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Abstract: A gauge to electromagnetic field is considered. This gauge is most restrictive as the 

Lorentz gauge which is verified by the proposed. lt is based on several symmetric expressions 

narned DmSAn lorms. lt is included a application to a spherical and static geornetry as is 

generated by a big gravitational object, as a black hale, with central symmetry and electrically 

charged. The solution is the classica1 on far space but has strong discrepancy with the 

classical result near ol the event horizon of the black hole. 
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1. INTRODUCTION 

On classical electrornagnetic field theory in 4-dimensional riemannian spaces, (4] (6] . the potential vector A is 

defined from the electromagnetic field F as 

F;¡=A¡;i~A;j 

From this definition can be concluded that the potential is not well defined. Several polential transforrnations 

with field invariance are possible. A transformation of this type, called A-invariance. is valid : 

A 1=A +'VA 

These invariances are dueto the presence of several freedom degrees in the potential definition. To reduce 

sorne freedom degrees sorne gauge conditions are imposed. The most common is know as Lorentz gauge, 
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which is useful but do not fix the potential. In this paper all functions are assumed anatytic, based in this, a 

identification of these freedom degrees is show. Let a local trame with cartesian coordinates. This trame is 

locally plane and the Chistoffel symbols are nulls. Let the electromagnetic field F and potential A as: 

F¡j(x)-4 ;¡+6;¡,,;x" +O(x2) 

A;(x) "' «¡ +~¡fi +~Y¡j,¡xix" +O(x3) 

Based on the antisymmetric property of the electromagnetic field, its coefficients mus! verifie : 

Then, mus! be: 

~¡¡- ~¡;4¡¡ Y;¡11 - Yjik"'6jik 

Let the following symmetric-antisymmetric decomposition: 

Then must be: 

And the potential is expressed as: 

The potential in this local frame has three terms. The first is an arbitrary constant, the secorx::I is a term well 

correlated with the field coefficients, arx::I the third, which has symmetric coefficients, can be arbitrarily defined. 

From this is ctear that the antlsymmetric expression A¡:rA¡ :i is well defined, but the symmetric expression 

A¡:¡+ A¡:i which do not includes the field coefficients, can be arbitrarily fixed : 

This symmetric expresslon has 1 O components which are called in this paper the freedom degrees of the 

potential definition. The Lorentz gauge partially defines these components. This gauge fix the addition of the 

components in this way: 

This work is related to a gauge based on the previous symmetric expression. 
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The SAn tensor symmetries are a generalization of symmetric and antisymmetric tensors. Let all tensors on C.,. 

Oelinltion 2.1 : A Tensor, X¡ 1 ¡2 ... in , has the Sn symmetry if all its components in a index cyclic rotatlon are 

equal: 

Oefinttion' 2.2: A Tensor, X¡ 1 ¡2 .. in , has the ~ symmetry if the addition ot all its components In a index cyclic 

rotation is null: 

From these definitions is founded that the second degree symmetric and antisymmetric tensors have the S2 

and A2 symmetries respectively. 

Oefinttion 2.3: The expression of an arbitrary tensor X as the sum of Sn and An tensors is callad its SAn Form: 

X;, i2 .. .in"'S¡1 i2 .. .in+A ¡1 i2 .. .in 

Where S and A are Sn and An tensors, and are the Sn y~ parts of X respectively. 

Theorem 2.1: The parts of a SAn form are univocaly determinad 

Prool: Let X an arbitrary tensor where S and A are its Sn and An parts, as done on Definition 2.3. Adding a 

cyclic index rotation : 

X¡, i2 ... in +X¡z ... in ;1+ ... +X;n i l .. .in-1=(S;1 i2 ... in +S;z ... in if+ .. +S;n íl ... in-1)+ "4;1 i2 .. .in+A;2 .. .in it+ ... +A ¡n i1...in-1 l ,.nSu i2 .. .in 

can be obtained that: 

X·, ·2 · +X·2 · ·1+ .+X;n il ... in-1 
A if i2 ... in=X¡¡ i2 ... in- 1 1 ... m 1 ... m ~ . 

The parts are well defined trom X. • 

Oefinition 2.4: An arbitrary tensor has the DmSn symmetry, if its m-th derivate tensor has the Sm +n symmetry. 

Delinition 2.5: An arbitrary tensor has the DmAn symmetry, if its m-th derivate tensor has the ~+n symmetry. 

Oefinition 2.6: The OmSAn Form of an arbitrary tensor is its expression as sum ot DmSn y DmAn tensors. 

Theorem 2.2: Atl tensors with the D1S1 symmetry can be expressed as a scalar gradient. That is, if is verified : 

Then: 
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Proof: The 0 1$ 1 definition is exaclly the integrability condition for the next expression, (5], a particular case 

of Poincare Lemma, {2) (3] : 

dS(K')•Xpx 1 • 

Theorem 2.3: All tensors with the D1A1 symmetry have nutl divergence. That is, if is verified: 

Then: 

Proof: Reducing the i and j index in the D1A1 definition: 

g ii(X¡;1+X¡;;) • 2X¡rO • 

Lemma 2.1: lf a tensor X¡ and its D1SA1 parts are analytics, and is known one of the its D1A1 or 0 1$ 1 parts 

in a point, then the D1SA1 parts are well defined. 

Proof: Let a local frame centered at point p where a part is known. Then: 

X,=X¡+X¡ 

aj,.a;x¡ 
a¡.,.a/¡=O 
X1(p)·Z1 

In this case is known the D1A1 part. Let: 

Then. must be: 

And the solution is: 

X¡(x) =8.¡+b¡¡Xj +~C¡¡~ixk + O(x3) 

X;(x)='a;+b;f¡ t~C;¡irix"+ O(x3) 

X;(x) =Z;+6;¡X¡ +~é;¡irixk + O(x3) 

b¡¡=bji C¡¡k=Cpk 

Í>¡¡+6¡;=0 é¡¡k+é¡;k" º 

ª;"'ii¡+Z¡ b;¡"'b;¡+6;¡ C¡¡k =C;¡k+C;¡k 

X;(x):(a¡-Z;) t~(b;¡•b¡;)xi +~(c;¡k +c¡;k)xix" + O(x3) 

X;(x) .,z;+~(b;¡-b¡;)xl +~(C;¡vcjik)xfxk + O(x3) 

Ali the parts are well defined. • 
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3. THE DmSA0 PARTS OF ELECTROMAGNETIC FIELD. KERNEL POTENTIAL 

The electromagnetlc fleld F has the A2 and D1A2 symmetrles. lt Is verified that: 

F¡¡+F¡;:•O 
F;¡;k+F¡k;1•FkiJªO 

The electromagnetic potential A has not these symmetries. Let the 0 1SA1 form of A as: 

Where S is a scalar and Á is a D1A1 tensor called in this paper the kernef potential. lf in a physical problem the 

potentlal has solutlon, then, basad on the Lemma 2.1 and sorne contour conditlons the kernel potential has also 

solution. The primitiva relation between F and A is transformad on a relation between F and Á as follow: 

F;¡><A¡;;-A¡JzÁj;l-Ái'J 

Á¡J+Á¡;;=afr+-ªÍir2r k;fk=O 

In the previously considerad local trame, the kernel potential and scalar S are: 

[3.1) 

(3.2] 

Definilion 3.1: In this context, the freedom degrees of a tensor X¡ is the number of a¡X¡ components which can 

be arbitrarily defined. 

Theorem 3.1: The maximum freedom degrees of a tensor with 0 1A1 symmetry is 6. 

Proof: The number of a¡X¡ is 16, but the D1A1 symmetrydefinition provides 10 linear equations about a¡X¡- Then 

is concluded that only 6 components can be arbi1rarily defined. • 

Theorem 3.2: 11 the electromagnetic field F is known, then the kernel potential has not freedom degrees. that 

is, all the 3iÁ¡ are fixed. 

Proof: The linear equations system (3.1] and (3.2] has 6 equations from the field definition and 10 equations 

from the D1A1 definition. Then. there are 16 tinearly independent equations about the 16 3i.Á;- • 

Theorem 3.3: lf in a Space the Cristoffel symbols are independents from a coordinate, -/", then the freedom 

degrees of tensor X with 0 1A1 symmelry is reduced to 2. 

Proof: lf the Cristoffel symbols are independents of a coordinate, -/", then the lineal equations system (3.2) has 

this solution: 

lt is possible to define 4 addi1ional equations related to the 3iX¡ as: 
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The more general solutlon Is: 

Where Yu are the eigenvalues. Basad on Theorem 3. 1 an joining these 4 additional equatlons, then, only is 

possible to arbitrarily define 2 components 3iX¡ . • 

Theorem 3.4: lf in a Space the Cristoffel symbols are independer.ts from a coordinate, x"', then only 2 

components of the electromagnetic field can be arbitrarily defined. 

Proof: In this case the freedom degrees of the kernel potential is reduced to 2, dueto Theorem 3.3, and only 

can be defined 2 equations including the electromagnetic field, because any more equations can be generate 

an incompatible system. • 

Theorem 3.5: lf in a Space the Cristoffel symbols are independents from two coordinates, x"' and x9, then can 

not be defined any arbitrary component of the electromagnetic field. 

Proof: In this case, there are 10 equations about the D1A1 symmetry definition and 8 equations about the 

independent coordinates. lf this system with 18 equations is incompatible then a null solution is provided to the 

kernel potentiat and electromagnetic field. lf the system is compatible, then a solution is obtained for the 

electromagnetic field, and thls solution is the only solution. Any more compatible equations are lineal 

combinations of the previous, and the solutions are the same. In this case the electromagnetic field is an 

intrinsic property of the space. • 

Based on these considerations is proposed this Lemma: 

Lemma 3. 1: ff an electromagnetic field F is physically possible in a space, then there is solution for íts kernel 

potential Á Thar is, there is solution to the equatíons sysrem {3.1/[3.2}. 

This Lemma is called the 0 1A1 gauge in this paper. 

4. ELECTROMAGNETIC FIELD BASED ON D1A1 GAUGE 

A physical case with two independent coordinates exist in a spherical, static and charged black hote. The 

solution to a D1A1 tensor fer this case is obtained in the Appendix. 

Theorem 4. 1: In a Spherical and Static Geometry asymptotically plane, the asymptotically null solution to 

electromagnetic field based on the 0 1A1 gauge is: 

132 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



The metric is [6): 

Proot: Based on the Appendix results, if the metric is asymptotically plane n:ust be: 

Lim«i (r) ;LimA(r) ;Q ,_ ,_ 
Then: 

Lim dll>(r) •Lim dA(r) •O 
,...... dr ,...... dr 

lf the next condition is imposed: 

LimF .. o 

Then must be K2= K3: 0, and the solution obtained is: 

From which is obtained the Theorem result • 

The results provides by the classlcal electromagnetic field theory to the metric and field for a sphericat and 

static geometry is known as the Reissner-Nordstrom solution (7)[8] which is: 

2 

e 2' (r);e -2h(r),.1-~+~ 
r ,2 

This result are obtained from the Einstein equation G¡¡"' kT¡¡ , which determines both the metric an field. The 

work here shown only provides the field if the metric is defined. The obtained solution based on Lemma 3.1 

using the metric of classical solution with Ko=r,/rm is: 

The complete solution with the classical metric and the field based on Lemma 3.1 is: 
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This result has discrepancy with the exact solution provided by the classical theory. The discrepancy is weak, 

about 0(1 ; r\ on the far space. Near the horizon of a spherical static and charged black hale the field 

discrepancy is strong as is shown the Figure l ., where O:s:2lr8 l :s:rm. The solution is similar to a space 

polarization in a dielectric with a relative permittivitie done as: 

t \ E.(r) 

\ 
\ 

E(r) 

·-•.•.. __ 

Figure. 1. The metric. g00(r), and the field, Ec(r), solutions to Reissner-Nordstrom geometry. 
E(r) is the solution based on Lemma 3.1. 

5. CONCLUSION 

A sludy about the freedom degrees in the computation of the electromagnetic potential in riemannian spaces 

is presented. A proposal to reduce these freedom degrees is presented, based on several tensor symmetries 

which define a new gauge type. For several space metrics types, this gauge determines the field from the 
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intrinsic space properties. A study case is resolved, showing similarities and differences with the classsically 

accepted solution. The study case concerning with a electrically charged black hole can not be successfutly 

resolved basad only on the paper thesis, because the presented framework determines. far this case, the field 

from the space metric, and In order to obtain the resolution of the problem is need to determine also the metric 

from the field , that is performed by the classlcat theory. 

6. APPENDIX: THE D1A1 TENSORS IN SPHERICAL ANO STATIC GEOMETRIES 

A sotution to the next equations system is provided in a spherical and static 4-dimensionat riemannian 

geometry: 

x1r x;r a,x,.a;x¡-2r •,,x,.o 
The metric with the (t,r,0,$) Schwarzschild coordinates is: 

ds2=-e2t (r)dt2 +e2AVldr2+r2(de2+sin2ed$2) 

Using this (· + + +) metric, the non null Cristoffel symbols are [4] 1: 

r\lO"'e-2• ·2A ~ r°o1 "'~ r1 11 =~ 
r 122•-re -2A r323:C016 r 133•-8 -2Arsin26 

r212 "r31 3=~ 
r2 33 .. - sinecose 

(6.1( 

(6.2( 

The (6.1) equations system has 10 homogeneous differential equations and the Chistoffel symbols are 

independents from the (t,$) coordinates, then the solutions have this form: 

X¡(t,r,0,$):eªt•Uy;(r,0) (6.3) 

From (6.1) . [6.2] and (6.3] the next equations system is obtained: 

a:Y0-r\lO(r)Y1 (6.4) 

a,Y0+a:Y1 .. 2r 001 (r)Y0 (6.5) 

a6Y0+a:Y2=0 (6.6) 

PY0-.a:Y3"'o (6.7) 

a,y1,.,r 111 (r)Y1 (6.8) 

a6Y, +a,y2 .. 2r 212(r)Y2 (6.9) 

\ andau·Lilshitz use a melric (+ • • ·). 
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From [6.8} is obtained: 

From [6.11} and [6.14J is deduced: 

pY, +a,Y3=2I' 313(r)Y3 

a8Y2 .. r \ 2(r)Y1 

PY2+a6Y3 .. 2cotaY3 

Y2(r,6) •-re-AVlz2(6) •U2(r) z;(6) •Z1(6) 

From [6.9) and (6.15] is obtalned: 

[6.10) 

[6.11) 

[6.12) 

[6.13) 

[6.14) 

[6.15) 

There are two possible solutions based on factoring variables in the previous equation. First solution is obtained 

when factoring the r variable. lt is verifled that : 

Where w is a constant. This solution is pos~ible only when the metric is restricted to a particular case. The 

second solution, the only here considered, is obtained when factoring with the e variable. lt is verified : 

The solution for this case must be: 

Then the partial solution is: 

Y1(r,6)•0 

From [6.4) , (6.5] and (6.6] is obtained : 

Case1 : a =O 

Y0(r,6) - Koe 21 VI 

Case 2: ª'"º· From [6.4], [6.6], [6.7] and [6.16] is obtained : 

Y0(r,0) • Y1(r,0)•Y2(r,6) • Y 3(r,0) · O 

There is a sotution only if « =0. In this case from [6.10] is obtained: 

Y3(r,6) · r 2Z3(6) •U3(6) 

From (6.13] is obtained: 

136 

[6.16[ 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



p (r2Z3(0) •U3(0)) • - sin0cosex,r2 

From the previous equatlon two cases are consldered : 

Case 3: l} =O, in this case K2::0. From [6.10), [6.12] and (6.16) is obtained: 

Y2(r,0)·0 

Case 4: 1J "'º· must be: 

u3(0) =O pZ3(0) --sinecos0K2 

For lhis case, from [6.7], [6.12], [6.16] and [6.17) is deduced lhat: 

Y0(r,0) · 0 P2•-1 

The final solutions are: 

Solution 1: ª"º: 

X;(t,r,0,<!>)=0 

Solution 2: ª"'º· 13 .. 0, 13 .. ± i 

X;(l,r,0,<l>) · O 

Solution3: o: = O, 1} =±1 

X0(t,r,0,<I>) · X1(t,r,0,<I>) =0 X2(t,r,0,<I>) =K,r2e;, 
l(f+.!.) 

X3(t,r,0,$) ·K,t2sin0cos6e 2 

Solution4: a =O, 1} =0 

X0(t,r,0,<!>)=K,e21 Vl X1(t,r,0,<!>) · X2(t,r,0,<!>) · 0 X3(t,r,0,<l>)•K:f2sin20 

The most general solution is: 

X0(t,r,0,$):K0e2• (r) 

X1(t,r ,0,<l>) • O 

X2(t,r,0,<I>) · K,r2e• 
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