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THE D,A,; SYMMETRY ON THE CLASSICAL ELECTROMAGNETIC GAUGE.
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Abstract: A gauge to electromagnetic field is considered. This gauge is most restrictive as the
Lorentz gauge which is verified by the proposed. It is based on several symmetric expressions
named D, SA forms. It is included a application to a spherical and static geometry as is
generated by a big gravitational object, as a black hole, with central symmetry and electrically
charged. The solution is the classical on far space but has strong discrepancy with the

classical result near of the event horizon of the black hole.
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1. INTRODUCTION

On classical electromagnetic field theory in 4-dimensional riemannian spaces, [4] [6], the potential vector A is
defined from the electromagnetic field F as:

Fij=Aji-Aij
From this definition can be concluded that the potential is not well defined. Several potential transformations
with field invariance are possible. A transformation of this type, called A-invariance, is valid:

Al=A+VA
These invariances are due to the presence of several freedom degrees in the potential definition. To reduce

some freedom degrees some gauge conditions are imposed. The most common is know as Lorentz gauge,
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which is useful but do not fix the potential. In this paper all functions are assumed analytic, based in this, a
identification of these freedom degrees is show. Let a local frame with cartesian coordinates. This frame is
locally plane and the Chistoffel symbols are nulls. Let the electromagnetic field F and potential A as:

Fijt)=a+jx *+0(%)

e :
A =apBixl e 40(6)

Based on the antisymmetric property of the electromagnetic field, its coefficients must verifie:

§V+éii=0 biji+bjiy=0
Then, must be:

Bi-Bji=dji  YikYj=Djix

Let the following symmetric-antisymmetric decomposition:

Py=Rj+By  By=Bi  Py+P;=0
ViRV Tik Yie=Yjik g+ Tju=0
Then must be:
a e
Viik=50jik

And the potential is expressed as:

A=aj+ { % ,;(i.%‘j,,x/x’u 063} + { Byxd eyl O3 }
The potential in this local frame has three terms. The first is an arbitrary constant, the second is a term well
correlated with the field coefficients, and the third, which has symmetric coefficients, can be arbitrarily defined.

From this is clear that the antisymmetric expression Aij-Ay;i is well defined, but the symmetric expression

Aj;j+ Ay which do not includes the field coefficients, can be arbitrarily fixed:
845 ok
A:y‘Aj;FB,j‘ViI‘M + O(XZ)
This symmetric expression has 10 components which are called in this paper the freedom degrees of the

potential definition. The Lorentz gauge partially defines these components. This gauge fix the addition of the

components in this way:

%g"‘lA,fAl-:,-):A i=0

This work is related to a gauge based on the previous symmetric expression.
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2. THE SA, Y D, SA, SYMMETRIES

The SA,, tensor sy ies are a ger ization of ic and tric tensors. Let all tensors on C°.

Definition 2.1: A Tensor, X;; ;5 i, . has the S| symmetry if all its components in a index cyclic rotation are

equal:

Xit i2..in Xin i1..in-1

Lin i1

Definition'2.2: A Tensor, X;,;, i, , has the A, symmetry if the addition of all its components in a index cyclic

rotation is null:

Xit i2..in*Xiz..in i1+ +Xin i1.
From these definitions is founded that the second degree symmetric and antisymmetric tensors have the S,
and A, symmetries respectively.

Definition 2.3: The expression of an arbitrary tensor X as the sum of S and A tensors is called its SA, Form:

Xit i2..in=Sit i2..in*Ai1 i2..in
Where S and A are S and A tensors, and are the S, y A, parts of X respectively.
Theorem 2.1: The parts of a SA form are univocaly determined.
Proof: Let X an arbitrary tensor where S and A are its S, and A parts, as done on Definition 2.3. Adding a
cyclic index rotation:
Xit i2..in*Xiz..in i1*+*Xin i1.in-1=6i1 i2..in*Siz..in i1*++Sin i1..in-1)* @it iz..in*Aiz..in i1+ +Ain i1..in-1)=NSi1 i2..in

Can be obtained that:

S, ,XN i2..in*Ai2..in i1*+ i i1..in-1
M R2dp™ = = T

A N Xit iz..in*Xi2..in i1*-*Xin i1..in-1
i1 i2..in =Rt i2..in T —————
The parts are well defined from X. B

Definition 2.4: An arbitrary tensor has the DS, symmetry, if its m-th derivate tensor has the S, | symmetry.

Definition 2.5: An arbitrary tensor has the D, A| symmetry, if its m-th derivate tensor has the A, | symmetry.

Definition 2.6: The D, SA Form of an arbitrary tensor is its expression as sum of D, S, y D A tensors.
Theorem 2.2: All tensors with the D,S; symmetry can be expressed as a scalar gradient. That is, if is verified:

X;

i =X;

i
Then:

X;=38(<*)
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Proof: The D,S, definition is exactly the integrability condition for the next expression, [5], a particular case

of Poincare Lemma, [2] [3] :

dS¥)=Xdx' m

Theorem 2.3: All tensors with the D,A,; symmetry have null divergence. That is, if is verified:
X;;+X;i=0
Then:

Xi;=0

Proof: Reducing the i and j index in the D,A, definition:

g0 +X;)=2X';=0 m
Lemma 2.1: If a tensor X; and its D;SA, parts are analytics, and is known one of the its DA, or D,S; parts
in a point, then the D,SA, parts are well defined.

Proof: Let a local frame centered at point p where a part is known. Then:

3
K+3%;=0

Xip)=Z;

In this case is known the D,A, part. Let:

X80y 3oy’ 046
X8+l 3Bpeclc’+ 0cY)
R =Z;sb )+ 16 eixk s O6)
Then, must be:
) 5,‘,=l_>,', Ciik=Ciik
bj+b;i=0  Gjj+6ju=0

a;=a;+Z; bj=bj+b;  Cjjy=Cij+Cij

And the solution is:
X0 =(@-Z) + 5 (0yb) + S cppcidx*+ O6c)
X =2;+ 3 (6;-byxT s L cju-cppdxlx ks 06Y)
All the parts are well defined. B
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3. THE D SA, PARTS OF ELECTROMAGNETIC FIELD. KERNEL POTENTIAL
The electromagnetic field F has the A, and D,A, symmetries. It is verified that:

Fyof,

Fiik*Fii+Fi

ij
The electromagnetic potential A has not these symmetries. Let the D,SA, form of A as:

A=VS+A
Where S is a scalarand A is a D,A, tensor called in this paper the kernel potential. If in a physical problem the
potential has solution, then, based on the Lemma 2.1 and some contour conditions the kernel potential has also

solution. The primitive relation between F and A is transformed on a relation between F and A as follow:

Fyehyi-Aig sy A (3.1]

=OA+A 2T KA =0 [3.2]

In the previously considered local frame, the kernel potential and scalar S are:

A =iy { %é,;f.%ﬁ,,,g/xhow) b SW=8eax’s ( Bpxlvypacxicka0c) )

48

Definition 3.1: In this context, the freedom degrees of a tensor X is the number of aixi components which can
be arbitrarily defined.

Theorem 3.1: The maximum freedom degrees of a tensor with D,A, symmetry is 6.

Proof: The number of 3X; is 16, but the DA, symmetry definition provides 10 linear equations about 3X;. Then
is concluded that only 6 components can be arbitrarily defined. B

Theorem 3.2: If the electromagnetic field F is known, then the kernel potential has not freedom degrees, that
is, all the 3A, are fixed.

Proof: The linear equations system [3.1] and [3.2] has 6 equations from the field definition and 10 equations
from the D,A, definition. Then, there are 16 linearly independent equations about the 16 ai»ii. u

Theorem 3.3: If in a Space the Cristoffel symbols are independents from a coordinate, x*, then the freedom
degrees of tensor X with D,A, symmetry is reduced to 2.

Proof: If the Cristoffel symbols are independents of a coordinate, xA, then the lineal equations system [3.2] has

this solution:

Xy =exp(yx )Yy x*) - koA

It is possible to define 4 additional equations related to the aixi as:
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Xi=yX;

The more general solution is:

Xt =3 explyxA)Y (v, x*) koA

Where vy, are the eigenvalues. Based on Theorem 3.1 an joining these 4 additional equations, then, only is

possible to arbitrarily define 2 components ani ..

Theorem 3.4: If in a Space the Cristoffel sy are independerits from a i X", then only 2

components of the electromagnetic field can be arbitrarily defined.

Proof: In this case the freedom degrees of the kernel potential is reduced to 2, due to Theorem 3.3, and only
can be defined 2 equations including the electromagnetic field, because any more equations can be generate
an incompatible system.l

Theorem 3.5: If in a Space the Cristoffel symbols are independents from two coordinates, x* and xB, then can
not be defined any arbitrary component of the electromagnetic field.

Proof: In this case, there are 10 equations about the D,A; symmetry definition and 8 equations about the
independent coordinates. If this system with 18 equations is incompatible then a null solution is provided to the
kernel potential and electromagnetic field. If the system is compatible, then a solution is obtained for the
electromagnetic field, and this solution is the only solution. Any more compatible equations are lineal
combinations of the previous, and the solutions are the same. In this case the electromagnetic field is an
intrinsic property of the space. B

Based on these considerations is proposed this Lemma:

Lemma 3.1: /f an electromagnetic field F is physically ible in a space, then there is solution for its kernel

potential A That is, there is solution to the equations system [3.1](3.2].

This Lemma is called the D,A, gauge in this paper.

4. ELECTROMAGNETIC FIELD BASED ON DA, GAUGE
A physical case with two independent coordinates exist in a spherical, static and charged black hole. The
solution to a D,A, tensor for this case is obtained in the Appendix.
Theorem 4.1: In a Spherical and Static Geometry asymptotically plane, the asymptotically null solution to

electromagnetic field based on the D,A, gauge is:
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d kg2t )
Fio=—IK
10 dr[ e "]
The metric is [6]:

ds2=-e2 (git2,e2Mdr2.r2(d62 +sen6d ¢?)

Proof: Based on the Appendix results, if the metric is asymptotically plane must be:
Lim®(r)=LimA(r) =0
e re

Then:

Lim3®0) 1 j;m 90 o
o O e dr

If the next condition is imposed:

LimF=0

Then must be K,=K;=0, and the solution obtained is:

AoN=Kee®®  A,=0 =123

From which is obtained the Theorem result. B
The results provides by the classical electromagnetic field theory to the metric and field for a spherical and

static geometry is known as the Reissner-Nordstrem solution [7][8] which is:

024 () _g-2A0) ¢ _'m
r

e

F|o-?
This result are obtained from the Einstein equation Gll:kTU , which determines both the metric an field. The
work here shown only provides the field if the metric is defined. The obtained solution based on Lemma 3.1

using the metric of classical solution with Ky=r,/r is:

e 2y
Fro=Ko(-2-2-2)=-2-2_2)
ol m r3

The complete solution with the classical metric and the field based on Lemma 3.1 is:
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Fool =&g—")
r

re=
2’52 2rr,
rg=——=—""  r_srgsr,
O o

This result has discrepancy with the exact solution provided by the classical theory. The discrepancy is weak,
about O(1 /r3), on the far space. Near the horizon of a spherical static and charged black hole the field
discrepancy is strong as is shown the Figure 1., where 0<2|r,|sr .. The solution is similar to a space

polarization in a dielectric with a relative permittivitie done as:

r
eln)=—ro
r-ry

9:10)

‘ B

Figure. 1. The metric, gy, (r), and the field, E(r), solutions to Reissner-Nordstrem geometry.
E(r) is the solution based on Lemma 3.1.
5. CONCLUSION
A study about the freedom degrees in the computation of the electromagnetic potential in riemannian spaces
is presented. A proposal to reduce these freedom degrees is presented, based on several tensor symmetries

which define a new gauge type. For several space metrics types, this gauge determines the field from the
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intrinsic space properties. A study case is resolved, showing similarities and differences with the classsically

accepted solution. The study case concerning with a electrically charged black hole can not be successfully

resolved based only on the paper thesis, because the presented framework determines, for this case, the field

from the space metric, and in order to obtain the resolution of the problem is need to determine also the metric

from the field, that is performed by the classical theory.

6. APPENDIX: THE D,A, TENSORS IN SPHERICAL AND STATIC GEOMETRIES

A solution to the next equations system is provided in a spherical and static 4-dimensional riemannian

geometry:

XigX=3+3%-20 X
The metric with the (t,r,8,¢) Schwarzschild coordinates is:
ds?=-e2* Ngt2.e2A0gr2 ,12(d6? +sin26d$?)
Using this (- + + +) metric, the non null Cristoffel symbols are [4]‘:
=02 24 ‘L_‘f 1%-22 r!;-94 re‘z:rew:%

dr dr
T'yp=-re e 1‘323=cot6 I“33=fe‘2“rsin26 Ie33=fsinecosa

[6.1]

62]

The [6.1] equations system has 10 homogeneous differential equations and the Chistoffel symbols are

independents from the (t,¢) coordinates, then the solutions have this form:

Xi(tr.0,0)=e2*2Y,(r,6)
From [6.1], [6.2] and [6.3] the next equations system is obtained:
aYo=T"00(NY;
3¥g+aY,=2T O (Y,
JpYp+aY,=0
BYp+aY3=0
3Y,T ',

3143 Yp=2T 215()Y,

"L andau-Lifshitz use a metric (+ - - -).
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6.3]

[6.4]
[6.5]
6.6]
[6.7]
16.8]

[6.9]
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BY;+3,Y3=2T 3,31V, [6.10]

3Yp=T '55(NY, [6.11]
BY,+35Y3=2c0t6Y5 [6.12]
BY3=T" " 5(r)sin?0Y; -sinBcoseY, [6.13]
From [6.8] is obtained:
Y,(r,8)=e20Z, () [6.14]
From [6.11] and [6.14] is deduced:
Y,(r.8)=-re " A0Z,(0) +Uy()  Z5(6)=Z4(0) [6.15]

From [6.9] and [6.15] is obtained:
eA0z)/(B) s A1 +r%)22(6) WUl =%U2(r)

There are two possible solutions based on factoring variables in the previous equation. First solution is obtained

when factoring the r variable. It is verified that:

2A0 _g-Al) (4 +rﬂ;
dr
Where « is a constant. This solution is possible only when the metric is restricted to a particular case. The
second solution, the only here considered, is obtained when factoring with the 8 variable. It is verified:

2;(8)=?Z,(6) =cte
The solution for this case must be:

Z,(0)=0  Z4(8)=0 Uy(r)=Kypr?
Then the partial solution is:
Y1(r,0)=0 Y,(r,8)=Kpr? [6.16]
From [6.4], [6.5] and [6.6] is obtained:
Case 1: «=0

Yo(r.8)=Kge2 O
Case 2: «#0, From [6.4], [6.6], [6.7] and [6.16] is obtained:

g
]
=}
H
2
=]
=}
J
I
g
<]
=3
]
2
g
5
g
:
£
2
5
5
g
g
]
H
E
3
g
5
g
H
3
2
o

Yo(r.8) =Y, (r,8) =Y,(r.8) =Y3(r,8) =0
There is a solution only if @ =0. In this case from [6.10] is obtained:

Y3(r,8) =r?Z5(8) +Us(8)
From [6.13] is obtained:



B(r2Z;(6) +U5(8)) =-sinBcosOK 2

From the previous equation two cases are considered :

Case 3: B=0, in this case K,=0. From [6.10], [6.12] and [6.16] is obtained:

Yy(r8)=0  Y3(r.8)=Kyr3sin®0
Case 4: B+0, must be:

Us(8)=0  PZ;(6)=-sinBcoseK, [6.17]
For this case, from [6.7], [6.12], [6.16] and [6.17] is deduced that:
Yo(r8)=0  p2=-1
The final solutions are:
Solution 1: a#0:
X(t.r.,8,4)=0
Solution 2: «=0, B#0, B#+i
X,(tr,8,4)=0
Solution 3: =0, B==*i
i@+X)
Xo(tr,8,0)=X,(tr,8,0)=0  X,(tr,8.0)=Kyr%e®  X;(tr.6,6)=Krsinbcoste 2
Solution 4: a=0, p=0
Xo(tr,8,0)=Kee2 @ X,(tr,8.6)=X,(tr0.8)=0  X3(tr,8,)=Kyr2sin6
The most general solution is:
Xo(t.r.8.4) =Koe?*
X4(t.r.0,6)=0
Xo(t.r,8,0) =Kor2e™
i6+3)
X3(t.r,0,6)=Kpr2sinbcosbe 2 +Kyr2sin?e
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