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We treat anti-holomorphic and !1-reversing reflections with respect to submanifolds 
in an almost Hermitian manifold (M,g,J) and investigate the relation with isometric 
reflections when (M, g, J) is a Kii.hler or a locally Hermitian symmetric space. 
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l. INTRODUCTION 

Local geodesic symmetries (that is, reflections with respect to a point) and local reflec­

tions with respect to a submanifold in a Riemannian or pseudo-Riemannian manifold have 

been studied intensively and they play an important role at several places. For manifolds or 

submanifolds of sorne particular kind, these local diffeomorphisms have sorne special proper­

ties and these properties ma.y in turn be used to characterize sorne special types of ambient 

spaces or subma.nifolds. Isometric reflections are the most well-known examples but also 

volume-preserving (up to sign) and harmonic reflections have been considered. Moreover, 

when the ambient space is an almost Hermitian manifold, a Kahler manifold or a Hermitian 

symmetric space, one has considered holomorphic and symplectic reflections and their rela-

tion with isometric ones. We refer to [3], [4], [5], [9], [10] , [11], [12], [14], [16], [17], (18], [19] 

for a collection of resulta and for further references. Next, we refer to [2], [6], [13], (15], and 

the included reference lists, where reflections with respect to curves have been used to de­

fine r,o-symmetric spaces, Killing-tra.nsversally symmetric spaces and transversally symmetric 

•supported by the Consejería de Educación del Gobierno de Canarias. 

53 



©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7

liations. Finally, we mention [1], [7] far examples where isometric refiections are used to 

instruct interesting new examples of a particular class of Riemannian manifolds (namely, 

eakly symmetric spaces) . 

In this note we continue our research about refiections in the framework of (almost) com­

ex geometry and concentrate on anti-holomorphic and !l-reversing refiections with respect 

submanifolds. We derive sorne general results and investigate their mutual relation and 

e connection with isometric refiections when the ambient space is Kii.hlerian or locally iso­

etric to a Hermitian symmetric space. As we will see and as is already known, totally real 

bmanifolds of maximal dimension play a crucial role in this context. 

The method to derive the results uses Jacobi vector fields and power series expansions. 

e collect the needed material in Section 2. The main results are derived in Section 3. 

2. PRELIMINARIES 

We start by recalling sorne basic facts and refer to [8], [19] far more details and references. 

Let (M,g) be a smooth, n-dimensional Riemannian manifold and let P be a connected, 

relatively compact, topologically embedded submanifold of dimension q. All data are supposed 

to be analytic where this is needed. Denote by Tl. P the normal bundle of P and by expp the 

exponential map of this bundle, that is, exp p( m, v) = expm v far all m E P and all v E r;; P. 

The set '.T p( s) defined by 

'.Tp(s) = { expp(m, v) J v E Tl. P, , llvJJ < s, m E P} 

where s is supposed to be smaller than the distance from P to its nearest focal point, is 

said to be the tubular neighborhood of radius s around P. Now, the mapping <pp on '.Tp(s) , 

defined by 

<pp : p = expp(m, v) >--+ <pp(p) = expp(m,-v) 

far all m E P and all v E r;¡p such that IJvlJ < s, is an involutive local diffeomorphism of 

M. P belongs to its fixed point set. This <pp is called a (local) reflection with respect to P. 

To describe this map analytically we shall use Fermi coordinates which we introduce 

now. Let { Ei, ... , En} be a local orthonormal frame field of ( M, g) defined along P in a 

neighborhood of m E P such that Ei, . . . , Eq are tangent to P and Eq+l • ... , En are normal 
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to P. Next, let (y1 , ... , yq) be a coordinate system in a neighborhood of m in P for which 

8 
,,.---,(m)=E;(m), i=l, ... ,q. 
uy' 

Since every point p in '.T p( s) can be expressed in a unique way as 

p = expb ( t t.,E.,) 
a=q+l 

for sorne b E P, we put 

n 

x'(expb( L t.,E.,)) y'(b), i=l, ... ,q, 
a=q+l 

xª( expb ( t t.,E.,)) = ta, a= q+ 1, . . . ,n. 
a=q+l 

Then ( x1, ... , xn) is a coordinate system on '.T p( s ), called a Fermi coordinate system ( relative 

to m, (y1, ... , yq) and (Eq+l• ... , En)) . With respect to such a Fermi coordinate system, the 

reflection 'i' p takes the following (local) form: 

Further, there exists a strong relation between the basic vector fields Iza of the Fermi 

coordinate system and sorne special Ja.cobi vector fields along geodesics through m in M. To 

describe this rela.tion, we choose a. fixed unit normal vector u at m, u ~ Tj¡P C TmM, a.nd 
'¡ 

consider the geodesic ¡(t) = expm(tu). Further, we adapt the fra.me field (Ei. ... , En) such 

that En(m) =u= ¡'(O). Finally, we denote by Y., the Ja.cobi vector fields along ¡ satisfying 

the following initial conditions: 

Y;(O) = E;(m) Y;'(O) = Vu¡f;., 

Ya(O) O Y;(o) Ea(m) 

for all i = 1, . .. , q and a = q + 1, ... , n - l. Here, V denotes the Levi Civita connection of 

(M,g). Then we ha.ve 
8 8 

Y;(t) = ,,.---,(¡(t)), Ya(t) = t;;-;;{r(t)). 
ux' ux 

Next, let (Fi, . .. , Fn) be the frame field along ¡ obtained by parallel translation of 

{Ei. ... , En} and define the endomorphism-valued function t >-+ D.,(t) by 

Y.,(t) = D.,(t)F.,, a= 1, .. . , n - l. 
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Then this function satisfies the Jacobi equation 

n: + R•D,.. =O 

where t 1-+ R(t) is the endomorphism-valued function on {'y'(t)}.L C T-y(t)M defined by 

R(t)x = R"'f'(t)x 1'(t), x E {"'f'(t)}J... 

Here, R is the Riemannian curvature tensor taken with the sign convention 

Ruv = V¡u, v] - [Vu, Vvl 

for all smooth vector fields U, V. Further we put Rxyzw = R(X, Y, Z, W) = g(RxyZ, W) . 

The initial conditions for D are given by 

where T and l. are defined, via the Levi Civita connection V of P, by 

VxY+TxY, 

T(N)X + l.xN 

for ali smooth X, Y tangent to P and all smooth N normal to P, and 

g(T( u)E;, E;)(m), 

g(l.E;Ea, En)(m). 

Tx Y = T(X, Y) is the second fundamental form operator of P and T(N) is the shape 

operator of P with respect to N. They are related by g(T(N)X, Y) = -g(T(X, Y), N). 

Further, l.xN = ViN where V'.L is the normal connection along P. 

Using the initial conditions for D,..(t), one obtains the following useful power series ex­

pansions: . 

(1) { 
D,..(t)F¡ 

D,..(t)Fa 

E;(m) + t(T E¡ - 1 l.E;)(m) - ~(RE;)(m) + O(t3 ), 

tEa(m) - t(REa)(m) + O(t4 ), 

for i = 1, . . . , q and a = q + 1, ... , n - l. 

We finish this section with a criterion for isometric reflections with respect to P. 
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Theorem 2.1. (3] Let (M,g) be a Riemannian manifold and P a submanifold. Then 

the reflection cpp is an isometry if and only if 

(i) P is total/y geodesic; 

(ii) (Vik .. . uR)uvu is normal to P, 

(Vtk~1• uR)uvu is tangent to P and 

for ali normal vectors u, v of P, any ta'!'gent vector x of P and ali k E N. 

Then we get at once: 

Corollary 2.1. (3] Let (M,g) be a local/y symmetric Riemannian manifold and P a 

submanifold. Then the reflection cpp is an isometry if and only if 

(i) P is total/y geodesic; 

(ii) Ruvu is normal to P for ali u, v E Tl. P. 

3. ANTI-HOLOMORPHIC AND 0-REVERSING REFLECTIONS 

Now, we turn to the main contents ofthis note. So, let (M,g,J) be an almost Hermitian 

manifold and P a submanifold. Then the re:flection cpp is said to be anti-holomorphic (or 

J -reversing) if 

(2) 

and 0-reversing if 

(3) 

where O denotes the Kli.hler form on (M,g, J) defined by O(X, Y)= g(X, JY) for all vectors 

X, Y tangent to M. Further, Pis called a total/y realor anti-invariant submanifold of (M,g, J) 

if JTmP C Tj;P for all m E P (20]. 

First, we prove 

Theorem 3.1. Let (M,g,J) be an almost Hermitian manifold, P a submanifold and 

suppose that the reflection cpp is anti-holomorphic or 0-reversing. Then P is total/y geodesic 

and total/y real with 2 dlm P = dim M . 

57 



©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7

Proof. First, let cpp be !1-reversing. Then, for arbitrary tangent X, Y on M along P we have 

from (3) 

g(cpp.X,Jcpp.Y) = -g(X,JY). 

Further, if X, Y are both tangent or both normal to P, we also have 

g(cpp.X,Jcpp.Y) = g(X,JY) 

and hence, g(X, JY) =O. This implies that Pis totally real and 2 dim P = dim M. 

Next, put 

Then (3) yields 

(4) 

for all i = 1, ... ,q, a= q+ 1, ... ,n-1 and p = expm(tu), u E T;!;P, l/ull =l. Using the 

formulas from Section 2 we further have 

1 
-g(Du(t)F¡, J Du(t)Fa), 
t 

g(Du(t)F¡,Ju). 

Using (1) and taking into account that Pis totally real, we obtain 

g(E¡,JEa)(m) + t{g(TE¡,J Ea)+ g(E¡,J'Ea) }(m) + O(t2 ), 

g(E¡, Ju)(m) + t{g(T E¡, Ju)+ g(E¡, J'u) }(m) + O(t2 ) 

where T = T(u). Then (4) yields 

g(TE¡,JEa)+g(E¡,J'Ea) o, 

g(TE¡,Ju)+g(E,,J'u) =O. 

So, we have g(T X, J N) = -g(X, J' N) for all vectors X tangent to P and all normal vectors 

N. Now, put Y = J N. Then we have 

g(T(X,Y),u) = -g(X,J'JY) 

and since the right-hand side is skew-symmetric in X, Y, it follows that T = O and hence, P 

is totally geodesic. 
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Now, we consider the case where cpp is anti-holomorphic. Then (2) implies 

cpp.JX = -Jcpp.X = -JX 

for all X tangent to P. Hence, J X is normal. Similarly, we obtain JTl. P C T P. So, P is 

totally real and 2 dim P = dim M. 

To prove that Pis totally geodesic we first note that the components Je of J with respect 

to the Fermi coordinates satisfy 

So, since 

we get 

Next, (2) implies 

J~ = -n"'7 g7 P , a, (3, 1 = 1, ... , n. 

g"'n(p) =O , gnn(p) = 1 , a = 1, ... , n - 1, 

Jf(cpp(p)) 

Jt(cpp(p)) 

Jf(p), 

Jt(p) 

and using the power series expansiona for g"'P and f2ap, we get 

for a= q + 1, ... , n, which yields as before that Pis totally geó.tesic. • 

Now, we suppose that (M,g, J) is a Kii.hler manifold (that is, V J = O) and prove 

Theorem 3.2. Let P be a totally real submanifold of a Kiihler manifold with 2 dim P = 

dim M . lf the reflection cpp is an isometry, then it is anti-holomorphic or equivalently, f2-

reversing. 

Proof. Since cpp is an isometry and P belongs to the fixed point set of it, it is a totally 

geodesic submanifold. In this case, and using the differential equation for D and its initial 

values, we have 
l 

n~+ 2(0) = - ¿: c 1k R(l-k>(o)n:(o). 
k=O 
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Further, this a.nd the conditions (ii) in Theorem 2.1 yield (see (3]) 

nt21l(o)v is ta.ngent, 

nt21+il(o)v is normal, 

for V E r;; P, X E T mP. Hence, we get 

nt21l(o)x is ta.ngent, 

nt21+1l(o)x is normal 

a¡(t) + f3¡(t), 

aa(t) + f3a(t) 

where a¡, °'ª a.re ta.ngent a.nd (3¡, f3a normal a.long P. (Here, we used the identifica.tion of the 

spa.ces {1'(t)}.L via. para.lle! tra.nsla.tion.) Moreover, a¡, f3a a.re even functions of t a.nd (3¡, °'ª 
a.re odd functions of t. Since (M,g, J) is Ka.hleria.n a.nd P tota.lly real, we ha.ve 

a.nd hence, 

n;;( 'PP(P)) 
I 

nin('PP(P)) 

nab('PP(P)) 

g(a¡(t), J f3;(t)) + g(f3¡(t), Ja;(t)), 

g(aa(t), Jf3b(t)) + g(f3a(t), Jab(t)) , 

g(a¡(t), J f3a(t)) + g(f3¡(t), Jaa(t)) , 

g(a;(t),Ju), 

g(aa(t), Ju) 

-n;;(p), 

nin(p), 

-nab(p). 

nia( rpp(p)) 

nan ( 'P p(p)) 

nia(p), 

-nan(P), 

This expresses tha.t 'PP is n-reversing. • 

Remark 3.1. Using the sa.me technique a.sin the proof of Theorem 3.2 one ca.n a.lso prove 

a. corresponding result for holomorphic subma.nifolds: Let P be a holomorphic submanifold 

in a Kiihler manifold such that <pp is isometric. Then <pp is holomorphic or equivalently, · 

symplectic. This result extends the similar one obta.ined in [3] for loca.lly symmetric Kahler 

ma.nifolds. 

To prove our next result, we consider 
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Lemma 3.1. Let P be a submanifold of a Kahler manifold (M,g, J) such that the reflec­

tion 'PP is anti-holomorphic or n-reversing. Then Ruvu is normal to p for ali u, V E TJ_ P. 

Proof. First, let <pp be 0-reversing. Then (3) implies 

(5) Oan('PP(P)) = -Oan(P) 

where a = q + 1, . .. , n - l. Since P is tota.lly real and 2 dim P = dim M we ha ve 

Oan(P) = tg(E., J'u)(m) - ~g(RE., Ju)(m) + O(t3 ). 

So, this and (5) imply 

(6) RuvuJu =O 

for a.11 normal vectors u, v. Now, put u= o:w+f3z in (6) for arbitrary o:,(3 E R and for arbitra.ry 

normal vectors w,z. Using the first Bianchi identity and the Kii.hler identity RxyJzJw 

Rxyzw, we then get by considering the coefficient of o:2(3: 

(7) 3RwvwJ z - RwzvJ w = O. 

Interchanging v and z in (7) yields 

(8) 3RwzvJ w - RwvwJ z = O 

and so, from (7) and (8), we get RwvwJ z = O or equivalently, Rwvw is normal to P along 

P. 

Fina.lly, if 'PP is anti-holomorphic, a same procedure and J: = nn., J:( <pp(p)) = -J:(p ), 

yields the required result. , • 

From this Lemma 3.1, Corolla.ry 2.1, Theorem 3.1 and Theorem 3.2 we now derive at once 

Theorem 3.3 . Let P be a totally real submanifold of a locally Hermitian symmetric 

space such that 2 dim P = dim M. Then the following statements are equivalent: 

(i) <pp is an isometry; 

(ii) <pp is anti-holomorphic; 

(iii) <pp is f!-reversing. 
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CorolÍary 3.1. Let P be a submanifold of a locally Hermitian symmetric space (M, g, J). 

Then the reflection 'f'P is anti-holomorphic if and only if it is !l-reversing. 

Finally, using (3, Corollary 4] we have 

Corollary 3.2. Let (M,g,J) be a Kahler manifold of constant holomorphic sectional 

curvature e # O. Then 'f'P is anti-holomorphic if and only if P is a totally geodesic and totally 

real submanifold with 2 dim P = dim M. 

Remark 3.2. For more information about the existence of fixed point sets of anti­

holomorphic involutions (that is, real forms) in Hermitian symmetric spaces and for further 

references, we refer to (1]. There one also finds references concerning the theory of locally 

and globally reflective submanifolds P in M, that is, submanifolds P such that the reflection 

'f'P is a well-defined local or global isometry with P as fixed point set. 
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