v.2) ; p(xy. 2y) < p(x2) p(y.0).

Definition 2.8. let X be an algebra over F. It is called a paranormed algebra over F if it is a

paranormed space with paranorm p where

p(xy) < p(x) py). V x yeX.

Remark 2.9. Every metric paraalgebra is a paranormed algebra.
EXAMPLES OF METRIC PARAALGEBRAS

Example 2.1. and example 2.2. are metric paraalgebras under an additional composition of

multiplication defined componentwise.

45

© Del documento, de los autores. Digitalizacion realizada por ULPGC. Biblioteca Universitaria, 2017



Definition 2.9. Let X be an algebra over F with invariant metric p . Itis called a parametric paraalgebra
or a paranormed paraalgebra over F if it is a paranormed space with paranorm p(x) = p(x 6)

where the operation of miltiplication is continuous with respect to the paranorm p, i.e.
() {x}cX x e X, px,~x)>0=p(xy-xy) >0 asn— e, foreachy e X.
(i) {y.}eX,y e X, ply,-y)=>0=>p(xy, -xy) >0 asn— oo for eachx € X

Remark 2.10. A paranormed algebra is always a paranormed paraalgebra but the converse is not
true. Example 2.3. under componentwise operation of multiplication is a paranormed paraalgrbra

which is not a paranormed algebra.
Indeed, let {f} ={x,} = X and f={x,} belong to X such that p(f -f) >0 asi— .
Then supML—)O asi—oo,
n 14X, =X
Thus |x, -x,|—0ie |x,y, -Xy,| -0 asi— e, for each bounded {y,} <X

Hence if g={y,} , then p(f, g—fg) >0 as i— =, for each ge X.

It may be similarly shown that if g={g,}cX, g={g,}cX be such that
p(g -g)—0 asi— <, then p(fg —fg) >0 as i— « for each f € X. So X is a paranormed para-

algebra.
Now we show that p(fg) < p(f) p(g) does not hold for all f, g € X.
In fact, for
f={x}. ) =sup [x’/(1+x)]

2w x| / (1] ) s x|/ (141 )

=p(f) p()
Hence X is not a paranormed algebra.

Remark 2.11. Definitions and examples of I-paranormed paraalgebra, I-paranormed algebra may
be similarly given. Moreover, all these definitions and examples may be given in the setting of

semilinear space as well.
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3. REGULAR AND SINGULAR ELEMENT§ OF AN UNITAL METRIC PARA-ALGEBRA.

Theorem 3.1. Let (X, P) be a complete metric paraalgebra with identity 1. Then each r € X for

which p(r, I)<1 is regular and its inverse s is givenby s = I+ (I-r)'
n=1

Theorem 3.2. Let G and S denote respectively the set of regular and singular elements of a

complete metric paraalgebra (X, P). Then G is an open setand S is a closed set.

Theorem 3.3. The mapping r— r of G into G is continuous. As an application of theorem 3.2.

the following theorem follows :

Theorem 3.4. Let R be the radical of a complete metric paraalgebra (X, P) where R is taken as

the intersection of all maximal left ideals of X. Then X/R is a complete semisimple metric paraalgebra.
We simply state the theorems 3.1.-3.4., as the proofs are parallel in case of a Banach algebra.

We now define a topological divisor of zero in a metric l-paraalgebra and obtain one of its important

properties.

Definition 3.1. An element z of a metric I-paraalgebra (X, P) called a topological divisor of zero,
if there exists a sequence {z }cX such that p(z,)— 0 as n— « but either zz, orzz tends to

zZeroas N—oo.

Theorem 3.5. Let Z denote the set of all topological divisors of zero of a metric |-paraalgebra

(X, P), then Z<'S ; also some boundary points of S form a subset of Z.

Proof. Zc S isclear, becauseif ze Zbut z¢ S then z' exists. As ze Z, so there exists {z,} =X
such that p(z,) >0 asn—e but zz. 50 0rz,z—0asn— .

So pz,) = p(z'2)z) = p(z'(z2,) < Hz') Pzz,) >0 a8 N>

This is a contradiction. So ze S. Now to prove the other part, we take zebd S . As S is closed,
so there exists {r,} G such that P(r, —z) —» 0 as n— . Also the sequence {P(r,." )} is
unbounded, for otherwise, if p(r,,") < eothen using p(r, — z) = 0 as n — «.the inequality

p(r'z-1)=p (,"(z-1,) ) < p(r,") P(z-r,), it may be shown that p(r,"z-1) < 1.Sor,"zeG.
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Hence z= r,,(r,, 'z) € G. This is a contradiction. Therefore pr, ) masn— e

Let zZ, = [Kr:nll)J.
So p(z,) = p[p;:,,')] .As pfr,')) >~ asno e,

so 3 N(>0) such that p(r, ')>M, M being large at pleasure, ¥ n 2 N

So, —— <L 1.Using |of p (x) < p(ax) < p(x),if jof < 1andtaking x=r,",

ont) M

We get —— p(n") <p(z) <pAr').¥vn 2N

ofr.")

ie,1<p(z)<pr,'), Vn = N.
So, p(z,)—0 as n — «. Moreover, it is concluded that {z } may not always tend to infinity as n — .
In case, p(z,)— = as n — -, we show that p(zz )—>0 as n — .

Infact, p(zz) =p(z-r, +r,2)<p{z-r)z}+p(rz)<pz-r)pPE)+P(r,2)

r!

p(r, ")

Now, p(r,z,) = P(r,. ) =p (o) where o = ——0 asn— .

n

As p is paranorm so p(c, I) — p(0I) = 0

So, p(zz,)—0 as n — - but p(z,)—>0 as n — «, so z becomes a topological divisor of zero. As z,
depends onr "and henceonr and asr, in its term, is chosen corresponding to the boundary point
z, so it may be concluded that there are some points on the boundary of the set of singular elements

such that they are topological divisors of zero.
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4. AND SIN MENT. A COMPLETE METRIC |- PARA-SEMIALGEBRA

4.1 Properties of regular and singular elements.
Theorem 4.1.1. Let (X,p) be a complete metric para-semialgebra with [ as its S-identity. Then
each r e X, for which p(I, r) < 1, is regular. Further, the inverse of ris givenby r’'= I+ Zt"

1

wherer+t=1.
Proof. By given conditions p(t) = p(t, 8) = p(r + t, r) = p(I, r) < 1. As p(t") < (p(t))" < 1, so partial

sums of 2, t" from a Cauchy sequence in X. As X is corfiplete, so 2, ! converges to some
1 1

element of X. We denoteitby 2, t". Now
1
p(r, I)=p (r+ir t", r+t)=p [irt" , t)
1 1

=p (Z r t"+$:" , t+it")

1 1
=p(ir r+3e, it)
1 2 1
AgainI=r+t=t=ro+1 So SO=Fre+ 30 =Fre+yr
: 1 1 1 1 2

Hencep (rr', I)=p (it ,2("):0. So r r’ =1. Itmay be similarly shownthat r' r=1. Thus r’ is
1 1
the inverse of r. This proves the theorem.

Theorem 4.1.2. Let (X,p) be defined as in theorem 4.1.1. Then the set of regular elements G is

open and the set of singular elements S is closed.

Proof : We only prove that G is open. Let r € G be arbitrary and let r’ be its inverse. We show that

the open ball with centre r and radius 1/p(y’) lies in G. Let y € X such that p(y, r) < 1/p(r”).

We prove that y € G.

Now p(yr’,I) = p(yr’,r r') < p(y,r) p(r’,8) < (1/p(r")) pP(r’)=1.
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Hence yr’ e G. As composed of two regular elements is a regular element,
so(yr')r=y(rr')=y e G. Thus G is open and hence S is closed.

Theorem 4.1.3. Let (X, p) be defined as in theorem 4.1.1., then the mapping r—r ' of Ginto G is

continuous.

Proof : Letr, r, e G such that p(r, r)) < (1/2) p(r,"); then
p(n'r. )=p(n'r. ' r)<p(n")p(r. 6)<y2.80r'r € G.
-1 o
Now r'r,=(r,"'r) = I+ t" where r," r+ t= I.Hence
1

P(M)=p(t, O)=p(r r+t, " r)=p (I, r)<y2,

||
—_——
0-1
S
—
—Mz
/—\
—
\_/
-
°
&
N
™M
©
—~
—~
N
~—

p
=p(n" [p(t P(O)],[aspﬂ)<1l

<2p(r")p (1), [asp®) < 1/2]
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ButP ()=p (t ' 9)=p (t"'ro_l r, ro_l f)=P (I , roA1 r)=p (ro_l foufo r)

<p(n')p(n.r)
So p (r“, ro“)< 2p (ro") p(r 1) p (ro")= 2 (p (ro") )2 p(r.n)

=kp(r.,rn), k>0.

© Del documento, de los a

Hence r - r-'of Ginto G is a continuous map.

4.2 RADICAL OF A SEMIALGEBRA WITH S-IDENTITY

In this article, it is shown that the usual conceps of radical of an algebra fails for a semialgebra. In
fact, it is nolonger a two sided ideal and hence the corresponding quotient algebra with respect to
this radical can not be obtained. However, left and right radicals for the semialgebra may be defined

and their characterizations may be obtained.

50



Definition 4.2.1. Let, X be a semialgebra over a field F. A left radical R, of X is defined as the
intersection of all maximal left ideals. A right radical R is defined as the intersection of all maximal

right ideals,

Definition 4.2.2. A semialgebra is called semisimple if each of R and R is a zero ideal of the

semialgebra.

Theorem 4.2.1. LetR be the left radical of a semialgebra with I as its S-identity. Then R, consists of
precisely those elements r of X such that each r° € X for which x r + ° = [, for some x € X is left

regular, without being right regular.
Proof : We first prove the following lemmas :
Lemma . Ifr e R andif r+ 0 =1, then ris left regular. If possible let r° be not left regular. Then

[x(r%) : x e X] is a proper left ideal of X containing r°. We now imbed [x(r°) : x e X]in a maximal left

ideal M of X. Obviously r, ° € M. So r+r® =1 is impossible, as M is proper. Hence r° is left regular.

Lemma 2. ifre R andifxr+ =1 for some x € X, then each such r° € Xis left regular but r° is not
right regular.

Proof : Sincer € R = xr e R, soby Lemma 1, r°is left regular. If possible let ° be right regular also.
Then there exists a unique s € X suchthat °s=1. Nowr®+xr=1 = [+ (xr)s = s. As s is unique, so
far given rand x, (xr)s is also unique. Hence [+ (xr)s =s means that the cancellation law for addition

holds in X. But this is impossible for X. So r° is not right regular.

Lemma 3. Letr € X. Let r® € X be left regular and let r° be not right regular.

ifxr+ =1 forsomex € Xthenr e R,

Proof : If possible let r ¢ R. Then r does not belong to some maximal left ideal M of X. So
{m+xr: m e M, x e X} is a left ideal containing both M and r. So {m + xr} is improper. Hence xr+m=I
for some m € M and some x € X. Therefore by Lemma 2, m is left regular and m is not right regular.
But this implies that m can not belong to a proper left ideal. Hence we get a contradictionas m € M.
Sor e R.

Proof of the main theorem follows directly from Lemma 2 and Lemma 3.
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Theorem 4.2.2. Let R be the right radical of a semialgebra X with I as the S-identity. Then R
consists of precisely those elements r € X such that each r® e X for which rx + r® = [ for some

x € X is right regular but r is not left regular.
Proof follows as in Theorem 4.2.1.
Theorem 4.2.3. RN R = {0} where R and R_are defined as above.

Proof : Letr# 6 ¢ R. Theneachr® e Xsuchthat xr+ =1, forsomex e X is left regular (not right
regular). So there exists a unique s € X suchthatsr®=1. Now letr® e X be suchthat rx + r®=1,
for the same r and x taken above. We show that r® can not be right regular. If possible let r® be right

regular. Then there exists a unique s’ € X such that
r0s’ =1. Now rx + r® =] = (rsx) rx + (rsx)r® = rsx
= r(sxr)x + (rsx)r® = rsx

= r(sxr)x + rx + (rsx)r® = rsx + rx

= rsx+ (rsX)rP=rsx+rx[xr+ =1 = sxr+1=s]
= (rsx)s’ + rsx = (rsx)s’ + rxs’.

As cancellation law does not hold in x, so rsx # rxs . Naturally, any s’ can act as the right
inverse of r® provided rsx = rxs’. Thus s’ fails to be unique. This is a contradiction. Hence

re R.SoRNR ={8}.

4.3. Radical of a metric para-semialgebra with S-identity

Theorem 4.3.1. The left radical R, of a complete metric para-semialgebra (X, p) with S-identity is a
proper closed left ideal of (X, p).

Proof : We show that L is closed. If L is not closed, then L ¢ L (closure of L). As L is proper, so
L c S (the set of all singular elements). As S is closed, so L c S. Hence L is also proper. This
contradicts maximality of L, as L c L . So L is closed. Thus R is the intersection of closed ideals.

Hence R, is closed.
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Theorem 4.3.2. The right ideal R, of a complete metric para-semialgebra with S-identity is a proper

closed right ideal.
Proof is parallel to Theorem 4.3.1.

4.4. Topological divisor of zero in a metric I-para-semialgebra

Theorem 4.4.1. Let (X, p) be a complete metric |-parasemialgebra with | as the S indentity. Let Z
and S denote respectively the set of all topological divisors of zero and that of all singular elements

of X. Then Z < S, also some boundary points of S may form a subset of Z.
Proof : Z < S is obvious. To prove the second part, we take z € bd S. We show that

z € Z. Now S being closed, there exists {r } C G such that p(r, z) - 0 as n — . We can prove that

p(r,) > asn— e,

1

In fact, p (rn"z, I)=p (r,,"z, r,,'r,,)Sp (r,,", e) pl(z.r)
So, p (r,'z, I)<p (rnv") p(z.r)>0asn—e (ifp(r’)<=)

It may be shown that p (r,,"z, l)<l. So r,' ze G .Hencez-= rn(rn“z)eG. This is a

contradiction.

Therefore p (1,") > as n— e,

We now write z=r_+r° Then

P (r"o)=p(r"a' e)=p (rn+rn0' rn)=P (Z, fn)—)o asn-— oo,

Nextlet z, = Iy . Then as in theorem 3.5, it may be shown that

p(rn")

p(z,)>0 asn— e, [l<p(z,,)<p(r"”) , Vn2N ,say]

1 o) -1
()T

zr O
o) o) e

Now, zz, = )+r,,°z,,.
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So p(z L,)Sp{?’ﬁ]+p(rn“) mz,)=po, 1)+0(r,") P(Z,)

As o, —0 where n-—oo, SO p(anl)—m(o 1)=0 as n— . Also p(rn")——;Oasn—»oo,if

pz,)—~ Then p(zz,)—>0asn— .Hence zz —0asn—e. Thusforthose zebdS , for

which corresponding z, — ~,
we see that ze Z . This completes the proof.
CONCLUDING REMARKS :

1. Regular and singular elements (in general) can be studied on metric paraalgebra (paranormed
algebra) and on metric para-semialgebra. Even characterization of radicals can be obtained in such

cases.

2. Special type of singular elements (topological divisors of zero) can be studied only on a metric
I-paraalgebra and on a metric -para-semialgebra. For a Banach algebra, the definition of topological
divisors of zero is more restricted compaired to that given for a metric I-para-aigebra and I-para-
semialgebra. For a Banach algebra topological divisors of zero are always permanent singular
elements, but no such definite conclusion can be drawn for each singular element of a I-paranormed

algebra and a |-paranormed semialgebra.
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