Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017 © Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Rev. Acad. Canar. Cienc., XVIII (Núms. 1-2), 23-31 (2006) (publicado en agosto de 2007)

y-CONVERGENCE OF NETS AND FILTERS

S. Ganguly & Ritu Sen*

Department of Pure Mathematics, University of Calcutta 35, Ballygunge Circular Road, Kolkata-700019 India e-mail: gangulys04@yahoo.co.in

Abstract : In this paper we discuss the notion of γ - convergence of nets and filters. We also introduce the concept of γ - compact spaces and characterize such spaces.

AMS Subject Classification : 54C35

Keywords : γ - open sets, γ - continuous functions, γ - irresolute functions, γ - convergence of nets and filters, γ - compact spaces.

1 Introduction

In [5] Min first introduced the notion of γ - open sets (originally called γ - sets). In the same paper Min has also introduced and discussed the notion of γ - continuous functions and γ - irresolute functions. Later in [1] Ganguly and Sen have introduced the concept of γ convergence of nets.

The aim of this paper is to introduce γ - convergence of filters and discuss γ - convergence of nets and filters.

Throughout this paper, (X, τ) (simply X) and (Y, τ^*) always mean topological spaces. Let S be a subset of X. The closure (resp. interior) of S will be denoted by $cl(S)$ (resp. $int(S)$).

A subset S of X is called a semi-open set [4] if $S \subseteq cl(int(S))$. The complement of a semiopen set is called a semi-closed set. The family of all semi-open sets in a topological space

^{*}The second author is thankful to CSIR, India for financia! assistance.

 (X, τ) will be denoted by $SO(X)$. A subset $M(x)$ of a space X is called a semi-neighborhood of a point $x \in X$ if there exists a semi-open set S such that $x \in S \subseteq M(x)$. In [2] Latif introduced the notion of semi-convergence of filters. Let $S(x) = \{A \in SO(X) : x \in A\}$ and let $S_x = \{A \subseteq X : \text{there exists } \mu \subseteq S(x) \text{ such that } \mu \text{ is finite and } \cap \mu \subseteq A\}.$ Then S_x is called the semi-neighborhood filter at x. For any filter Γ on X we say that Γ semi-converges to x if and only if Γ is finer than the semi-neighborhood filter at x.

Definition 1.1 [3] A subset *U* of *X* is called a γ open set if whenever a filter Γ semiconverges to *x* and $x \in U$, $U \in \Gamma$. The complement of a γ - open set is called a γ - closed set.

The intersection of all γ - closed sets containing A is called the γ - closure of A, denoted by $cl_{\gamma}(A)$. A subset A is γ - closed iff $A = cl_{\gamma}(A)$. We denote the family of all γ - open sets of (X, τ) by τ^{γ} . It is shown in [5] that τ^{γ} is a topology on X. In a topological space (X, τ) , it is always true that $\tau \subseteq S(X) \subseteq \tau^{\gamma}$.

Definition 1.2 [5] A function $f : X \to Y$ is said to be γ - continuous if the inverse image of every open set of Y is γ - open in X.

The set of all γ - continuous functions from X into Y is denoted by $\gamma C(X, Y)$.

Definition 1.3 [5] A function $f : X \to Y$ is said to be γ - irresolute if the inverse image of every γ - open set of Y is γ - open in X.

Definition 1.4 A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X is said to converge to a limit $x \in X$ (in symbol, $x_{\lambda} \to x$) if for every neighborhood V of x, \exists a $\lambda_0 \in \Lambda$ such that $\lambda \geq \lambda_0$ implies $x_{\lambda} \in V$.

Definition 1.5 [1] A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X is said to γ - converge to a limit $x \in X$ (in symbol, $x_{\lambda} \to^{\gamma} x$ if for every γ - open set V containing x, \exists a $\lambda_0 \in \Lambda$ such that $\lambda \geq \lambda_0$. implies $x_{\lambda} \in V$.

Definition 1.6 Let Γ be a filter on a topological space X. Then Γ is said to converge to x if each neighborhood of x is a member of Γ , i.e., $\mathcal{N}_x \subseteq \Gamma$.

2 *ry-* **convergence of nets and filters**

In this article we first discuss the γ - convergence of nets. Then we discuss the γ - convergence of filters.

Definition 2.1 Let *X* be a topological space. A subset $A \subseteq X$ is said to be a γ - neighborhood of a point $x \in X$ if and only if there exists a γ - open set U such that $x \in U \subseteq A$.

The set of all γ - neighborhoods of a point $x \in X$ is denoted by $\gamma \mathcal{N}_x$.

Theorem 2.2 [1] A function $f : X \to Y$ (where X and Y are topological spaces) is γ irresolute at a point $x \in X$ iff for any net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X γ - converging to x, the net ${f(x_\lambda): \lambda \in \Lambda}$ γ - converges to $f(x)$ in *Y*.

Theorem 2.3 A function $f: X \to Y$ is γ - continuous at a point $x \in X$ iff for any net ${x_{\lambda} : \lambda \in \Lambda}$ in X γ - converging to *x*, the net ${f(x_{\lambda}) : \lambda \in \Lambda}$ converges to $f(x)$ in Y.

Proof : First assume that f is γ - continuous at $x \in X$. Let $\{x_\lambda : \lambda \in \Lambda\}$ be a net in X γ converging to x. Let V be an open set in Y containing $f(x)$. Now there exists a γ - open set *U* containing *x* in X such that $f(U) \subset V$. Now $\{x_\lambda : \lambda \in \Lambda\}$ γ - converges to *x* implies that there exists a $\lambda_0 \in \Lambda$ such that $x_\lambda \in U$ for all $\lambda \geq \lambda_0$. Hence, for all $\lambda \geq \lambda_0$, $f(x_\lambda) \in V$. This shows that $\{f(x_\lambda): \lambda \in \Lambda\}$ lies eventually in V and hence it converges to $f(x)$.

Conversely, let f be not γ - continuous at x. Then there exists an open set W containing $f(x)$ in Y such that from every γ - open set U containing $x \in X$, there exists an element x_U with $f(x_U) \notin W$. Let $\gamma \mathcal{N}_x$ be the γ - neighborhood system at *x*. So, $\{x_U : U \in \gamma \mathcal{N}_x\}$ is a net in X γ - converging to x, but the net $\{f(x_U) : U \in \gamma \mathcal{N}_x\}$ in Y does not lie eventually in *W* and consequently it cannot converge to $f(x)$.

Next we form the γ - neighborhood filter at a point $x \in X$ and discuss the notion of γ convergence of filters.

Definition 2.4 Let (X, τ) be a topological space. For $x \in X$, let $\gamma(x) = \{A \subseteq \tau^{\gamma} : x \in A\}$. Then $\gamma(x)$ has the finite intersection property. Thus $\gamma(x)$ is a filter subbasis on X. Let γ_x be the filter generated by $\gamma(x)$, i.e., $\gamma_x = \{A \subseteq X : \text{there exists } \mu \subseteq \tau^\gamma \text{ such that } \mu \text{ is finite} \}$ and $\cap \mu \subseteq A$. γ_x will be called the γ - neighborhood filter at *x*.

Definition 2.5 Let Γ be a filter on (X, τ) . Γ is said to γ - converge to $x \in X$ iff Γ is finer than the γ - neighborhood filter at x.

Definition 2.6 Let Γ be a filter on (X, τ) . Γ is said to γ - cluster to $x \in X$ iff every $F \in \Gamma$ intersects each $A \in \gamma(x)$.

Example 2.7 Consider $X = \{1, 2, 3, 4\}, \tau = \{\Phi, X, \{1\}, \{1, 2\}, \{1, 2, 3\}\}.$ Then τ^{γ} $\{\Phi, X, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}\}.$ Then the γ - neighborhood system at 4 consists of $\{1, 4\}$, $\{1, 2, 4\}$ and *X*. Now, $\gamma(4) = \{\{1, 4\}, \{1, 2, 4\}, X\}$ and $\gamma_4 = \{\{1, 4\}, \{1, 2, 4\}, X\}.$ Then γ_4 is the γ - neighborhood filter at 4.

Consider the filter $\Gamma = \{\{1, 4\}, \{1, 2, 4\}, \{1, 3, 4\}, X\}$. Then Γ is finer than γ_4 and hence Γ γ - converges to 4. Also every $F \in \Gamma$ meets each $A \in \gamma(4)$. Hence $\Gamma \gamma$ - clusters at 4.

Proposition 2.8 Let Γ be a filter on (X, τ) γ -converging to *x* in *X*. Then Γ also converges to *X.*

Proof : Obvious.

Proposition 2.9 Let Γ be a filter on (X, τ) which γ -clusters to *x* in *X*. Then $x \in \cap \{cl_{\gamma}(F)$: $F \in \Gamma$.

Proof : Obvious.

Definition 2.10 Let (X, τ) be a topological space. Let Γ be a filter on X. Then a point $x \in X$ is said to be a strong γ - cluster point of Γ iff every $F \in \Gamma$ intersects each $A \in \gamma_x$.

Proposition 2.11 If Γ is a filter on (X, τ) strongly γ - clustering to $x \in X$, then Γ also γ clusters at x .

Proof : Obvious.

That the converse may not be true is proved by the following example.

Example 2.12 Consider $X = \{1,2,3,4\}$, $\tau = \{\Phi, X, \{2,3\}, \{4\}, \{2,3,4\}\}\$. Then the γ open sets are Φ , X, {2, 3}, {4}, {2, 3, 4}, {1, 4}, {1, 2, 3}. Then $\gamma(1) = \{\{1, 4\}, \{1, 2, 3\}, X\}$ and the γ - neighborhood filter at 1 is $\gamma_1 = {\{1,4\}, \{1,2,3\}, \{1\}, X\}}$. Consider the filter $\Gamma = \{\{2, 4\}, \{1, 2, 4\}, \{2, 3, 4\}, X\}.$ Clearly $\Gamma \gamma$ - clusters to 1 since every $F \in \Gamma$ meets each $A \in \gamma(1)$. But Γ does not strongly γ - cluster to 1 since $\{2,4\} \in \Gamma$, $\{1\} \in \gamma_1$, but ${2, 4} \cap {1} = \phi.$

Definition 2.13 Let $f : X \to Y$ be a function and Γ be a filter on *X*. Let $f(\Gamma) = \{f(F):$ $F \in \Gamma$. Then $f(\Gamma)$ may not be a filter on Y, but it is a base for some filter on Y and this filter is denoted by the symbol $f^{\sharp}(\Gamma)$ and is called the image of the filter Γ under the map f. **Theorem 2.14** Let $f: X \to Y$ be a function where X and Y are topological spaces. Then f is γ - continuous at $x \in X$ iff for any filter Γ on X γ - converging to x, the filter $f^{\sharp}(\Gamma)$ on *Y* converges to $f(x)$.

Proof : First assume that f is γ - continuous at x. Let Γ be a filter on X γ - converging to x. Let *W* be a neighborhood of $f(x)$ in *Y*. Then there exists a γ - open set *V* containing x in X with $f(V) \subset W$. Now since $\Gamma \gamma$ - converges to x, so $V \in \Gamma$ and hence $f(V) \in f(\Gamma) \Rightarrow$ $W \in f^{\sharp}(\Gamma)$. So, $f^{\sharp}(\Gamma)$ converges to $f(x)$.

To prove the converse, assurne that the given condition holds. Let *W* be a neighborhood of $f(x)$ in *Y* and Γ be the filter of all γ - neighborhoods of x in X. Then clearly $\Gamma \gamma$ - converges to x and hence by the assumed condition, the filter $f^{\sharp}(\Gamma)$ on Y converges to $f(x)$ and so $W \in f^{\sharp}(\Gamma)$. Now $W \in f^{\sharp}(\Gamma) \Rightarrow W \supset f(V)$ for some γ - neighborhood *V* of *x*, i.e., $W \supset f(V)$ for some γ - open set V containing x. This shows that f is γ - continuous at x.

Theorem 2.15 Let $f : X \to Y$ be a function where X and Y are topological spaces. Then f is γ - irresolute at $x \in X$ iff for any filter Γ on X γ - converging to x, the filter $f^{\sharp}(\Gamma)$ on Y γ - converges to $f(x)$.

Proof : Let f be γ - irresolute at x and let Γ be a filter on X γ - converging to x. Let V be a γ - open set containing $f(x)$. Since f is γ - irresolute at x, there exists a γ - open set U containing x such that $f(U) \subset V$. Now since $\Gamma \gamma$ - converges to $x, U \in \Gamma$ and hence $f(U) \in f(\Gamma) \Rightarrow V(\supset f(U)) \in f^{\sharp}(\Gamma)$. Thus the filter $f^{\sharp}(\Gamma)$ on *Y* γ - converges to $f(x)$.

9 Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017 © Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Conversely, let the given condition holds. Let V be a γ - open set in Y containing $f(x)$ and Γ be the filter of all γ - neighborhoods of *x* in *X*. Then clearly Γ γ - converges to *x* and by the given condition, the filter $f^{\sharp}(\Gamma)$ on *Y* γ - converges to $f(x)$ and hence $V \in f^{\sharp}(\Gamma)$. This implies that $V \supset f(U)$ for some γ - open set U containing x. Hence the function $f: X \to Y$ is γ - irresolute at *x*.

3 Characterizations of γ - compact spaces

In this article we first introduce the notion of γ - compact spaces and then try to characterize such spaces.

Definition 3.1 A topological space (X, τ) is called γ - compact if every γ - open cover of X, i.e., a cover of X by γ - open sets in X has a finite subcover.

Result 3.2 It has been shown in [3] that γ - compactness implies compactness and Latif has given an example to show that the converse may not be true.

Definition 3.3 Let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X. Then the family of tails $\{T_{\lambda} : \lambda \in \Lambda\}$ where, $T_{\lambda} = \{x_{\mu} : \mu \geq \lambda\}$ is a base for some filter on X. This filter is called the filter generated by the net $\{x_{\lambda} : \lambda \in \Lambda\}.$

Definition 3.4 Let Γ be a filter on *X*. Let $D_{\Gamma} = \{(x, F) : x \in F \in \Gamma\}$. If we set for any two (x, F) , $(y, G) \in D_{\Gamma}$, $(x, F) \ge (y, G)$ iff $F \subseteq G$, then (D_{Γ}, \ge) becomes a directed set. Then the map $P_{\Gamma}: D_{\Gamma} \to X : (x, F) \to x$ is a net in X which is called the net defined by the filter **r.**

Theorem 3.5 Let (X, τ) be a topological space. A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X γ - converges to x in X iff the filter generated by the net γ - converges to x.

Proof : Let the net $\{x_\lambda : \lambda \in \Lambda\}$ in X γ - converges to x. We have to show that the filter Γ generated by the net also γ - converges to *x*. Choose any γ - neighborhood U of *x*. Since ${x_\lambda : \lambda \in \Lambda} \gamma$ - converges to *x*, there exists a $\lambda_0 \in \Lambda$ such that $x_\lambda \in U$, for all $\lambda \geq \lambda_0$, i.e., $T_{\lambda_0} \in U$. Since T_{λ_0} is the base for the filter Γ , so $T_{\lambda_0} \in \Gamma$. Hence $U \in \Gamma$. Thus the filter Γ generated by the net $\{x_{\lambda} : \lambda \in \Lambda\}$ γ - converges to *x*.

Conversely, let the filter Γ generated by the net $\{x_{\lambda} : \lambda \in \Lambda\}$ γ - converges to x. Let *U* be a γ - neighborhood of x. Since Γ γ - converges to x, $U \in \Gamma$. Now since $\{T_{\lambda} : \lambda \in \Lambda\}$ is a base for Γ , there exists a $\lambda_0 \in \Lambda$ such that $T_{\lambda_0} \subseteq U$, i.e., $\{x_\lambda : \lambda \geq \lambda_0\} \subseteq U$. Thus $x_\lambda \in U$, for all $\lambda \geq \lambda_0$. Hence the net $\{ x_\lambda : \lambda \in \Lambda \}$ γ - converges to *x*.

Theorem 3.6 Let (X, τ) be a topological space. A filter Γ on X γ - converges to x iff the net $P_{\Gamma}: D_{\Gamma} \to X$ defined by the filter γ - converges to *x*.

Proof : Let Γ γ - converges to x. Choose a γ - neighborhood U of x. Then $U \in \Gamma$ and so $(x, U) \in D_{\Gamma}$. Let $(y, V) \in D_{\Gamma}$ be such that $(y, V) \geq (x, U)$. Then $y \in V \subseteq U$, i.e., $P_{\Gamma}(y, V) \in U$. This shows that the net P_{Γ} lies eventually in *U* and hence the net $P_{\Gamma} \gamma$ converges to *x .*

Conversely, let the net $P_{\Gamma}: D_{\Gamma} \to X$ generated by the filter $\Gamma \gamma$ -converges to x. Let *U* be a γ - neighborhood of *x*. Then the net P_{Γ} lies eventually in U, i.e., there exists $(y, V) \in D_{\Gamma}$ such that for all $(z, G) \geq (y, V)$, $P_{\Gamma}(z, G) = z \in U$. In particular, for any point $k \in V$, $(k, V) \ge (y, V)$, so that $k \in U$. This shows that $V \subseteq U$. But $(y, V) \in D_{\Gamma} \Rightarrow V \in \Gamma \Rightarrow U \in \Gamma$. Hence the filter $\Gamma \gamma$ - converges to x.

Definition 3.7 A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in (X, τ) is said to γ - cluster at a point $x \in X$ if given a γ - neighborhood *U* of *x* and $\mu \in \Lambda$, there exists a $\lambda \in \Lambda$ such that $x_{\lambda} \in U$, for all $\lambda \geq \mu$. We say that the net lies frequently in U .

Theorem 3.8 Let (X, τ) be a topological space. A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X γ -clusters at a point $x \in X$ iff the filter generated by the net γ - clusters at *x*.

Proof: Suppose $\{x_\lambda : \lambda \in \Lambda\}$ γ - clusters at x. Let *U* be a γ - neighborhood of x. Let Γ be the filter generated by the net $\{x_{\lambda} : \lambda \in \Lambda\}$ and $F \in \Gamma$. We have to show that $U \cap F \neq \emptyset$. If possible, let $U \cap F = \phi$. Since $F \in \Gamma$, there exists a $\lambda_0 \in \Lambda$ such that $T_{\lambda_0} \subseteq F$, i.e., ${x_{\lambda}: \lambda \geq \lambda_0} \subseteq F$. Therefore, ${x_{\lambda}: \lambda \geq \lambda_0} \cap U = \phi$. Hence for $\lambda_0 \in \Lambda$, there does not exist $\lambda \in \Lambda$ such that $x_{\lambda} \in U$, for $\lambda \geq \lambda_0$. This implies that $\{x_{\lambda} : \lambda \in \Lambda\}$ does not γ - cluster at x, a contradiction. Hence $U \cap F \neq \phi$ and thus the filter $\Gamma \gamma$ - clusters at x.

Conversely, let the filter Γ generated by the net $\{x_{\lambda} : \lambda \in \Lambda\}$ γ - clusters at *x*. Let *U* be a γ - neighborhood of x and $\lambda_0 \in \Lambda$. Since Γ γ - clusters at x, $U \cap F \neq \phi$, for all $F \in \Gamma$. Now $T_{\lambda_0} \in \Gamma \Rightarrow T_{\lambda_0} \cap U \neq \emptyset \Rightarrow$ there exists $\lambda \in \Lambda$ such that $x_{\lambda} \in U$ for $\lambda \geq \lambda_0 \Rightarrow \{x_{\lambda} : \lambda \in \Lambda\}$ γ - clusters at *x*.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017 © Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Theorem 3.9 Let (X, τ) be a topological space. A filter Γ on $X \gamma$ - clusters at x iff the net $P_{\Gamma}: D_{\Gamma} \to X$ defined by the filter γ - clusters to *x*.

Proof : Let Γ γ - clusters at x. Let U be a γ - neighborhood of x and $(y, F) \in D_{\Gamma}$. Then $y \in F \in \Gamma$. Since $\Gamma \gamma$ - clusters at $x, F \cap U \neq \phi$ and so we can choose a point $z \in F \cap U$. Then $(z, F) \in D_{\Gamma}$ and $(z, F) \ge (y, F)$ implies that $P_{\Gamma}(z, F) = z \in U$. This shows that the net P_{Γ} is frequently in U and hence $P_{\Gamma} \gamma$ - clusters at x.

Conversely, let the net $P_{\Gamma}: D_{\Gamma} \to X$ γ - clusters at x. Given any γ - neighborhood U of *x*, let *G* be an arbitrary member of Γ . We have to show that $U \cap G \neq \emptyset$. Choose any $y \in G$ [since $G \in \Gamma$, $G \neq \emptyset$]. Since $P_{\Gamma} \gamma$ - clusters at *x* and $(y, G) \in D_{\Gamma}$, there exists $(z, H) \in D_{\Gamma}$ with $(z, H) \ge (y, G)$. Therefore, $z \in H \subseteq G$ such that $P_{\Gamma}(z, H) = z \in U$. Hence $G \cap U \ne \phi$. Thus the filter $\Gamma \gamma$ - clusters at x.

Theorem 3.10 A topological space (X, τ) is γ - compact iff for every collection of γ - closed sets $\{F_\alpha : \alpha \in \Lambda\}$ in *X* possessing finite intersection property (in short, f.i.p.), the intersection $\bigcap F_{\alpha}$ of the entire collection is nonempty. $\alpha \in \Lambda$

Proof: Let (X, τ) be γ - compact and let $\{F_{\alpha} : \alpha \in \Lambda\}$ be a collection of γ - closed sets having f.i.p. If possible, let $\bigcap F_\alpha = \phi$. Then $X = X \setminus \bigcap F_\alpha = \bigcup (X \setminus F_\alpha)$. Thus $\{X \setminus F_\alpha : \alpha \in \Lambda\}$ is a γ - open cover of X. Thus there exists a finite subset Λ_0 of Λ such that $X = \bigcup_{\alpha \in \Lambda_0} (X \setminus F_\alpha) = X \setminus \bigcap_{\alpha \in \Lambda_0} F_\alpha$, i.e., $\bigcap_{\alpha \in \Lambda_0} F_\alpha = \phi$, a contradiction. Hence $\bigcap_{\alpha \in \Lambda} F_\alpha \neq \phi$.
Conversely, let $\{G_\alpha : \alpha \in I\}$ be a γ - open cover of X. Then $\phi = X \setminus \bigcup_{\alpha \in I} G_\alpha = \bigcap_{\alpha \in I}$ Since $\{X \setminus G_\alpha : \alpha \in I\}$ is a collection of γ - closed sets, by hypothesis, it cannot have f.i.p. Thus there exists a finite subset I_0 of I such that $\bigcap_{\alpha \in I_0} (X \setminus G_\alpha) = \phi$, then $X = \bigcup_{\alpha \in I_0} G_\alpha$, proving that X is γ - compact.

Theorem 3.11 A topological space (X, τ) is γ - compact iff every filter in X has a γ - cluster point in X.

Proof : First let *X* be γ - compact. Let Γ be a filter on *X*. Then $cl_{\gamma}\Gamma = \{ cl_{\gamma}F : F \in \Gamma \}$ is a family of γ - closed subsets of *X* with f.i.p. Since *X* is γ - compact, $\bigcap cl_{\gamma}F \neq \emptyset$. Take a $F{\in}\Gamma$ point $x \in \bigcap_{F \in \Gamma} cl_{\gamma} F$. Then x is a γ - cluster point of Γ .

To prove the converse, let the condition holds. Let ${G_\alpha : \alpha \in I} = \mathcal{B}$ be a family of γ - closed sets in *X* with f.i.p. Now there exists a filter Γ on *X* such that $\mathcal{B} \subseteq \Gamma$. By the assumed condition, $\Gamma \gamma$ - clusters at $x \in X$. Then $x \in cl_{\gamma}F$, for all $F \in \Gamma$. But each $G_{\alpha} \in \Gamma \Rightarrow x \in cl_{\gamma}(G_{\alpha})$, for all $\alpha \in I$, i.e., $x \in G_{\alpha}$, for all $\alpha \in I$. So $\bigcap G_{\alpha} \neq \emptyset$. Hence *X* is $\alpha \in I$ γ - compact.

With the help of the above proved theorems, we can now state that :

Theorem 3.12 The following conditions are equivalent for a topological space X:

- (a) X is γ compact.
- (b) Every filter in X has a γ cluster point.
- (c) Every net in X has a γ cluster point.

References

- [1] S. Ganguly and Ritu Sen; *The* γ *- open open topology for function spaces, communicated.*
- [2] R. M. Latif ; *Semi convergence of Filters and Nets,* Math. J. of Okayama University, 4 $(1999), 103 - 109.$
- [3] R.M. Latif ; *Characterizations and Applications of* γ -open sets, accepted for publication in Arab Journal of Mathematical Sciences.
- [4] N. Levine ; *Semi open sets and semi continuity in Topological spaces,* Amer. Math. Monthly, 70 (1963), 36-41.
- [5] W. K. Min; γ sets and γ *continuous functions*, Int. J. Math. Math. Sci., 31 (2002), no 3, 177- 181.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017 © Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017