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ABSTRACT

We treat anti-holomorphic and Q-reversing reflections with respect to submanifolds
in an almost Hermitian manifold (M,g,J) and investigate the relation with isometric
reflections when (M, g, J) is a Kahler or a locally Hermitian symmetric space.
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1. INTRODUCTION

Local geodesic symmetries (that is, reflections with respect to a point) and local reflec-
tions with respect to a submanifold in a Riemannian or pseudo-Riemannian manifold have
been studied intensively and they play an important role at several places. For manifolds or
submanifolds of some particular kind, these local diffeomorphisms have some special proper-
ties and these properties may in turn be used to characterize some special types of ambient
spaces or submanifolds. Isometric reflections are the most well-known examples but also
volume-preserving (up to sign) and harmonic reflections have been considered. Moreover,
when the ambient space is an almost Hermitian manifold, a Kahler manifold or a Hermitian
symmetric space, one has considered holomorphic and symplectic reflections and their rela-
tion with isometric ones. We refer to [3], [4], [5], [9], [10], [11], [12], [14], [16], [17], [18], [19]
for a collection of results and for further references. Next, we refer to [2], [6], [13], [15], and
the included reference lists, where reflections with respect to curves have been used to de-

fine p-symmetric spaces, Killing-transversally symmetric spaces and transversally symmetric
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liations. Finally, we mention [1], [7] for examples where isometric reflections are used to
mstruct interesting new examples of a particular class of Riemannian manifolds (namely,

pakly symmetric spaces).

In this note we continue our research about reflections in the framework of (almost) com-
ex geometry and concentrate on anti-holomorphic and Q-reversing reflections with respect
submanifolds. We derive some general results and investigate their mutual relation and
e connection with isometric reflections when the ambient space is Kahlerian or locally iso-
ptric to a Hermitian symmetric space. As we will see and as is already known, totally real

bmanifolds of maximal dimension play a crucial role in this context.

The method to derive the results uses Jacobi vector fields and power series expansions.

e collect the needed material in Section 2. The main results are derived in Section 3.
2. PRELIMINARIES

We start by recalling some basic facts and refer to [8], [19] for more details and references.

Let (M, g) be a smooth, n-dimensional Riemannian manifold and let P be a connected,
relatively compact, topologically embedded submanifold of dimension g. All data are supposed
to be analytic where this is needed. Denote by T+ P the normal bundle of P and by expp the
exponential map of this bundle, that is, expp(m,v) = exp,, v for all m € P and all v € T P.
The set Tp(s) defined by

Tp(s) = {expp(m,v) |lveTtP, , |jv||<s, me P}

where s is supposed to be smaller than the distance from P to its nearest focal point, is
said to be the tubular neighborhood of radius s around P. Now, the mapping ¢p on Tp(s),
defined by
¢p : p = expp(m,v) — ¢p(p) = expp(m, —v)
for all m € P and all v € Tz P such that ||v]| < s, is an involutive local diffeomorphism of
M. P belongs to its fixed point set. This ¢p is called a (local) reflection with respect to P.
To describe this map analytically we shall use Fermi coordinates which we introduce

now. Let {Ey,...,E,} be a local orthonormal frame field of (M, g) defined along P in a
neighborhood of m € P such that E,..., E, are tangent to P and Eg41,..., E, are normal
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to P. Next, let (y,...,y7) be a coordinate system in a neighborhood of m in P for which
O )= Bim), i=1
ay; =Ly ) =L...q

Since every point p in Tp(s) can be expressed in a unique way as

P = exp, ( Zn: taEa)

a=q+1

for some b € P, we put

yi(b)v t=1,...,q,

H.
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z“(epr( i taEa)) = tg, a=q+1,...,n.

Then (2!,...,2") is a coordinate system on Tp(s), called a Fermi coordinate system (relative
tom, (y%,...,4%) and (Eg41,...,Ey,)). With respect to such a Fermi coordinate system, the
reflection @p takes the following (local) form:

ep:(zh,...,2%27 ™) e (2. 2, -2 L -2,

Further, there exists a strong relation between the basic vector fields 3% of the Fermi
coordinate system and some special Jacobi vector fields along geodesics through m in M. To
describe this relation, we choose a fixed unit normal vector u at m, u g_,‘T,f;P C T,,M, and
consider the geodesic 7y(t) = exp,,(tu). Further, we adapt the frame field (E4,...,E,) such
that E,(m) = u = 4'(0). Finally, we denote by Y, the Jacobi vector fields along v satisfying

the following initial conditions:

Yi(0) = E(m) , Y/(0) = Vugl,
Y0) = 0, Y(0) = Eim)

foralli=1,...,gand a = ¢+ 1,...,n — 1. Here, V denotes the Levi Civita connection of
(M,g). Then we have

7} d
i(t) = — = t—=(7(2)).
Vi) = 3(2(0), Yalt) = 5 (4(8)
Next, let (Fi,...,Fy,) be the frame field along 7 obtained by parallel translation of
{Es,...,E,} and define the endomorphism-valued function ¢ — D,(t) by

Yo(t) = Du(t)Fs, a=1,...,n -1
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Then this function satisfies the Jacobi equation
D!+ ReD, =0
where ¢ — R(t) is the endomorphism-valued function on {¥'®)}* C TyyM defined by
R(t)z = Ryyy,7' (1), 7 € (YO}
Here, R is the Riemannian curvature tensor taken with the sign convention

Ryv =Vy,v)- Vv, Vvl

for all smooth vector fields U, V. Further we put Rxyzw = R(X,Y,Z,W) = g(Rxy Z,W).

The initial conditions for D are given by
(T o oy [ T(w) 0
where T and L are defined, via the Levi Civita connection V of P, by

VXy VXY +TXY’

VxN = T(N)X+LxN

for all smooth X,Y tangent to P and all smooth N normal to P, and

T(u)ij

.L(u);a

g(T(“)Et" Ej)(m)’
9(LE; Eqy Ep)(m).

TxY = T(X,Y) is the second fundamental form operator of P and T(N) is the shape
operator of P with respect to N. They are related by g(T'(N)X,Y) = —g(T(X,Y),N).
Further, Ly N = V4 N where V+ is the normal connection along P.

Using the initial conditions for D,(t), one obtains the following useful power series ex-

pansions:. _
(1) D,(t)F;, = E{m)+tTE; -t LE;)(m)- %‘-(RE.')(m) +0(#3),
Du(t)Fa = tEi(m)— K(RE.)(m)+O(t),

fori=1,...,qanda=¢+1,...,n - 1.

We finish this section with a criterion for isometric reflections with respect to P.
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Theorem 2.1. [3] Let (M,g) be a Riemannian manifold and P a submanifold. Then

the reflection pp is an isometry if and only if
(i) P is totally geodesic;
(i) (V2. . yR)uvu is normal to P,
(VH+1  R)upu is tangent to P and
(VH+1  R)yzu is normal to P
for all normal vectors u,v of P, any tangent vector ¢ of P and all k € N.

Then we get at once:

Corollary 2.1. [3] Let (M,g) be a locally symmetric Riemannian manifold and P a

submanifold. Then the reflection @p is an isometry if and only if
(i) P is totally geodesic;

(i) Ryypu is normal to P for all u,v € TLP.

3. ANTI-HOLOMORPHIC AND Q-REVERSING REFLECTIONS

Now, we turn to the main contents of this note. So, let (M, g,J) be an almost Hermitian :

manifold and P a submanifold. Then the reflection ¢p is said to be anti-holomorphic (or
J -reversing) if

2 @peod = —Jopp.

and Q-reversing if

(3) o = -0

where () denotes the Kahler form on (M, g, J) defined by Q(X,Y) = g(X,JY) for all vectors
X,Y tangent to M. Further, P is called a totally real or anti-invariant submanifold of (M, g, J)
if JT,P C TP for all m € P [20].

First, we prove

Theorem 3.1. Let (M,g,J) be an almost Hermitian manifold, P a submanifold and

suppose that the reflection @p is anti-holomorphic or Q-reversing. Then P is totally geodesic
and totally real with 2dim P = dim M.
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Proof. First,let ¢p be Q2-reversing. Then, for arbitrary tangent X,Y on M along P we have
from (3)
9(ep X, Jop.Y) = —g(X,JY).

Further, if X,Y are both tangent or both normal to P, we also have
g(‘PPvX; JSOP*Y) = g(X, JY)

and hence, g(X,JY) = 0. This implies that P is totally real and 2dim P = dim M.
Next, put
Qup = (%,a;:ﬁ), a,B=1,...,n
Then (3) yields
(4) Qa(2pP(p)) = Ya(p) » Qin(p(p)) = Rin(p)
foralli=1,...,q,a =¢q+1,...,n—1and p = exp,,(tu), u € TP, ||lu|| = 1. Using the

formulas from Section 2 we further have

Up) = 39(Du(OF;IDUDF.),

Un(p) = 9(Du()Fi,Ju).
Using (1) and taking into account that P is totally real, we obtain

Qia(p)

9(Ei, JEo)(m) + t{g(TE;, JEa) + 9(E:, 'Ea) }(m) + O(¢),

Qin (p)

9(Ei, Ju)(m) + t{g(T Ei, Ju) + g(E:, J'v) }(m) + O(¢?)
where T = T(u). Then (4) yields

g(TEh JEu) + g(Ei, JIEG)

]
=

9(TE;,Ju) + g(E;, J'u)

|
=

So, we have g(TX,JN) = —g(X,J'N) for all vectors X tangent to P and all normal vectors
N. Now, put Y = JN. Then we have

g(T(XyY)’ u) = —g(X1 J’JY)

and since the right-hand side is skew-symmetric in X, Y, it follows that 7 = 0 and hence, P

is totally geodesic.
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Now, we consider the case where ¢p is anti-holomorphic. Then (2) implies
P X = —Jpp. X = -JX

for all X tangent to P. Hence, JX is normal. Similarly, we obtain JT+P C TP. So, P is
totally real and 2dim P = dim M.

To prove that P is totally geodesic we first note that the components J? of J with respect

to the Fermi coordinates satisfy
Jf = _Qa‘yg‘Yﬁ ’ a’ﬂ77 = 17" <y M.
So, since
gom(p) =0 ’ gnn(p)= 1 y = 1)"'7"" 11

we get

J‘ﬂ = Qm‘ ) Jl'a = le'gka + Qbigba'

Next, (2) implies

JMep(p)) = JM(p),
Ji(ep(p)) = Ji(p)

and using the power series expansions for g°° and Q,4, we get
J2(p) = ~9(Ei, JEa)(m) - t{ (T Ei, JE) + g(E:, J'Ea) }(m) + O()

for a = ¢+ 1,...,n, which yields as before that P is totally geodesic. ]
Now, we suppose that (M, g, J) is a Kahler manifold (that is, VJ = 0) and prove

Theorem 3.2. Let P be a totally real submanifold of a Kdhler manifold with 2dim P =
dim M. If the reflection @p is an isometry, then it is anti-holomorphic or equivalently, Q-

reversing.

Proof. Since @p is an isometry and P belongs to the fixed point set of it, it is a totally
geodesic submanifold. In this case, and using the differential equation for D and its initial

values, we have

1
DF%(0) = - 3~ CFR9(0)Dk(0).
k=0
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Further, this and the conditions (ii) in Theorem 2.1 yield (see [3])

Df”(o)v is tangent, D&m(O)z is tangent,
D,(,ZH'I)(O)?) is normal, D1(;21+1)(0)-"5 is normal

for v € T: P, € T, P. Hence, we get

Du()F; ai(t) + Bi(1),

IDUOF = ault) + At

where a;, a, are tangent and (3;, B, normal along P. (Here, we used the identification of the
spaces {7/(t)}* via parallel translation.) Moreover, a;, (3, are even functions of ¢ and f;, a,

are odd functions of ¢. Since (M, g, J) is Kahlerian and P totally real, we have

Q) = 9ai(t),IB;(0) + 9(BD), Tai(t),
Qi) = o(aa(t) IB(0) + 9(BalD), Teu(D),
Q) = o(ai(t), IBa(t)) +9(Bi(t), Tau(t)),
Qin(p) = g(ai(t),Ju),

Qan(P) = g(aﬂ(t)ﬂ]u)

and hence,
Qs(ep(p), = -Qis(p), Qa(ep(p)) = Qialp),
Qin(pp(P)) = Qin(p), Qan(ep(p)) = —Qan(p),
Qap(pp(p)) = —Qas(p)-

This expresses that ¢p is (-reversing. [ ]

Remark 3.1. Using the same technique as in the proof of Theorem 3.2 one can also prove
a corresponding result for holomorphic submanifolds: Let P be a holomorphic submanifold
in a Kahler manifold such that pp is isometric. Then @p is holomorphic or equivalently,
symplectic. This result extends the similar one obtained in [3] for locally symmetric Kahler

manifolds.

To prove our next result, we consider
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Lemma 3.1. Let P be a submanifold of a Kdhler manifold (M, g, J) such that the reflec-

tion @p is anti-holomorphic or Q-reversing. Then Ryyu is normal to P for all u,v € T*P.
Proof. First, let ¢p be Q-reversing. Then (3) implies

(5) Qun(‘PP(p)) = _Qan(p)
where a = ¢+ 1,...,n — 1. Since P is totally real and 2dim P = dim M we have
t2
Qan(p) = tg(Es, J'u)(m) — Eg(RE,, Ju)(m) + O(3).

So, this and (5) imply
(6) Rypugu =0

for all normal vectors u,v. Now, put ¥ = aw+fz in (6) for arbitrary , 8 € R and for arbitrary
normal vectors w, z. Using the first Bianchi identity and the Kahler identity Ry 7,y =

Rzyzw, we then get by considering the coefficient of a’f:

(7) 3Ryywsz — Byzojw =0
Interchanging v and 2 in (7) yields
(©) 3Ry vjw — Buwywsz =0

and so, from (7) and (8), we get Ry, 7, = 0 or equivalently, Ryyw is normal to P along
P.

Finally, if ¢p is anti-holomorphic, a same procedure and J7 = Qnq, J7 (¢p(p)) = —J7(p),
yields the required result. - [ ]

From this Lemma 3.1, Corollary 2.1, Theorem 3.1 and Theorem 3.2 we now derive at once

Theorem 3.3. Let P be a totally real submanifold of a locally Hermitian symmetric
space such that 2dim P = dim M. Then the following statements are equivalent:

(i) @p is an isometry;
(ii) op is anti-holomorphic;

(iii) @p ts N-reversing.

61

izada por ULPGC. Bibliotes

@
a
4
2
£
3
g
Z
5
£
E
8
2
2
o



Coroliary 3.1. Let P be a submanifold of a locally Hermitian symmetric space (M, g,J).

Then the reflection @p is anti-holomorphic if and only if it is Q-reversing.
Finally, using [3, Corollary 4] we have

Corollary 3.2. Let (M,g,J) be a Kihler manifold of constant holomorphic sectional
curvature ¢ # 0. Then ¢p is anti-holomorphic if and only if P is a totally geodesic and totally
real submanifold with 2dim P = dim M.

Remark 3.2. For more information about the existence of fixed point sets of anti-
holomorphic involutions (that is, real forms) in Hermitian symmetric spaces and for further
references, we refer to [1]. There one also finds references concerning the theory of locally
and globally reflective submanifolds P in M, that is, submanifolds P such that the reflection
©p is a well-defined local or global isometry with P as fixed point set.

REFERENCES

[1] J. BERNDT and L. VANHECKE, Commutativity and weak symmetry on Riemannian
manifolds, preprint, 1996.

[2] P. BUEKEN, Reflections and rotations in contact geometry, doctoral dissertation,
Katholieke Universiteit Leuven, 1992.

[3] B. Y. CHEN and L. VANHECKE, Isometric, holomorphic and symplectic reflections,
Geom. Dedicata 29 (1989), 259-277.

[4] B. Y. CHEN and L. VANHECKE, Symplectic reflections and complex space forms, Ann.
Global Anal. Geom. 9 (1991), 205-210.

[5] C. T.J. DODSON, L. VANHECKE and M. E. VAZQUEZ-ABAL, Harmonic geodesic sym-
metries, C.R. Math. Rep. Acad. Sci. Canada 9 (1987), 231-235.

[6] J. C. GONZALEZ-DAVILA, M. C. GONZALEZ-DAVILA and L. VANHECKE, Reflections
and isometric flows, Kyungpook Math. J. 35 (1995), 113-144.

[71 J.C. GONZALEZ-DAVILA and L. VANHECKE, A new class of weakly symmetric spaces,
preprint, 1996.

[8] A. GRAY and L. VANHECKE, The volumes of tubes in a Riemannian manifold, Rend.
Sem. Mat. Univ. Politec. Torino 39 (1981), 1-50.

62

© Del documento, de los autores. Digitalizacion realizada por ULPGC. Biblioteca Universitaria, 2017



[9] O. KOWALSKI, F. PRUFER and L. VANHECKE, D’Atri spaces, Topics in Geometry: In
Memory of Joseph D’Atri (Ed. S. Gindikin), Progress in Nonlinear Differential Equations
20, Birkhauser-Verlag, Boston, Basel, Berlin, 1996, 241-284.

[10] M. D. MONAR and L. VANHECKE, Locally symmetric quaternionic Kihler manifolds,
Diff. Geom. Appl. 4 (1994), 127-149.

[11] M. D. MONAR and L. VANHECKE, Reflections in quaternionic geometry, Bull. Inst.
Math. Acad. Sinica 23 (1995), 95-111.

[12] K. SEKIGAWA and L. VANHECKE, Symplectic geodesic symmetries on Kihler manifolds,
Quart. J. Math. Ozford 37 (1986), 95-103.

[13] T. TAKAHASHI, Sasakian ¢-symmetric spaces, Tohoku Math. J. 29 (1977), 91-113.

[14] PH. TONDEUR and L. VANHECKE, Reflections in submanifolds, Geom. Dedicata 28
(1988), 77-85.

[15] PH. TONDEUR and L. VANHECKE, Transversally symmetric Riemannian foliations,
Tohoku Math. J. 42 (1990), 307-317.

[16] L. VANHECKE, Symmetries and homogeneous Kihler manifolds, Differential Geometry
and its Applications (Eds. D. Krupka and A. Svec), Reidel Publ. Co., Dordrecht, 1987,
339-357.

[17] L. VANHECKE, The geometry of reflections on Riemannian manifolds, Proc. Interna-
tional Conference on Differential Geometry and its Applications, Dubrovnik 1988 (Eds.
N. Bokan, I. Comié¢, J. Niki¢ and M. Prvanovi¢), Univ. Belgrade and Novi Sad., 1989,
387-400.

[18] L. VANHECKE, Geometry and symmetry, Advances in Differential Geometry and Topo-
logy (Eds. L. S. I. and F. Tricerri), World Scientific Publ. Co., Singapore, 1990, 115-129.

[19] L. VANHECKE, Geometry in normal and tubular neighborhoods, Rend. Sem. Fac. Sci.
Univ. Cagliari, Supplemento al vol. 58 (1988), 73-176.

[20] K. YANO and M. KON, Anti-invariant submanifolds, Marcel Dekker, New York, 1973.

Recibido: 20 Septiembre 1996

63

© Del documento, de los autores. Digitalizacion realizada por ULPGC. Biblioteca Universitaria, 2017





