LAS DUNAS DE MASPALOMAS:

GEOLOGIA E IMPACTO DEL ENTORNO

EXCMO. CABILDO INSULAR DE GRAN CANARIA

UNIVERSIDAD POLITECNICA DE LAS PALMAS

DUNAS DE MASPALOMAS: GEOLOGIA E IMPACTO DEL ENTORNO

LAS DUNAS DE MASPALOMAS: GEOLOGIA E IMPACTO DEL ENTORNO

Equipo de autores:

JESUS MARTINEZ MARTINEZ PIEDAD CARPIO MATISAN MARTA GOMEZ LLORENTE TOMAS HERNANDEZ SANTIAGO ALBERTO MENA ESTEVA

Colaborador:

ANTONIO J. GONZALEZ RAMOS Dirección:

JESUS MARTINEZ MARTINEZ

Excmo. Cabildo Insular de Gran Canaria Depósito Legal: G.C. 197 - 1.986 Impreso en España - Printed in Spain Imprime: Tipografía Imprenta El Pino, S.L.

PROLOGO

Con la edición del presente libro pretendemos dar a conocer en profundidad las características geológicas de uno de los parajes más interesantes de Gran Canaria. No es éste un libro que pueda calificarse como de divulgación; es un trabajo científico, realizado con método y destinado a los estudiosos de los ecosistemas dunares y de la dinámica del litoral. Es por ello también instrumento obligado de consulta y orientación para los responsables de la gestión del litoral, porque conociendo los fundamentos científicos de la dinámica del ecosistema se evitarán las actuaciones humanas que puedan poner en peligro la estabilidad y perpetuación del mismo.

No descubrimos nada nuevo al afirmar que las Dunas de Maspalomas es uno de los lugares de mayor importancia e interés de Gran Canaria. En primer lugar como espacio natural, con una geología, flora y fauna de características únicas en el mundo y por ello, nuestro deber y compromiso inexcusable de protegerlas y conservarlas. La declaración del mismo como Paraje Natural de Interés Nacional es urgente y ha de ser abordada en el presente año por el Parlamento de Canarias, una vez que han sido transferidas las competencias para ello. En segundo lugar y derivado de lo anterior, como recurso turístico de primer orden. La belleza del paisaje y las magníficas playas, junto con el soleado clima hace que sea visitado por cientos de miles de turistas cada año, que constituyen uno de los pilares básicos de nuestra economía insular.

Tal como señala la Estrategia Mundial para la Conservación de la UICN debemos compatibilizar la conservación de este ecosistema con el desarrollo. Es más, solo existirá un auténtico desarrollo sostenido si somos capaces de conseguir que la utilización actual de esta zona respete sus valores naturales y por ello pueda seguir disfrutándose en el futuro. Ello será posible si tenemos en cuenta las recomendaciones que trabajos científicos como el presente nos pueden aportar.

Quiero mostrar también mi satisfacción, al prologar este trabajo realizado, en el aún joven Centro Universitario Superior de Ciencias del Mar de la Universidad Politécnica de Las Palmas, por un grupo de jóvenes científicos bajo la dirección del Doctor Jesús Martinez Martinez. Estamos seguros de que con aportaciones científicas de esta naturaleza avanzamos en la consolidación de nuestra Universidad, elevamos su prestigio y demostramos la necesidad de que Universidad y Sociedad caminen juntas para buscar soluciones a los problemas y retos a los que nos enfrentamos hacia el Futuro.

> Carmelo Artiles Bolaños Presidente del Excmo. Cabildo Insular de Gran Canaria

INDICE

Pag	g.
Introducción	3
Las campañas de campo	ł
El entorno del campo de dunas)
Meteorología)
Descripción del campo de dunas	3
Tipos de dunas 24	ł
Fotogeología)
Distribución de las formas sedimentarias)
Estratigrafía - sedimentología	}
Clasificaciones y nomenclaturas granulométricas	ŀ
Parámetros morfoscópicos - granulométricos	1
Estructuras sedimentarias	ĵ
Mineralogía - Petrología	
Calcimetrías)
Dinámica sedimentaria)
Tratamiento estadístico)
Impacto del entorno geográfico)
Las paleo - barras marinas	
Conclusiones	
Bibliografía)

INTRODUCCION

Se pretende desarrollar un programa de investigación, en realación con procesos litorales, que culminará en el diseño de un modelo de dinámica sedimentaria, para las dunas de Maspalomas(Gran Canaria). En esta primera fase, se llega a unas primeras conclusiones, que hacen válida y justifican esta publicación.

La utilidad social del programa se basa en que se estudia una zona a proteger, por sus "contenidos naturales", pero que, al estar delimitada por áreas ligadas a fuertes intereses económicos, tiene el riesgo de soportar degradaciones, presumiblemente irreversibles. En consecuencia, se plantea un ilustrativo ejemplo de "gestión litoral".

LAS CAMPAÑAS DE CAMPO

Las campañas de campo se planifican de acuerdo con unas determinadas condiciones eólicas. Normalmente se programan unas diez salidas por año.

En estas campañas se juega con una doble metodología, según se quiera realizar muestreos sistemáticos u obtener representaciones estereográficas de las formas sedimentarias.

Para el primer caso, el campo se subdivide en cinco sectores: NE, SE, centro, NW y SW. En cada uno de ellos, se localizan y cartografían las dunas más representativas de cada tipo. Estas dunas son clasificadas y denominadas y en ellas:

- se mide la dirección del plano de simetría,
- se describen sus rasgos estructurales, y
- sobre la dirección del plano de simetría, en las laderas de barlovento y sotavento:
 - a) se miden buzamientos y longitudes trasversales, yb) se toman muestras de arena.

Para las representaciones estereográficas, se hacen barridos del campo, clasificando, denominando y tomando medidas de todas y cada una de las dunas. Las medidas comprenden identificaciones de las direcciones del plano de simetría y, sobre estas, se toman longitudes y buzamientos en la ladera de sotavento.

En algunas de las campañas, se han hecho observaciones morfoscópicas, tanto de los cantos de la paleo barra marina como de las terrazas fluviales.

En todas estas campañas, se precisa el siguiente material:

- brújulas de geólogo
- clinómetros
- cinta métrica de 50 m.
- tubos testigo de 30 cm. de longitud por 5 cm. de diámetro
- martillos de geólogo
- bolsas de plástico y etiquetas
- calibrador
- tabla morfoscópica de krumbein
- fotografías aéreas
- estereóscopos de bosillo
- material fotográfico y
- cuaderno de campo.

EL ENTORNO DEL CAMPO DE DUNAS

El escenario a describir (formación deltaica y campo de dunas de Maspalomas) está circundando y se levanta sobre rocas esencialmente fonolíticas, que forman extensas coladas y tramos tobáceos, con inclinaciones suaves hacia el mar, y definen un relieve caracterizado por profundas gargantas, mesas, cuchillos y fortalezas. Otros tipos de rocas, concretamente coladas de basaltos II, solamente afloran en la zona del Tablero.

La desembocadura del barranco de Fataga determina una amplia plataforma sedimentaria. Los sedimentos, si no se entra en matizaciones, podrían definir un cono deltaico, en cuyo margen sureste se extiende el campo de dunas.

Si se observa la cartografía geológica y topográfica, la formación sedimentaria nace, a grandes rasgos, allí donde el barranco de Fataga deja los relieves fonolíticos, a una altitud de 85 m., y se desarrolla hacia el Sur, hasta los dos metros sobre el nivel del mar.

La deposición sedimentaria aluvial se encuentra estructurada en dos unidades:

a) llanura aluvial y

b) terrazas fluviales.

La llanura aluvial acaba en un escarpe de unos 25 m. de altura. La morfología se debe a la acción eustática del mar. Petrológicamente está formada por cantos y bloques, predominantemente fonolíticos, aunque también los hay traquíticos, entre detritos finos y cementaciones por carbonatos.

Las terrazas fluviales enmarcan los márgenes de la actual desembocadura del barranco de Fataga. Se encuentran a dos niveles: uno a 4 - 6 m. y otro a 2 m. Una hipótesis geomorfológica, que explica las terrazas, se basa en sucesivas rupturas del perfil de equilibrio del barranco, como consecuencia de regresiones por cambios eustáticos, que permiten los encajamientos.

Con los cantos, en su mayoría fonolíticos, de estas terrazas se ha aplicado una metodología morfoscópica, para contrastarlos texturalmente con los cantos de la paleo barra marina de Maspalomas, en parte fosilizada por las dunas.

La zona dunar cubre una superficie de cuatro kilómetros cuadrados, ocultando una parte del cono deltaico del barranco de Fataga. Tiene una longitud máxima (E - W) de tres Kilómetros, y una anchura máxima (S - N) de dos kilómetros.

Los Límites del campo de dunas quedan fijados:

- Al W por el barranco de Fataga, con sus terrazas fluviales, y por la "Charca", que ocupa el cauce terminal del barranco. Este límite actúa de frontera natural en la dinámica dunar.
- Al N. por la terraza fluvial de los 6 m. y por el escarpe de la llanura aluvial. Y
- al W y S por las playas del Inglés y de Maspalomas respectivamente.
 Las dunas llegan, a veces, a la zona intermareal. En esas situaciones, y con temporales, pueden ser erosionadas (seccionadas) por el mar.

Jniversidad de Las Palmas de Gran Canaria.Biblioteca Universitaria. Memoria Digital de Canarias, 200

- 1.- Ilanura aluvial
- 2.- campo de dunas
- 3.- terraza superior
- 4.- terraza inferior
- 5.- cauce del barranco de Fataga
- 6.- Faro de Maspalomas

Figura 2

Figura 3

METEOROLOGIA

LA ESTACION METEOROLOGICA

Para el seguimiento de los condicionantes climáticos, en la dinámica sedimentaria del campo dunar, resulta imprescindible la instalación de una estación meteorológica. Por ello se ha ubicado una en la terraza de un puesto de la Cruz Roja del Mar, entre las dunas y la trasplaya de Maspalomas.

En la actualidad, y con la colaboración del Servicio Nacional de Meteorología, se encuentra en una primera fase de dotación y consta de un pluviómetro y de una garita equipada con:

- un termómetro de máximas,
- un termómetro de mínimas,
- un termómetro seco,
- un termómetro húmedo, y
- un evaporímetro.

Con unas Tablas psicrométricas y aspiro - psicrométricas, se determinan las humedades relativas y las tensiones del vapor.

Para una segunda fase, están previstas instalaciones de un anemocinemógrafo y de un heliógrafo. Sin embargo, se están tomando medidas de las condiciones eólicas de la zona, aprovechando el anemocinemógrafo de la Estación de Meteorología del Hotel Faro de Maspalomas, en las proximidades del campo de dunas.

Tanto en nuestra estación como en la del Hotel Faro, las observaciones se hacen tres veces en veinticuatro horas: a las 8,13 y 18 horas. Los datos se transmiten diariamente por teléfono a este Departamento de Geología.

TABLAS DE DATOS ESTACION: HOTEL FARO DE MASPALOMAS

FECHA	VIENTOS DEL NE			VIENTOS DEL SE			VIENTOS DEL W		
	frecuencia	velocidad media en Km/h.	humedad relativa	frecuencia	velocidad media en Km/h.	humedad relativa	frecuencia	velocidad media en Km/h.	humedad relativa
3 — 84	25.84%	20'4	61-4%	12.36%	35*5	63`8%	48`31%	20'3	70.7%
4 — 84	9'41%	20*2	79 [.] 2%	15•29%	19.8	69'1%	61`18%	23'1	76'5%
5 - 84	26°21%	20'1	68°0%	28'21%	15'0	73'3%	26'92%	20.7	66'0%
6-84	26`66%	14.8	78-4%	16'66%	11`46	74'3%	56'67%	10'5	77'6%
7 — 84	5'56%	6.0	90.5%	20.00%	7.6	87'3%	74'44%	8.0	89'3%
8 - 84	12.50%	11'1	78'0%	12.50%	12'2	74`3%	75'00%	8'6	85`5%
9-84	31`58%	13.4	73*9%	9.5%	7'5		58.93%	8'4	77'5%
10 - 84	50°65%	15.7	69*8%	6'49%	2.8		42.85%	. 8'2	69'5%
11-84	57`5%	11.7	62`9%	15.00%	13.5	51'5%	27' 5%	16'7	74`5%
12 - 84	64'7%	14'1	65'1%	7'05%	9.83	_	28' 2%	18'6	69'1%
1 - 85	17`46%	14.09	66.33%	25*40%	12.19		55'55%	16'94	74'08%
2-85	31.34%	13'43		23.68%	16-19	79%	43'62%	20.62	70'5%

sitaria. Memoria Digital de Canarias, 2004

eca Uni

© Universidad de Las Palmas de Gran Canaria.Bibliot

Cuadro I

mesvaño	nº de días	nº de días con determinadas velocidades máximas en una de las tres observaciones diarias							
	con alisios	60Km/h.	59 - 40 Km/h.	39 - 30 Km/h.	29 - 20 Km/h.	Menos de 20 Km/h.			
3 - 84	18	0	1	2	4	11			
4 - 84	16	0	0	1	2	13			
5-84	23	0	2	. 1	3	17			
6 - 84	23	1	1	2	. 0	19			
7 - 84	6	0	0	0	0	6			
8-84	16	0	0	1	2	13			
9-84	_	-	-	-	-				
10 - 84	23	0	0	2	5	16			
11 - 84	24	0	0	3	5	16			
12 - 84	26	0	1	2	7	16			
1 - 85	9	0	0	0	1	. 8			
2 - 85	.15	0	0	4	1	10			

Cuadro 2

2004

mes v año	nº de días	nº de días con determinadas velocidades máximas en una de las tres observaciones diarias						
	del SE	60 Km/h.	59 - 40 Km/h.	39 - 30 Km/h.	29 - 20 Km/h.	Menos de 20 Km/h		
3 - 84	5	0	0	0	2	3		
4 - 84	8	0	0	0	0	8		
5 - 84	15	0	0	0	3	12		
6 - 84	11	0	1	0	1	9		
7 - 84	12	0	0	0	1	11		
8 - 84	7	0	0	0	0	7		
9-84	_	-	-	_		_		
10 - 84	6	0	0	0	2	4		
11 - 84	7	0	0	0	0	7		
12 - 84	5	0	0	1	0	4		
1 - 85	13	0	0	0	3	10		
2 - 85	10	0	0	2	1	7		

© Universidad de Las Palmas de Gran Canaria.Biblioleca Universitaria. Memoria Digital de Canar

ias, 2004

- 17 -

Cuadro 3

mes v año	n ⁹ de días	n" de días con determinadas velocidades máximas en una de las tres observaciones diarias						
ines y ano	del W 60 Km/h. 59 - 40 Km/h. 39 - 30 Km/h.		39 - 30 Km/h.	29 - 20 Km/h.	Menos de 20 Km/h			
3 - 84	23	0	2	4	-4	13		
4 - 84	24	0	1	7	5	11		
5 - 84	15	0	1	2	5	7		
6 - 84	27	0	0	1	6	20		
7 — 84	30	0	0	0	2	28		
8 - 84	27	0	0	0	5	22		
9-84		-	-		-	-		
10 - 84	19	0	0	0	1	17		
11 - 84	15	0	2	2	1	15		
12 — 84	14	0	1	2	3	8		
1 – 85	19	0	3	2	1	13		
2 - 85	17	0	3	1	4	9		

Universidad de Las Palmas de Gran Canaria.Biblioteca Universitaria. Memoria Digital de Canarias, 2004

Cuadro 4

- 18 -

ESCALAS DEL VIENTO

	ESCALA STANDA	ARD
Km/h.	Fuerza o grado	denominación
0 - 20	0 - 3	vientos flojos
20 - 40	4 - 5	vientos moderados
40 - 60	6 - 7	vientos fuertes
> 60	8	Vientos muy fuertes
0 - 1 1 - 5	0 1	Calma ventolina
0- 1	0	Calma
1- 5	1	ventolina
6-11	2	flojito o brisa ligera
12 - 19	3	flojo o brisa débil
20 - 28	4	bonancible o brisa moderada
29 - 38	5	fresquito o brisa fuerte
20 40	6	fresco o viento fuerte
39 - 49	7	frescachón o viento recio
39 - 49 50 - 61	8	temporal o viento duro
50 - 61 62 - 74		
50 - 61 62 - 74 75 - 88	9	temporal fuerte
50 - 61 62 - 74 75 - 88 89 - 102	9 10	temporal fuerte temporal muy duro
39 - 49 50 - 61 62 - 74 75 - 88 89 - 102 103 - 117	9 10 11	temporal fuerte temporal muy duro temporal muy seco

Cuadro 5

DISCUSIONES

Dado que las observaciones, y hasta ahora únicamente diurnas, se toman desde hace un año en esta zona de la Isla, las discusiones referentes a los condicionantes eólicos, en la dinámica dunar, son muy provisionales, sólamente orientativas. Dicho de otra forma: las medidas carecen de representatividad estadística.

Sin embargo, se pueden obtener unas primeras inferencias, interpretaciones y formulaciones:

1.- El campo de dunas de Maspalomas está afectado por tres tipos de vientos:

- a) vientos de componente NE: de 360 º a 90 º, ambos inclusive.
- b) vientos del S SE: de 91º a 180º, ambos inclusive. Y
- c) vientos del W: de 181º 350º, ambos inclusive.
- 2.- Los vientos del NE corresponden a unos alisios ligeramente desviados hacia su derecha (vientos del NE - E), por el obstáculo que representa el macizo montañoso central y las brisas marinas.

Las características diurnas de estos vientos se resumen como sigue:

- humedad relativa: entre 61% y 91%;
- velocidades máximas: normalmente son inferiores a los 20 Km/h
 (vientos flojos según las escala standard). Excepcionalmente se supera los 60 Km/h. (vientos muy fuertes);
- media mensual de días en los que soplan los alisios, total o parcialmente: 20;
- frecuencia mensual en relación con los restantes vientos: hasta un 65%. La frecuencia mensual media se acerca al 31%. Parece que existe una relación directa entre frecuencia y velocidades máximas, con más altos valores, que pueden llegar a los 60 Km/h (vientos fuertes según la escala standard).
- 3. Los vientos del S SE corresponden a una brisa marina. Aquí quedan solapadas las situaciones, en superficie, del E y/o del S.

Características diurnas:

- humedad relativa: entre 51% y88%.
- Velocidades máximas: normalmente son inferiores a los 20 Km/h (vientos flojos según la escala standard);
- media mensual de días, en los que soplan estos vientos, total o parcialmente: 9;
- frecuencia mensual en relación con los restantes vientos; hasta un 28%. La frecuencia mensual media se acerca al 15%.

4. – Los vientos del W definen una brisa marina, que puede evolucionar a una anómala brisa terrestre.

Características diurnas:

- humedad relativa: entre 61% y 91%;
- velocidades máximas: normalmente son inferiores a los 20 Km/h (vientos flojos según la escala standard). Los vientos con velocidades entre 20 y 40 Km/h (vientos moderados) aquí toman una cierta importancia. Se puede llegar hasta velocidades de 60 Km/h (vientos fuertes);
- media mensual de días, en los que soplan estos vientos, total o parcialmente: 22
- frecuencia mensual en relación con los restantes vientos: hasta un 89% (mes de Julio). La frecuencia mensual media se acerca al 49%.

5.- La zona de Maspalomas se encuentra rodeada de mar por el E., S. y W. Por ello, cuando está recalentada (a partir del mediodía, y sobretodo en verano), se encuentra sometida a dos brisas marinas. La del SE y la del SW - W.

La brisa del SE estaría debilitada y/o desviada por los alisios (mutua influencia), en el caso de que existan estos últimos vientos, mientras que con la brisa del W no se dan estas circunstancias, por la topografía insular, sino todo lo contrario: su penetración tierra adentro queda favorecida por la componente ascensional del aire caliente terrestre, como lo confirma las identificaciones de pequeños tornados de verano en la zona.

Los vientos del W barrerán toda la zona, con una preponderancia diurna muy fuerte, e incluso podrían llegar de nuevo al mar por el SE, formando una peculiar brisa terrestre, a unas horas en las que debería haber una brisa marina.

Los estadillos meteorológicos adjuntos verifican las anteriores deducciones.

6.— El control diurno de las condiciones eólicas no es suficiente para el estudio de las dunas de Maspalomas, esencialmente porque las brisas (vientos del W y del S - SE), anulan en gran parte a los alisios diurnos, cuando estos últimos no son muy fuertes. Ejemplo: en el mes de julio se caldea al máximo la zona.

Entonces, las brisas alcanzan las máximas preponderancias y hacen que pasen desapercibidos los alisios diurnos, precisamente en uno de los meses en los que se desarrollan con más dominancia. Por el contrario, en los meses de menos caldeo de la zona, sea el caso de Diciembre, las brisas pierden relativa preponderancia, y los alisios diurnos se acentúan más, aunque coincidan con la época en la que normalmente decaen estos vientos (el anticiclón de Las Azores suele ser sustituido en casi un 50% por otras situaciones en los mapas climatológicos de superficie).

Por todo lo anterior, en los estadillos no queda reflejada, en su totalidad, la dominancia de los alísios inferiores, y la evolución de éstos, en un ciclo anual.

Como en la dinámica dunar de este campo juegan un papel fundamental los alisios, resulta imprescindible llevar el control nocturno de los vientos.

7.– Los alisios, seguidos por las brisas del SE, condicionarían la dinámica normal de las dunas. Las geometrías de las formas sedimentarias serían respuestas a esos condicionantes eólicos. Así, se deberían identificar en el campo formas explicables tanto por vientos del NE como por los del SE. De acuerdo con la frecuencia de estos dos tipos de vientos (las velocidades se las puede considerar equiparadas), las formas controladas por los alisios predominarán. La descripción del campo ratifica la deducción.

Los vientos del W van a determinar dinámicas de retroceso, que conllevan a unas transitorias huellas o modificaciones geométricas. Efectivamente, en las campañas de campo, después o durante fuertes vientos del W, se identifican esas anómalas geometrías. Por la frecuencia de estos vientos, los retrocesos tendrían lugar preferentemente en los meses de verano.

Estos postulados se verifican, y/o son congruentes con las deducciones obtenidas en los análisis de la dinámica sedimentaria.

DESCRIPCIONES DEL CAMPO DE DUNAS

TIPOS DE DUNAS Y SUS PECULIARIDADES GEOMETRICAS.

Maspalomas se clasifica y denomina como un campo de dunas actuales y efímeras, de litoral y, mayoritariamente, maduras.

Las que dan identidad al campo corresponden a cuatro tipos:

- 1.- dunas transversales del NE,
- 2.- dunas transversales del SE,
- 3. dunas tipo barjan del NE y
- 4. dunas tipo barjan del SE.

En este conjunto de dunas, el buzamiento medio de sotavento da un valor de $22,11^{\circ} + 1,13^{\circ}$, para un nivel de confianza del 95%. Para la ladera de barlovento, el buzamiento medio toma un valor de $13^{\circ}8^{\circ}$, pero ahora se refiere a una representación de los diferentes tipos de dunas.

Estas dunas, principalmente las transversales del NE, durante e inmediatamente después de moderados o fuertes vientos del W, suelen presentar, en la parte superior de la ladera "normal" de barlovento, un tramo anómalo, de unos dos metros de altura y con una pendiente media de 26, 3º. Los tramos anómalos representan a transitorias e incipientes laderas de sotavento para los vientos del W. En realidad indican esporádicas tendencias de retroceso de los depósitos de arena.

Figura 4

Las dunas transversales alcanzan dimensiones longitudinales de hasta varios cientos de m.

Las alturas se calculan fácilmente por trigonometría. Sólo se precisa conocer el buzamiento y la longitud de una de las laderas, según la dirección del plano de simetría. Como la ladera de sotavento se delimita con más precisión, se suele tomar ésta para las determinaciones altimétricas.

En Maspalomas, las dunas describen crecimientos en altura desde el NE hacia el SW. Pero por el transporte secundario, debido a vientos distintos a los alisios, este sentido del crecimiento se inflexiona hacia el N, en la franja central del campo.

Las deducciones se obtienen analizando las alturas de los depósitos según criterios estadísticos, a partir de las observaciones de todas y cada una de las dunas (campaña de Enero de 1.985). Los valores más resolutivos de la tendencia descrita corresponden a las medias estadísticas de las dunas transversales. En las inferencias estadísticas se trabaja con un nivel de confianza del 95%.

Como las dunas son mayores en el sentido de avance, estos parámetros de crecimiento en alturas están describiendo realmente aspectos de la dinámica sedimentaria.

En general, y por sectores, las dunas transversales alcanzan mayores alturas que las del tipo barjan. La dedución se obtiene de un contraste de datos. Este comportamiento resulta coherente con las cuantias de aportes de arenas asociadas a estos tipos de dunas, buenos suministros para las transversales y mediocres para las barjanes.

Las formas, en su conjunto, definen un campo de dunas menores: la media estadística da solamente un valor de $4,90 \pm 0,49$ m.,aunque se alcancen

valores próximos a los 18 m., para dunas transversales del NE.

anchura = $b_1 + b_2 = L\cos \propto +L^{\circ}\cos \propto ^{\circ}$

Las estimaciones de las anchuras en las dunas también se obtienen por cálculos trigonométricos:

Figura 6

Para las dunas transversales de la franja central (las más desarrolladas), las anchuras pueden rebasar los 70°24m.

Otras identificaciones dunares en el campo de Maspalomas serían:

1.- Dunas en dorso de ballena. Se localizan entre formas transversales del NE, que parcialmente las fosilizan. Se las puede considerar como casos particulares de dunas transversales del SE.

2. – Dunas menores y fijas en tronco de cono. Están relacionadas con la vegetación.

3. – Pequeñas dunas juveniles de sotavento, localizables en las depresiones denominadas "Hoyas".

Las dunas próximas al escarpe de la llanura aluvial, en el borde septentrional del sector NE del campo, podrían clasificarse como "dunas de eco". Los depósitos de arenas que se apoyan en el escarpe ya definen dunas de barlovento. En las playas periféricas del campo de dunas, se identifican uno "pasillos de sombra eólica", determinados por los obstáculos (chiringuitos) a los vientos dominates. Morfológicamente recuerdan a pequeños "gassi", aunque aquí tienen un significado diferente. Alcanzan hasta 100 m. de longitud por 10 m. de anchura. Existen (en 1.985) unos 8 pasillos, ubicados todos ellos en la Playa del Inglés.

Los pasillos traducen la componete promedio de los vientos dominantes, después de haber transcurrrido un largo período de tiempo (la medida tendría un valor estadístico). Esta componente oscila alrededor de la dirección N 67º E.

La no existencia de pasillos de sombra eólica de componente SE, tanto en la playa del Inglés como en la de Maspalomas, confirma la preponderancia de los alisios sobre las brisas marinas.

- ② Dunas tipo "barjan" formadas por vientos dominantes de componente NE.
- ③ Dunas, relativamente minoritarias, tipo "barjan" formadas por vientos de componente SE.
- ④ Dunas en cresta de gallo que podrían haber estado representadas en el campo de dunas, aunque no sea éste el caso. Corresponderían a la acción conjunta de los vientos del NE y SE.
- (5) Dunas transversales formadas por los vientos de componente SE. También tienen tendencia a transformarse en "dunas en S".

Figura 7

©Universidad de Las Palmas de Gran Canaria.Biblioteca Universitaria. Memoria Digital de Canarias.

2004

Figura 8

localización en el čampo TIPO DE DUNA	NE		SE		FRANJA CENTRAL		SW	
	altura media en m.	altura máxima en m.	altura media en m.	altura máxima en m.	altura media en m.	altura máxima en m.	altura media en m.	altura máxima en m.
BARJAN	2·70 ±0·46	5`45	-	-	5.45	8-22	7•77	9*4()
TRANSVERSAL	3.61 ±0.59	8*93	418 ±074	10.81	17 ` 84 <u>+</u> 1`36	17.84	6°73 ±1°01	13`46
ALTURA MED	IA DE L	AS DUN	AS EN S	U CONJI	JNTO: 4	`9() + () *49) m.	

Cuadro 6

ALTURAS DE LAS DUNAS DE MASPALOMAS

(Enero - 1.985)

de Canarias, 2004

gital

lad de Las

Figura 9

FOTOGEOLOGIA

Las descripciones y deducciones fotogeológicas del campo de dunas de Maspalomas, y de su más próximo entorno, se obtienen a partir de una colección de 23 fotografías en blanco y negro, a escala 1: 5000. Estas corresponden al vuelo 1/7000, realizado en Marzo de 1.977.

Se han representado en croquis los diferentes tipos de dunas, en conjunto y por separado.

A partir de la cartografía de la totalidad de dunas, se han estimado los porcentajes, válidos para 1.977, de las formas geométricas representadas en el campo. Estos datos quedan recopilados en el siguiente cuadro:

tipo de duna	nº de dunas	%	
transversal del NE	109	56'77	
barjan del NE	54	28'12	
transversal del SE	15	7'81	
barjan del SE	11	5'56	
en cresta de gallo	3	1'56	
TOTALES	192	99'99	

CUADRO 7 PORCENTAJES DE LOS DIFERENTES TIPOS DE DUNAS EN 1.977

Se deduce que las dunas transversales del NE representan una mayoría absoluta. La suma de porcentajes correspondientes a las transversales y barjanes del NE llega al 84'89%. Esto está traduciendo unos abundantes suministros de arenas, preferentemente desde la Playa del Inglés, o dicho de otra forma, que las dunas avanzan, a partir de buenos aportes sedimentarios, desde esa playa.
Las cartografías de las diferentes dunas por separado fueron cuadriculadas. La malla estaba formada por cuadrados de 150 m. de lado. Se calcularon los porcentajes de dunas en cada área unidad y, con estos porcentajes, se levantaron unas insolíneas (isoporcentajes).

Las isolíneas de las transversales del NE definen claramente un frente de máximos porcentajes a lo largo de la Playa del Inglés. La distribución porcentual permite atribuir a esa playa la fuente principal de suministros de arena.

Las isolíneas de los barjanes del NE describen que estas formas, de aportes mediocres, se encuentran preferentemente bordeando el campo y en el sector NE del mismo. Se podrían interpretar estas distribuciones de la siguiente manera:

a) Los buenos suministros de arena, deducidos a partir de las dunas transversales, se inician desde la playa como aportes reducidos, pero la constancia de estos aportes equivaldría a unas importantes disponibilidades.

b) En el sector NE del campo, por el efecto pantalla de la llanura aluvial, se debilitan los vientos dominantes (los alisios), con lo que quedarían incapaeitados para transportar cantidades suficientes de arena, para dar abundantes dunas transversales bien desarrolladas. Estas se sustituyen, en parte, por barjanes.

Las isolíneas de las dunas transversales del SE apuntan hacia una distribución de formas según dos pautas:

a) una distribución periférica y

b) mayores concentraciones hacía el NE.

En efecto: las brisas marinas se dejan sentir, sobretodo, en la periferia del campo y en donde los alisios están debilitados por la pantalla de la llanura aluvial, desrrollándose dunas condicionadas por estos vientos. En estas zonas, los vientos del SE disponen de buenos suministros de arena (ya incorporados en el campo), y de aquí que determinen formas transversales.

Las isolíneas de los barjanes del SE definen una distribución en dos núcleos, según el eje longitudinal del campo (NE - SW). La distribución, en un frente perpendicular a las brisas marinas, de estas formas de suministros mediocres, se explica mediante un decaimiento de la acción dinámica de los vientos del SE hacía el interior del campo. Aunque haya abundantes arenas depositadas, las brisas no tienen la suficiente constancia o energía como para un abundante transporte, por los obstáculos de las formas sedimentarias más perífericas. El resultado dinámico se asemejaría a disponibilidades reducidas de aportes sedimentarios, en el interior del complejo dunar, para los vientos del SE.

Playa de Maspalomas

Figura 10

Figura 11

2004

Figura 12

ias, 2004

de

Figura 14

Figura 15

Figura 16

© Universidad de Las Palmas de Gran Canaria.Biblioteca Universitaria. Memoria Digital de Canarias, 2004

Universidad de Las Palmas de Gran Canaria.Biblioteca Universitaria. Memoria Digital de Canarias, 2004

Figura 17

Figura 18

Playa de Maspalomas

Figura 19

rias, 2004

Figura 20

Figura 21

Canarias, 2004

ę

sidad de

© Unive

Figura 22

Figura 23

2004

0 D

Figura 24

DISTRIBUCION DE LAS FORMAS SEDIMENTARIAS

En la proyección estereográfica de las dunas, se consideran dos parámetros: la dirección del plano de simetría de la forma sedimentaria y el buzamiento de sotavento.

DISCUSIONES

- 1.– Los máximos porcentajes de dunas están limitados por las direcciones: N45 ° E y N 110 ° S.
- 2.– Aunque las direcciones extremas corresponden a: N 28 ° E y N 170 ° S.

3.- Las dunas del NE y las del SE no se encuentran agrupadas por separado, sino formando un conjunto continuo, con un núcleo de máximo porcentaje, que define la dirección N 81º E. Esto se interpreta admitiendo que hay dunas controladas por vientos del NE, otras por el viento del SE y la mayoría por los dos vientos.

La dirección N 81º E está precisamente traduciendo lo que sería una resultante de los dos vientos dominantes de la zona: vientos del NE y vientos del SE. Pero como predominan, en principio, los vientos del NE, la resultante está ligeramente dentro de ese cuadrante. Otra interpretación consideraría que los denominados vientos del NE son realmente del NE - E, pero el estudio de los pasillos de sombra eólica de la Playa del Inglés invalida esta última interpretación.

4.– De acuerdo con todo lo anterior, resultaría impropio distinguir entre dunas del NE y dunas del SE. Sin embargo, mantenemos esta diferenciación por motivos didácticos.

5.— Estas orientaciones de los planos de simetría de las formas dunares, y habiéndose deducido, por otros criterios, que los aportes sedimentarios proceden fundamentalmente desde la Playa del Inglés, determinan que los vientos del SE juegan su papel principal en unos transportes secundarios, una vez que las arenas están en el campo. Los transportes secundarios quedan reflejados en la geometría de las dunas mayoritarias: formas controladas por los dos tipos de vientos codominantes.

6.- La mayoría de las dunas tienen pendientes de sotavento de unos 23° hacia el SW, W o NW.

Figura 26

ESTRATIGRAFIA - SEDIMENTOLOGIA

CLASIFICACION Y NOMENCLATURA GRANULOMETRICA DE LOS DETRITOS DE LAS DUNAS

Los depósitos han sido clasificados y denominados de acuerdo con criterios granulométricos. Para ello, se han utilizado los parámetros Q_1 y Q_2 y se han aplicado los cuadros de Niggli - Pettijohn (1.957) y de Martínez (1.984).

Casi en su totalidad, los depósitos están formados por arenas finas, tanto en barlovento como en sotavento, independientemente del tipo de duna, localización y condiciones eólicas. Los casos extremos son arenas medias con arenas finas, y pertenecen a laderas de barlovento en formas del NE, de la zona oriental del campo, muestreadas bajo condiciones de alisios. Estas excepcionalidades eran de esperar por la dinámica dunar.

Condiciones eólicas del NE

de Canarias, 2004

idad de Las

© Univ

	tipo de duna	situación	barlovento			sotavento				
muestra		en el croquis	Q ₁	Q ₂	Q ₃	clasificación y nomenclatura	Q ₁	Q ₂	Q ₃	clasificación y nomenclatura
1A	barjan NE	NE	0'19	0'161	0'14	arenasfinas	0.175	0.155	0'143	arenas finas
2A	transversal NE	NE	0.148	0.225	0.210	arenas finas	0,185	0.185	0.141	arenas finas
3A	barjan NE	NE	0.201	0.177	0°155	arenasfinas	0 [.] 192	0.192	0.148	arenas finas
4A	transversal NE	SE	0.300	0.235	0°189	arenas media arenas finas	0.235	0.235	0.165	arenasfinas
5A	transversal SE	SE	0.215	0.78	0.155	arenas finas	0.20	0.20	0.12	arenas finas
6A	barjan NE	SE	0.220	0.245	0.220	arenas media arenas finas	0.225	0.225	0 [.] 158	arenas finas
7A	transversal NE	SE	0.21	0.18	0.158	arenas finas	0.20	0.20	0°157	arenas finas
1B	barjan E	SW	0.215	0.18	0.16	arenas finas	0.205	0.205	0.15	arenas finas
2B	transversal NE	SW	0.225	0.18	0.159	arenasfinas	0.207	0°207	0.155	arenas finas
3B	barjan SE	SW	0.20	0.17	0.15	arenas finas	0.212	0.212	0.157	arenasfinas

CAMPAÑA DEL 6/10/84

Cuadro 8

Condiciones eólicas del W

rias, 2004

å

de

	tipo de duna	situación	barlovento			sotavento				
muestra		en el croquis	Q	Q <u>_</u>	Q ₃	clasificación y nomenclatura	Q	Q ₂	Q ₃	clasificación y nomenclatura
1A	transversal NE	NE	0.195	0.12	0.148	arenas finas	0.195	0.12	0.149	arenas finas
2A	barjan NE	NE	0.181	0.152	0 [.] 145	arenas finas	0.185	0.174	0.148	arenas finas
3A	transversal SE	NE	0.192	0.169	0.142	arenas finas	0.185	0.162	0.142	arenas finas
4A	transversal NE	SE	0.18	0 [.] 165	0.14	arenas finas	0.191	0.12	0.148	arenas finas
5A	transversal SE	SE	0.18	0 [.] 165	0.145	arenas finas	0.182	0.166	0.146	arenas finas
1B	barjan E	SW	0 [.] 198	0.172	0 [.] 152	arenas finas	0.186	0.162	0.147	arenas finas
2B	transversal NE	SW	0.185	0.18	0.16	arenas finas	0.197	0.180	0.165	arenas finas
3B	barjan SE	SW	0.20	0.174	0 [.] 15	arenas finas	0.222	0.18	0 [.] 158	arenas finas
4B	barjan SE	SW	0.208	0.176	0.152	arenas finas	0.19	0.166	0.15	arenas finas
1C	transversal E	CENTRO	0.19	0.163	0.14	arenas finas	0.184	0.164	0.145	arenas finas
2C	transversal SE	CENTRO	0.202	0.171	0.149	arenas finas	0.208	0.179	0.198	arenas finas
3C	transversal NE	CENTRO	0.185	0.17	0.149	arenas finas	0.201	0.175	0.155	arenas finas
4C	transversal SE	CENTRO	-	-	-	-	0.18	0.167	0.148	arenas finas

CAMPAÑA DEL 10/11/84

Cuadro 9

©Universidad de Las Palmas de Gran Canaria.Biblioteca Universitaria. Memoria Digital de Canarias, 2004

PARAMETROS MORFOSCOPICOS-GRANULOMETRICOS

A falta de unos parámetros morfoscópicos, válidos para arenas fonolíticas, (arenas de las dunas de Maspalomas), en las que están ausentes los componentes cuarcíferos, se desarrollan unos índices mixtos (morfoscópicos - granulométricos) en función de esas arenas previamente descarbonatadas.

Los parámetros a definir se obtienen a partir de curvas semilogarítmicas acumulativas, de las texturas morfoscópicas observadas. Las abscisas hacen referencia a los diámetros de las arenas y las ordenadas a las características texturales.

Los parámetros miden los diámetros correspondientes al 50% acumulativo, de los granos de las distintas fracciones granulométricas, observados de acuerdo con las características indicadas por las siglas de los mismos.

En general, estas siglas constarán de tres letras y un número: la primera letra hará referencia al indice de color de los granos (leucocratos o melanocratos), la segunda letra a la textura geométrica (redondeamiento, esfericidad o ambas cosas a la vez), la tercera al aspecto superficial (brillante, mate, o también ambas cosas a la vez), y el número a la escala de Krumbein (1.963) multiplicado por 10.

- M = melanocrato
- L = Leucocrato
- r = redondeamiento
- e = esfericidad
- I = redondeamiento y esfericidad
- b = brillante
- m = mate
- t = indistintamente brillante o mate
- 5 \geq 0'5 en la escala de Krumbein (1.963)
- $8 \ge 0$ '8 en la escala de Krumbein (1.983)

CARTA PARA LA ESTIMACION VISUAL

DEL REDONDEAMIENTO - ESFERICIDAD EN LAS

ARENAS

Redondeamiento

Krumbein - Sloss (1.963)

Figura 27

esfericidad

TABLAS DE DATOS

MUESTRA 1B BARLOVENTO								
Du	nas de Maspalor	mas	Fecha: 6/10/84					
Nº da	Melanocratos	loc: 500	Leucocratos					
14-, uc	granosouservae	103, 500						
Parámetro	granos contabilizados	valor en mm.	Parámetro	granos contabilizados	valor en mm.			
Mrm5	5	-	Lrm5	26	0.273			
Mrm8	4	-	Lrm8	3	-			
Mrb5	344	0'227	Lrb5	326	0'268			
Mrb8	57	0'266	Lrb8	62	0'235			
Mrt5	352	0°229	Lrt5	352	0'26			
Mrt8	60	0°262	Lrt8	64	0'270			
Mem5	6		Lem5	26	0'274			
Mem8	4	-	Lem8	4	0'229			
Meb5	411	0'22	Leb5	392	0.255			
Meb8	93	0'23	Leb8	80	0'265			
Met5	413	0'22	Let5	418	0°255			
Met8	93	0.24	Let8	83	0°261			
MIm5	6	-	L1m5	20	-			
MIm8	2 .	-	LIm8	2	-			
MIb5	281	0°235	LIb5	275	0'255			
MIb8	13		LIb8	13	-			
MIb5	289	0°234	LIt5	294	0'242			
MIb8	16	-	LIt8	14	_			

Cuadro 10

MUESTRA 7A SOTAVENTO Dunas de Maspalomas							
	Melanocratos						
Nº. de granos observados: 500			Nº. de granos observados: 521				
Parámetro	granos contabilizados	valor en mm.	Parámetro	granos contabilizados	valor en mm.		
Mrm5	67	0.22	Lrm5	15	-		
Mrm8	21	-	Lrm8	2	-		
Mrb5	295	0*220	Lrb5	389	0°222		
Mrb8	38	0.183	Lrb8	89	0.233		
Mrt5	362	0.225	Lrt5	404	0.220		
Mrt8	59	0*20	Lrt8	9()	0.230		
Mem5	69	0.245	Lem5	15	-		
Mem8	7	-	Lem8	1	-		
Meb5	322	0°227	Leb5	437	0.225		
Meb8	44	0-259	Let8	74	0.235		
Met5	390	0.215	Leb5	446	0.223		
Met8	51	0.237	Let8	76	0.242		
MIm5	59	0.228	L1m5	14	-		
MIm8	2	-	LIm8	1	-		
MIb5	229	0.218	LIb5	314	0.225		
MIb8	1		LIb5	23	-		
MIt5	289	0.235	Lìt5	364	0.230		
MIt8	3	-	LIt8	24	-		

Cuadro 11

DISCUSIONES:

I.- A PARTIR DE LOS GRANOS MELANOCRATOS

1.— Para el cálculo de los parámetros morfoscópicos granulométricos, se descartan los redondeamientos y/o esfericidades mayores o iguales a 0'8, según la escala morfoscópica de Krumbein. En esos casos, los números de granos contabilizados carecen de identidad representativa.

2.- Los parámetros, con identidad representativa, hacen referencia a redondeamientos y/o esfericidades iguales o mayores a 0'5, en granos brillantes o indistintamente en brillantes y mates.

3. - En la selección de parámetros quedan eliminados los totales (indistintamente de que sean brillantes o mates), ya que los granos mates poco pueden influir en ellos por su escasa representabilidad.

4. – Los parámetros más representativos son el Mrb5 y el Meb5.

Teóricamente también lo debería ser el MIb5, que recogería a los dos anteriores. Pero esta convergencia traduciría una reducción del número de granos afectados. Hay una menor probabilidad de que, en unos mismos granos, concurran los dos rasgos texturales (rendondeamiento y esfericidad). La reducción restaría representabilidad al parámetro en cuestión. La deducción teórica se verifica consultando los cuadros de datos.

Por las consideraciones expuestas, queda excluido el parámetro MIb5 en posibles discusiones respecto a las relaciones entre ambientes sedimentarios. Sin embargo, este parámetro tiene interés en la interpretación de la dinámica dunar y, probablemente, en la interpretación de los procesos sedimentarios en playas.

5.— Para las dunas de Maspalomas, los parámetros Mrb5 y Meb5 oscilan arededor de los 0'22mm. Los valores se mantienen constantes en todo el campo.

Si se contrastan los valores de estos parámetros con los de sus homólogos para playas grancanarias, de mineralogía similar (sea el caso de Las Canteras), se infiere que los parámetros en cuestión no diferencian tipos de ambientes sedimentarios.

6. – Los valores granulométricos mayores, entre 0'25 y 0'27, corresponden a parámetros morfoscópicos para granos brillantes, tanto de redondeamientos como de esfericidades iguales o mayores a 0'8. La deducción sería explicable admitiendo que los granos mayores sufren un transporte esencialmente por reptación, mientras que en el transporte de los restantes hay componentes de suspensiones y de saltaciones (por sus menores resistencias gravimétricas). Estos últimos componentes suponen menores desgastes entre los granos (superficies menos brillantes, con unos valores de redondeamientos y esfericidades sensiblemente más bajos).

7.— Los parámetros Mrb5 y Meb5 decrecen de valor a medida que aumenta la longitud del trasporte en el campo dunar. La explicación se basa en que, en un campo de dunas, se pierde progresivamente la capacidad de transporte eólico, alcanzando los mayores recorridos, entre las arenas melanocratas de unas determinadas características, las que tengan valores granulométricos relativamente más pequeños.

Estos parámetros corroboran las deducciones en relación a las fuentes de suministro de los aportes sedimentarios y el sentido de avance de las dunas. La cartografía de los mismos describe unas migraciones congruentes con las deducciones según otros criterios: cartografías calcimétricas y de los parámetros granulométricos Q_2 , y crecimientos en altura de las formaciones sedimentarias.

II. A PARTIR DE LOS GRANOS LEUCOCRATOS

1. - Los parámetros representativos se basan en esfericidades y/o redondeamientos, de aspecto brillante, iguales o superiores a 0⁵, según la escala morfoscópica de Krumbein (1.963).

2. – Como los aspectos mates carecen de identidad representativa, quedan descartados los parámetros Lrt5, Let5 y LIt5.

3.— Después de las anteriores exclusiones, los parámetros que identificarían ambientes sedimentarios dunares, en relación con la playa o playas de alimentación, serían el Lrb5, el Leb5 y el LIb5. Pero como los rangos de estos parámetros, en un mismo campo, son muy amplios, carecen de esta identidad en las identificaciones de ambientes.

4.— Los valores de los parámetros Lrb5, Leb5 y LIb5 oscilan entre 0°27 y 0°224 mm.

5. – Que los parámetros Lrb5, Leb5 y LIb5 tengan a veces valores mayores que sus homólogos melanocráticos, se debe a que los leucocratos presentan una mayor resistencia al desgaste, necesitando transportes más intensificados para llegar a valores similares.

Para las fases mineralógicas mayoritarias de estas arenas, con durezas alrededor de 6, se especula que la resistencia al desgaste es una relación inversa a las densidades:

fase mineral	densidad
albita	2.60 - 2.65
nefelina	2'55 - 2'65
piroxeno alcalino	3'25 - 3'6
anfíbol alcalino	3- 3'4

Cuadro 12

III.- CONCLUSIONES FINALES

En definitiva, las dunas de Maspalomas tienen la suficiente dinámica como para que sus arenas alcancen desarrollos morfoscópicos mayoritarios iguales o superiores a 0'5, tanto para esfericidades como para redondeamientos, y según la escala de Krumbein (1.963). Estas morfoscopías están referidas a diámetros de 0'22 mm. para los granos melanocratos, y de 0'22 a 0'27 mm. para los granos leucocratos.

ESTRUCTURAS SEDIMENTARIAS

ESTRUCTURAS SEDIMENTARIAS PRIMARIAS EN LAS DUNAS DE MASPALOMAS

Tres son las estructuras sedimentarias primarias destacables en los depósitos eólicos:

1. – Estratificación subparalela.

2.- Estratificación cruzada (cross bedding) y

3.- Rizaduras (ripple marks).

Las dos últimas estructuras definen ambientes sedimentarios con corrientes.

Se entiende por estratificación subparalela la superposición de capas, como resultado de cambios en el proceso de sedimentación.

Las capas de minerales pesados, comunmente negros, como la magnetita, representan las deposiciones precoces de arenas transportadas por el viento. Estos minerales en un principio, estaban dispersos en los sedimentos.

La estratificación subparalela, con niveles de minerales pesados, se observa, o queda reflejada, en pequeños cortes, o en la superficie, de las laderas de las dunas.

Las deposiciones, relacionadas con remolinos, de los minerales pesados, con suerte se pueden observar en el campo de dunas de Maspalomas.

La estratificación cruzada se define como un conjunto de láminas, o de estratos, dispuestos oblícuamente a la estratificación principal.

Esta estructura está muy bien representada en ocasionales cortes de las dunas.

La interpretación genética de la estratificación cruzada se hace de acuerdo con el esquema adjunto.

Los ripple marks se definen como rizaduras asimétricas y paralelas, de longitud de onda variable y de pequeña amplitud, producidas en incoherentes materiales arenosos por el viento.

La arena, para una determinada granulometría y velocidad del viento, puede ser transportada "en saltación". En tales circunstancias, los granos, al caer, determinan ángulos de incidencia con valores muy pequeños, de unos 15 grados. Cuando ocurre la incidencia, se dará uno de los dos siguientes casos alternativos:

1) o rebotan los granos incidentes, o

2) al chocar con otros granos, ceden su energía para que estos últimos salten a su vez o repten según sus tamaños.

Estos desplazamientos a saltos, más o menos constantes, son los que originan, sobre los depósitos de arenas, las estructuras de rizaduras, cuyas alturas y espaciados dependerán de una serie de parámetros, a saber, de la:

granulometría
intensidad del viento, y
de la pendiente topográfica.

La estructura llega a desaparecer sí la velocidad del viento es muy débil, ya que los granos se desplazarían por arrastre superficial y se acumularían preferentemente en las depresiones de las rizaduras.

Las rizaduras casi siempre se observan en las laderas que hacen frente a los vientos. En éstas también suelen formarse sistemas de rizaduras de interferencia, debidas a cambios en la componente del viento.

Las morfologías y dinámicas de estas interferencias son consideradas en la "Guía de campo para el estudio de las dunas litorales".

En Maspalomas (Gran Canaria), los sistemas de interferencia suelen describir esquemas muy ilustrativos. Están condicionados por los vientos del NE (dominantes) y los del SE, y a veces por los del W.

Pero esta estructura sedimentaria no solamente se forma en depósitos eólicos de arenas, o en arenas de playas sometidas a vientos, sino también en otras acumulaciones de distinto significado, aunque la estructura tenga un origen eólico, como ocurre con los ripple marks identificables en las laderas de algunos conos piroclásticos (de Lapilli) sometidas a la acción de los vientos. Un ejemplo llamativo son las rizaduras en el picón del denominado " mar de la tranquilidad " en el Parque Nacional de Timanfaya (Lanzarote).

OTRAS ESTRUCTURAS SEDIMENTARIAS PRIMARIAS

En este campo de dunas, con frecuencia se observa:

- planos de corrimiento, y
- quillas: pequeñas acumulaciones angulosas en el sotavento de un obstáculo, como puede ser una planta o un canto.
- Ocasionalmente, y despúes de lluvias, se forman:
- efímeras grietas de desecación (mud cracks), y
- efímeras aristas en cornisas.
ESTRUCTURAS SECUNDARIAS

En las arenas cementadas por sales del sustrato, en donde quedan al descubierto, y localmente, se desarrollan unas estructuras sedimentarias secundarias. Estas recuerdan, en pequeña escala, a las formas erosivas denominadas " jordangs". Se trata de angostas crestas de erosión diferencial, de deflación eólica, orientadas según los vientos dominantes y con altitudes centimétricas.

Figura 28

1.- Escarpe de la llanura aluvial: límite septentrional del campo de dunas de Maspalomas.

2.- Formas dunares debidas a los alisios y vientos del SE.

3.- Ejemplo de estructura sedimentaria en las dunas de Maspalomas: rizaduras (ripple marks).

4.- Paleo - barras, parcialmente fosilizadas, en el campo de dunas de Maspalomas.

MINERALOGIA - PETROLOGIA

IDENTIFICACIONES DE LAS FASES MINERALOGICAS DE LAS ARENAS

En una primera fase de identificaciones mineralógicas (Abril de 1.985), se optó por el método difractométrico de R.X. Se trabajó con un equipo de la casa Philips, del Departamento de Mineralogía de la Universidad de Granada, compuesto por:

- un generador de rayos PW 1.730
- una cabina del tubo PW 1.316 90
- un goniómetro PW 1.050/81
- un control del difractómetro PW 1.750 y
- un registrador PM 8.203

Los diagramas de muestras en polvo se obtuvieron con las siguientes condiciones de operatividad (programa 24 - Enero 1.984):

- radiaciones Cuk 🗸
- velocidad de barrido: 6º por minuto
- velocidad del papel: 10 mm. por grado
- constante de tiempo: 0'5
- sensibilidad: 5:103
- zona de exploración: de 2°5 a 63º

En todos los diagramas, sistemáticamente se identifican albita, nefelina, piroxeno alcalino, anfíbol alcalino, calcita y aragonito.

Otras fases, como hematites, espinela y cristobalita de alta temperatura (cuarzo secundario), se encuentran como indicios y no en todas las muestras.

DISCUSIONES:

La calcita y el aragonito se interpretan como fase de los componentes bioclásticos de las arenas.

A partir de las identificaciones de las fases mineralógicas características en los basaltos, traquitas y fonolitas grancanarias, sin necesidad de observaciones ópticas de fragmentos de roca se pueden deducir las rocas de procedencia de las arenas que se depositan en las playas y dunas litorales de la Isla.

De acuerdo con el cuadro de composiciones mineralógicas para las distintas rocas citadas, se infiere otro para las identificaciones de las naturalezas petrológicas de las arenas.

Según este último, se deduce que las arenas de las dunas de Maspalomas son fundamentalmente fonolíticas, aunque, en principio, no cabe descartar componentes traquíticos.

En realidad, las arenas traquíticas están ausentes. A ello se llega si se considera:

1.- que los aportes sedimentarios proceden principalmente de la Playa del Inglés, y

2. – que en esa playa, los procesos sedimentarios están relacionados con corrientes de alimentación (feeder currents), que tienen unos componentes del NE, conforme con el seguimiento de los procesos sedimentarios del litoral, que lleva a cabo este laboratorio de Geología, del C.U.S. de Ciencias del Mar. La litología litoral delimitante de la playa, y al N. de la misma, no es traquítica. Además, los aportes continentales traquíticos al mar, por los barrancos próximos, carecen de importancia, debido a las características climatológicas de la región.

basaltos	traquitas	fonolitas				
Plag Na - Ca () (feldespato K) olivino () augita egirínica () (hornblenda) (biotita) (apatito) (analcima) (chabacita) menas metálicas	feldespatos alcalinos augita egirínica () (anfíbol alcalino) cuarzo secundario () (biotita) (esfena) (apatito) menas metálicas	feldespatos alcalinos nefelina (hauyna) egirina (anfíbol alcalino) (esfena) menas metálicas				
Los feldespatos alcalinos incluyen la albita.						

Los minerales entre paréntesis solamente se identifican ocasionalmente en las rocas de una misma familia.

Si el paréntesis sigue al término, la especie se encuentra en la mayoría de los casos, pero no en todos.

Cuadro 13

Mineralogía de las rocas que podrían contribuir a la formación de arenas que se depositan en las playas y dunas litorales grancanarias. Datos obtenidos de Fúster (1.968) y Martínez (1.982).

IDENTIFICACIONES DE LAS NATURALEZAS PETROLOGICAS DE LAS ARENAS

2004

arenas basálticas	arenas traquíticas	arenas fonolíticas (y traquíticas)	arenas basálticas y traquíticas	arenas basálticas y fonolíticas (y traquíticas)
Presentes:	Presentes:	Presentes:	Presentes:	Presentes:
plag Na-Ca	albita	albita	plag Na-Ca	plag Na-Ca
(olivino)		feldespatoides	albita	albita
			(olivino)	feldespatoides
Ausentes:	Ausentes:	Ausentes:	Ausentes:	(olivino)
albita	plag Na-Ca	plag Na-Ca	feldespatoides	
feldespatoides	feldespatoides	olivino		
	olivino			
ļ				

Cuadro 14

IDENTIFICACIONES POR R.X. DE LAS FASES MINERALOGICAS

DISCRIMINATORIAS EN LAS DUNAS DE MASPALOMAS

Muestra	fecha	plag Na - Ca	albita	nefelina	hocuyna	olivino
6A sotavento	6/10/84		X	X		
6A barlovento	6/10/84		X	x		
[B sotavento	6/10/84		x	x		
IB barlovento	6/10/84		x	x		

Cuadro 15

OBSERVACIONES

Las plagioclasas sódico - cálcicas se diferencian de la albita, en análisis por difracción de R.X., en que las intensidades de las reflexiones (202) y (002) - (042) se invierten. En el primer caso, la intensidad para los índices (202) es mayor que para los índices (002) - (042). Pero si las muestras no se descarbonatan previamente y hay aragonito, como suele ocurrir en las arenas de las playas y dunas litorales, un pico intenso de este mineral está muy próximo al de la reflexión (202) de la albita y puede que este último se refuerce, aparentando más intensidad en relación con el pico de la reflexión (002) - (042). Esto induciría a identificar erróneamente plagioclasa Na - Ca.

Cuando en una misma muestra de arenas hay plagioclasas Na - Ca y albita (arenas basálticas, fonolíticas y/o tranquíticas), las plagioclasas sódico - cálcicas podrían pasar desapercibidas, y viceversa para pequeñas proporciones de albita, en las identificaciones por R.X. De aquí se desprende la importancia que en ocasiones tiene el olivino, que normalmente se encuentra en las rocas basálticas, y los feldespatoides, siempre presentes en las rocas fonolíticas, para determinar la naturaleza petrológica de las arenas.

Figura 29

CALCIMETRIAS

Los contenidos en carbonatos se han evaluado a partir de análisis con el calcímetro standard de Bernard (método volumétrico). Se analizaron muestras globales de las distintas zonas del campo, correspondientes tanto a barlovento como a sotavento. De esta manera, se encuentran representados los distintos valores granulométricos de las arenas dunares de Maspalomas. En cambio, para los análisis de las fracciones, procedentes de las tamizaciones, se seleccionaron las muestras de una duna ubicada en la zona central.

TABLA DE DATOS RELACIONES ENTRE PORCENTAJES DE CARBONATOS EN MUESTRAS GLOBALES Y LOS PARAMETROS Q_2

CAMPAÑA DEL 6/10/84 CONDICIONES EOLICAS: ALISIOS

duna	barlovento		sotavento		MEDIAS	
duna	%CO ₃ Ca (y)	Q ₂	%CO ₃ Ca (y)	Q2	%CO ₃ 3 Ca	Q ₂
IA	37-41	0.161	37.20	0 [.] 155	37*30	0.128
2A	40*04	0.225	40.39	0.162	40°21	0.1935
3A	46.64	0.122	38:35	0.169	42'49	0.173
4 A	68:52	0.235	60.10	0.19	64.31	0.212
5A	53:84	0.18	55'06	0.123	54'45	0*1765
6A	59.43	0.245	55:01	0.18	57•22	0'212
7A	47.32	0.18	48`81	0.175	48*06	0.177
IB	51.34	0.18	38'47	0.17	44 ` 90	0'175
2B	47:57	0.189	44.46	0.179	46'01	0.184
3В	50.24	0.17	47`73	0.18	48'98	0.175
valores medios	50.23	0.194	46.26	0.173	48`39	0.183

Cuadro 16

MUESTRA 7A BARLOVENTO CAMPAÑA DEL 6/10/84

x fracción en mm.	y %carbonatos
0'30	86'20
0'25	78'62
0'20	55'25
0'15	53'30
0'10	22'65
0'06	3'89

Cuadro 17

MUESTRA 7A SOTAVENTO CAMPAÑA DEL 6/10/84

0'30	79'52
0'25	81'79
0'20	71'21
0'15	69'98
0'10	25'92
0'06	4'65

Cuadro 18

RELACIONES ENTRE LOS % DE CARBONATOS Y LOS VALORES GRANULOMETRICOS

Tipo de ecuación	Muestras globales barlovento + sotavento	Muestras globales barlovento	Muestras globales sotavento	Fracciones muestra 7A barlovento + sotavento	Fracciones muestra 7A barlovento	Fracciones muestra 7 A sotavento
y= a+ b×	a= 8.88	a=16'04	a= 66'17	a= -5'26	a=-10°17	a=-0.36
regresion	b= 215.08	b=176'07	b= 650'47	b= 328'37	b=340°51	b=316.24
lineal	c.c= 0.60	c.c=0'58	c.c= 0'80	c.c= 0'93	c.c=0°97	c.c=0.89
y= a+ bln ×	a= 122'84	a= 109'03	a= 157'06	a=148'96	a= 146'91	a= 151'02
regresión	b= 43'75	b= 35'66	b= 63'93	b=51'48	b= 51'86	b= 51'11
logarítmica	c.c= 0'62	c.c= 0'58	c.c= 0'72	c.c=0'97	c.c= 0'99	c.c= 0'96
lny= lna+ b×	a=3'10	a= 3 ² 8	a = 1.41	a=1'73	a= 1.58	a=1.88
regresión	b=4'18	b= 3 ² 2	b = 13.94	b=10'94	b= 11.12	b=10.16
exponencial	c.c=0'57	c.c= 0 ⁵ 4	c.c = 0.80	c.c=0'84	c.c= 0.86	c.c=0.81
lny= lna+ bln ×	a= 5'32	a=4'98	a= 7'99	a=6'97	a= 6'99	a= 6'91
regresión de	b= 0'86	b=0'65	b= 2'38	b=1'78	b= 1'84	b= 1'73
potencia	c.c= 0'59	c.c=0'54	c.c= 0'80	c.c=0'92	c.c= 0'95	c.c= 0'92

Cuadro 19

c.c= coeficiente de correlación

x = valores granulométricos y = % carbonatos

DISCUSIONES:

Con los datos de laboratorio referentes a muestras tomadas en la campaña del 6/10/84, se obtienen las siguientes deducciones:

1. – Se estima, provisionalmente, que el contenido medio de carbonatos, en las arenas globales, oscila alrededor de un 48'39 %. Los valores extremos se sitúan en un 68'52% y en un 37'20%.

Normalmente, las laderas de barlovento, están más carbonatadas que las de sotavento. Comparando valores medios, se pasa de un 50°23% a un 46°56%.

Por fracciones, y respecto a las muestras de una duna de la zona central, duna 7A, los contenidos en carbonatos evolucionan de un 86'20% (fracción de 0'30 mm) a un 3'89% (fracción igual o menor a 0'06 mm).

2.- La cartografía de las calcimetrías medias (barlovento + sotavento), de las muestras globales, traduce un decrecimiento en carbonatos en el sentido de avance de las dunas. Exceptuando las dunas del NE, próximas al escarpe aluvial, se pasa, de E a W, de un valor medio de 58'66% a otro de 46'62%.

Nuevamente se deja sentir el efecto pantalla del escarpe de la llanura aluvial, haciendo que baje el contenido en carbonatos. El valor medio en esta zona, muy próxima a la fuente de los suministros sedimentarios, oscila alrededor de un 40.00%.

La ausencia de sensibles incrementos positivos en carbonatos, en la zona SW, en donde los aportes por los alisios están muy debilitados, viene a confirmar que la alimentación de arenas, desde la playa de Maspalomas por los vientos del SE, es poco importante. Sin embargo, los vientos del SW - W, en esa zona, hacen aumentar ligeramente los carbonatos hacia el borde NW de la franja central. Se pasa de un 46'01% a un 48'94% en el sentido SW - NE. Estos vientos tendrían aquí las suficientes fuerzas como para transportar preferente y selectivamente las arenas de diámetros mayores, que precisamente son las más ricas en carbonatos.

3.- Las cartografías calcimétricas, de barlovento y de sotavento por separado, siguen las mismas pautas que la de los valores medios, por lo que no se obtienen nuevas deducciones.

4.- Las relaciones entre los contenidos en carbonatos de las muestras globales, diferenciadas o no en muestras de barlovento y en muestras de sotavento, y los parámetros Q_2 , determinan que el campo de dunas está formado por arenas maduras. Estas mismas formulaciones se obtienen a partir de las relaciones, entre contenidos en carbonatos y diámetros de las fracciones, tanto en muestras de barlovento como en muestras de sotavento, así como en el conjunto de éstas.

Las relaciones se establecen preferentemente según una regresión logarítmica. Los coeficientes de correlación de estas regresiones permiten estimar una madurez de grado medio para la totalidad del campo (coeficientes entre 0'62 y 0'58). En el caso de las regresiones logarítmicas para muestras granulométricamente fraccionadas y pertenecientes a una duna de la zona central (7A), se estima una madurez elevada (coeficientes entre 0'96 y 0'99).

Se entiende por arenas maduras aquellas que revelan una relación directa entre diámetros y contenidos en carbonatos. Los grados de estas relaciones se valoran de acuerdo con los coeficientes de correlación.

DINAMICA SEDIMENTARIA

- 187 -

Figura 30

- 88 -

Figura 31

CARACTERISTICAS PREVIAS

Se dispone de una serie de argumentos y parámetros que, a pesar de ser significativos de por sí, no darían por separado una hipótesis sobre la dinámica sedimentaria con una certeza o grado de confianza plenamente aceptable, pero que al apuntar el conjunto de argumentos y parámetros hacia la formulación de un mismo modelo, éste adquiere ya una certeza satisfactoria. A esto se le puede denominar " principio de la complementariedad convergente " o principio de Tomi.

Potencialmente, las playas del Inglés y de Maspalomas participan en la formación de las dunas: son fuentes de aportes sedimentarios.

Estas fuentes de suministros quedan evaluadas:

- a) por las extensiones de sus zonas intermareales,
- b) por los índices de desarrollo potencial de trasplayas eólicas,
- c) por los equilibrios, según las relaciones granulométricas, pendientes topográficas, intermareales y energías cinéticas y
- d) por unas condiciones eólicas apropiadas de la zona.

A medida que los anteriores parámetros toman valores mayores, los suministros de arena serán más importantes, supuesta la ausencia de barreras entre las playas y el campo.

En consecuencia, todos los impactos en las playas delimitantes, tendentes a alterar sus dinámicas sedimentarias, y los obstáculos que se crearan entre éstas y el campo de dunas, romperán el equilibrio sedimentario del complejo dunar, con lo que entraría en un proceso de degradación.

DEDUCCIONES EN FUNCION DE LA DESCRIPCION DEL CAMPO DUNAR

1.— La distribución estereográfica de las dunas refleja que no hay dos núcleos de dunas (dunas del NE y dunas del SE), sino que la mayoría están condicionadas por unos vientos del NE - E, dominantes, o que la geometría, determinada por los vientos del NE, está perfilada por los vientos del SE, dentro de un contexto de transportes secundarios. La segunda hipótesis queda corroborada por los "pasillos de sombra eólica".

2. – Las cartografías de las observaciones fotogeológicas permiten identificar la playa desde donde proceden mayoritariamente los aportes de arenas (Playa del Inglés). Frente a esa playa existen las máximas concentraciones de dunas transversales.

Las dunas se formarían, de manera embrionaria, bien libremente, bien a partir de obstáculos de vegetación, a una distancia aproximada de 50 a 150 m. de la orilla.

Las cartografías, además, precisan que estos aportes mayoritarios se inician por constantes aportes reducidos (los barjanes se desarrollan sobretodo en el perímetro marítimo del campo).

Aquí también quedan registradas las peculiaridades del transporte secundario, de los vientos del SE. Este transporte determina formas bien desarrolladas (dunas transversales) allí en donde no está obstaculizado (periferia del campo), o en donde los alisios se encuentran debilitados (zona con efecto pantalla). En ambos casos, las disponibilidades de arenas son buenas (arenas ya depositadas y transportadas desde el borde oriental del campo). Fuera de estas areas, en el interior del campo, y en un frente NE - SW, el viento del SE está interferido en un grado tal que normalmente forma barjanes.

3.- El análisis estadístico, de la pauta de los crecimientos en altura de las dunas, determina el sentido de avance de las mismas (del NE a SW) y la incidencia del viento del SE en esa dinámica (transportes secundarios), con lo que esa pauta se inflexiona hacia el N. en la franja central del campo.

Este sentido de avance, o lo que es lo mismo, las componentes de los vientos que lo determinan y la fuente de suministros sedimentarios, están, por otra parte, verificados:

a) por inferencias fotogeológicas: la suma de dunas transversales del NE y barjanes, también del NE, llegan a sumar el 84'89% del total (datos válidos para 1.977);

b) por los valores calcimétricos: decrecen según avanzan las dunas. El comportamiento resulta razonable de la relación directa entre valores granulométricos y calcimétricos de las arenas. c) en principio, por los valores decrecientes de los parámetros morfoscópicos - granulométricos Mrb5 y Meb5, y

d) por criterios granulométricos.

Según Nadal (1.983), una vez formadas las dunas transversales, éstas migran incesantemente a una velocidad media de dos a cinco metros por año, sobre una superficie fija, de arenas " cementadas por sales ".

4) Una zona de sombra eólica para los alisios (efecto pantalla del escarpe aluvial) se deduce mediante una serie de hechos:

a) por concentraciones preferentes de dunas barjanes del NE (los aportes sedimentarios serían mediocres),

b) por caídas en los valores granulométricos, y

c) por medidas calcimétricas relativamente bajas, como consecuencia de lo anterior.

SEGUN CRITERIOS GRANULOMETRICOS

La dinámica del campo de dunas solamente se puede considerar en su conjunto. Las tentativas de deducir las características de la dinámica para cada tipo de duna están dificultadas por las interferencias de los aportes sedimentarios entre ellas: No se pueden seguir las evoluciones granulométricas para los barjanes, por ejemplo, en unas determinadas direcciones y componentes del viento, ya que los restantes tipos de dunas, a lo largo de esas direcciones, están aportando arenas. Con todo, para las dunas mayoritarias (transversales), se insinúan pautas.

Sistemáticamente, y para todos los tipos de dunas, las granulometrías (los parámetros Q_2) de sotavento tienen valores más bajos que los de barlovento. La deducción se explica fácilmente: el arrastre en contra pendiente en las laderas de barlovento supone una barrera selectiva, superándola las arenas que presentan menos resistencia al transporte (las de diámetros menores).

Las laderas de sotavento están orientadas hacía el SW o hacia el NW, o lo que es lo mismo, las laderas de barlovento miran hacia el NE o hacia el SE. La interpretación de todo lo anterior sería formular un avance de las dunas desde el margen oriental del campo hacia el margen occidental.

Si los vientos que intervinieran en la dinámica del campo fueran sólamente de componente NE, los aportes sedimentarios estarían suministrados por la Playa del Inglés (desde Punta de la Bajeta hacia el N). Las dunas sucesivamente tendrían granulometrías más finas, a medida que se localizasen hacia el borde más occidental del campo (las laderas de barlovento se surtirían de las laderas de sotavento de sus vecinas orientales y, como de barlovento a sotavento en una misma duna disminuye la granulometría, a lo largo de la dirección de avance, las granulometrías, darían valores cada vez más bajos). Esta pauta queda reflejada en dunas transversales, localizadas en una franja central de dirección NE - SW, y muestreadas tras una prolongada dominancia de los alisios, de componente NE (campaña del 6/10/84).

Pero en la dinámica dunar de avance intervienen también vientos del SE. Estos vientos determinan:

a) aportes sedimentarios desde la Playa de Maspalomas (desde la Punta de la Bajeta hasta la zona de la Charca), y

 b) interferencias en las disminuciones granulométricas anteriormente descritas y como consecuencias de transportes secundarios de arenas ya depositadas en el campo.

Los vientos de componente NE harían disminuir las granulometrías hacia el SW y los de componente SE hacia el NW. Estas tendencias describirían teóricamente:

1.- una franja externa de dunas, con granulometrías más gruesas, aunque, en el borde de la Playa de Maspalomas y hacia la Charca, las granulometrías tiendan a tener valores sucesivamente más bajos, y

2. – dunas con granulometrías más finas en la zona subcentral del campo, en su límite NW.

Las cartografías de los parámetros Q_2 de barlovento y de sotavento, por separado, y sobretodo de los valores medios de estos, correspondientes a muestras tomadas tras una situación prolongada de vientos de componente NE (campaña ya citada), corrobora experimentalmente las formulaciones respecto a las tendencias granulométricas en el campo de dunas.

Son excepciones los valores granulométricos, más bajos de lo esperado, de las dunas localizadas en el borde más septentrional de la zona NE del campo. Estas excepciones están justificadas por el efecto pantalla (remansos) que determina el acantilado aluvial: el viento, al quedar frenado, carece de la suficiente energía como para transportar los granos más gruesos, los cuales harían crecer el parámetro Q_2 .

Como resultado de esta dinámica dunar de avance, se obtiene:

a) frentes de dunas (cadenas alineadas), que avanzan de forma regular y paralelas entre sí, desde el borde oriental al occidental del campo. Algunos autores estiman que los desplazamientos se realizan a una velocidad media aproximada de 2 a 5 m. por año (Nadal, 1.983), y

b) depresiones entre frentes de dunas sucesivas. Las depresiones consisten en pequeños llanos elípticos que " avanzan " junto con las dunas que los determinan.

Teóricamente, con períodos prolongados de vientos del W (mas bien vientos de componentes oscilantes entre SW y NW), de fuerzas moderadas, aunque pueden llegar a fuertes, y con frecuencias diurnas que llegan hasta un 75%, los detritos más finos se depositarán preferentemente en los sectores orientales del campo. Por otra parte, aumentarán los valores granulométricos de las dunas situadas en los sectores occidentales, al ser desprovistas de las arenas más finas. En definitiva, se daría un retroceso de las dunas.

Si este esquema se superpone a las características granulométricas determinadas por los vientos dominantes del NE (granulometrías más gruesas en los sectores orientales), el campo tendería a una homogenización granulométrica. La cartografía de los valores medios de Q_2 (barlovento y sotavento), correspondientes a muestreos realizados después de esas situaciones de vientos del W (campaña del 10/11/84), verifica las anteriores formulaciones sobre la tendencia a la homogenización granulométrica del campo.

La respuesta morfológica del retroceso dunar sería la formación de escarpes, con anómalas pendientes (más acusadas) en la parte superior de las laderas que normalmente se comportan como barlovento. Estos anómalos escarpes, con longitudes de uno a dos metros, traducen transitorías laderas de sotavento, como ya se indicó en el estudio geométrico de las dunas.

- 96 -

Figura 34

- 97 -

Figura 36

- 99 -

TRATAMIENTO ESTADISTICO: CALCULOS STANDARD
ESQUEMA:

1. - Inferencias estadísticas sobre:

- 1.1. Las direcciones del plano de simetría de las formas sedimentarias.
- 1.2. Los buzamientos de sotavento de las dunas.
- 1.3. Las alturas de las dunas en su conjunto.
- 1.4. Las alturas de las dunas transversales del sector NE del campo.
- 1.5. Las alturas de las dunas tipo barjan del sector NE del campo.
- 1.6. Las alturas de las dunas transversales del sector SE del campo.
- 1.7. Las alturas de las dunas transversales de la franja central del campo. Y sobre
- 1.8. las alturas de las dunas transversales del sector SW del campo.
- 2. Símbolos estadísticos utilizados.

INFERENCIAS ESTADISTICAS SOBRE LAS DIRECCIONES

DEL PLANO DE SIMETRIA DE LAS FORMAS SEDIMENTARIAS

direcciones	$n^{\underline{\alpha}}$ de observaciones
N 30° E	2
N 34º E	1
N 37° E	1
N 38° E	1
N 40º E	1
N 48º E	1
N 50° E	5
N 51º E	1
N 53º E	2
N 55° E	3
N 56° E	2
N 57º E	1
N 59° E	1
N 60º E	5
N 61° E	1
N 62° E	3
N 65° E	1
N 70° E	10
N 71º E	2
N 72° E	2
N 73º E	1
N 75° E	4
N 78º E	1
N 79° E	4
N 80° E	13

MEDIDAS:

Cuadro 20

2004
Canarias,
ab I
Digita
Memoria
Universitaria.
anaria.Biblioteca I
с с
Gra
đ
Palmas
Las
ę
Universidad
U

	8
N 83º E	3
N 84ºF	2
N 85°E	7
N 86°E	1
N 87º E	1
N 820E	1
	1
	12
N 90-E	15
N 91°5	2
IN 93° 3	2
N 98° S	1
N 1005 S	9
N 101°S	
N 102°S	l ĩ
N 105° S	5
N 106° S	1
N 108° S	1
N 110º S	9
N 114º S	1
N 120º S	4
N 123º S	1
N 130° S	2
N 135° S	2
N 142° S	1
N 150° S	1
	TOTAL: 114

Cuadro 20	(Continuación)
-----------	----------------

clase	Xi	Yi	Цİ	цi.Yi	∡i². Yi	Zi	Yi. Zi
N 21-N 40	30'5	6	-60	-360	21600	0	0
N 41-N 60	50'5	21	-40	-840	33600	1	21
N 61-N 80	70'5	42	-20	-840	16800	2	84
N 81 - N 100	90'5	45	0	0	0	3	135
N 101 - N 120	110'5	23	20	460	9200	4	92
N 121 - N 140	130'5	5	40	200	8000	5	25
N 141 - N 160	150'5	2	60	120	7200	6	12

a= 19 \geq Yi= 144 $\geq \alpha$ i.Yi= - 1260 $\geq \alpha$ i².Yi= 96400 \geq Yi.Zi= 369

media de la muestra = $79^{\circ}1875$ desviación respecto a la marca de clase = $-8^{\circ}75$ desviación al cuadrado = $76^{\circ}5625$ varianza de la muestra = $592^{\circ}88194$ desviación típica de la muestra = $24^{\circ}349167$ desviación típica de la población = $24^{\circ}434155$

> Intervalo de confianza para un nivel de confianza del 95%, t α = 1'96 I = (75'196589; 83'178411) Error de estimación = 3'9909118

INTERPRETACION

Si se estima, como media de las direcciones de los planos de simetría, el valor N79°19°E, se comete un error de \pm 3'99°, para un nivel de confianza del 95%.

Estos cálculos verifican muy satisfactoriamente las deducciones obtenidas a partir de la proyección de Smith y referentes a la dirección resultante de los planos de simetría de las formas sedimentarias.

INFERENCIAS ESTADISTICAS SOBRE LOS BUZAMIENTOS DE SOTAVENTO DE LAS DUNAS

ángulos sotavento	sotavento nº de observaciones ángulos sotavo		nº de observaciones
80	1	24º	11
90	3	25°	11
10°	1	26º	9
110	6	27º	9
12°	1	28º	15
13°	1	29º	12
14º	1	30º	4
15º	1	310	4
16º	0	32º	7
17º	2	330	4
18º	1	340	3
19º	2	35°	8
20%	6	36°	4
21°	4	37º	2
220	3	380	1
230	7	<u>39</u> °	0
			1

Cuadro 22

clase	Xi	Yi	Zi	∡ i.Yi	∝i². Yi	Zi	Yi. Zi
6 - 10	8	5	-15	- 75	1125	0	0
11 - 15	13	10	-10	-100	1000	1	10
16 - 20	18	11	-5	-55	275	2	22
21 - 25	23	36	0	0	0	3	108
26 - 30	28	49	5	245	1225	4	196
31 - 35	33	26	10	260	2600	5	130
36 - 40	38	7	15	105	1575	6	42

a = 4 $\sum Yi = 144$ $\sum Ai.Yi = 380$

 $\sum \lambda i^2$. Yi= 7800 $\sum Yi$. Zi= 508

media de la muestra = $22^{\cdot}11111$ desviación respecto a la marca de clase = $2^{\cdot}6388888$ desviación al cuadrado = $6^{\cdot}963734$ varianza de la muestra = $47^{\cdot}202932$ desviación típica de la muestra = $6^{\cdot}8704389$ desviación típica de la población = $6^{\cdot}8944194$

> Intervalo de confianza para un nivel de confianza del 95%, t \ll = 1'96 I = (20'985022; 23'237198) Error de estimación = 1'126088

INTERPRETACION

Si se estima, como media de los buzamientos de sotavento, el valor de $22^{\circ}11^{\circ}$, se comete un error de $\pm 1^{\circ}13^{\circ}$, para un nivel de confianza del 95%.

Estos cálculos también verifican muy satisfactoriamente las deducciones obtenidas a partir de la proyección de Smith y referentes a los buzamientos de sotavento de las formas sedimentarias.

INFERENCIAS ESTADISTICAS SOBRE LAS ALTURAS

DE LAS DUNAS EN SU CONJUNTO

Intervalo de alturas en m.	nº de observaciones
de 0'03 a 2'00	16
de 2°01 a 3°98	52
de 3'99 a 5'96	35
de 5'97 a 7'94	20
de 7 · 95 a 9 · 92	9
de 9'93 a 11'90	9
de 11.91 a 13.88	1
de 13°89 a 15°86	1
de 15°87 a 17°84	
	TOTAL: 144

MEDIDAS:

Cuadro 24

clase	Xi	Yi	حرi	≮i.Yi	≮i².Yi	Zi	Yi. Zi
0.03-2.00	1'015	16	-7'92	-126'72	1003-6224	0	0
2.01-3.98	2.995	52	-5'94	-308'88	1834'7472	1	52
3.99-5.96	4`975	35	-3'96	-138'60	548'856	2	70
5`97-7`94	6'955	20	-1'98	-39'60	78'408	3	60
7*95-9*92	8'935	9	0	0	0	4	36
9•93-11•90	10.915	9	1'98	17.82	35'2836	5	45
11`91-13`88	12.895	1	3'96	3'96	15'6816	6	6
13`89-15`86	14'875	1	5'94	5'94	35°2836	7	7
15'87-17'84	16'855	1	7'92	7'92	62 `7 264	8	8

a = 1'97 \geq Yi = 144 $\geq \measuredangle i. Yi = 578'16$ $\geq \measuredangle i^{2}. Yi = 3614'6088$ \geq Yi.Zi. = 284

Cuadro 25

media de la muestra = 4'9002777desviación respecto a la marca de clase = -4'015desviación al cuadrado = 16'120225varianza de la muestra = 8'981225desviación típica de la muestra = 2'9968691desviación típica de la población = 3'0073293

> Intervalo de confianza para un nivel de confianza del 95%, t $\measuredangle = 1$ '96 I = (4'090808; 5'3914746) Error de estimación = 0'4911969

INTERPRETACION

Si se estima, como media de las alturas, el valor 4.90 m., se comete un error de \pm 0.49 m., para un nivel de confianza del 95%.

Este valor define al campo como de dunas menores, de acuerdo con los límites de alturas convenidos para estas formas sedimentarias.

INFERENCIAS ESTADISTICAS SOBRE LAS ALTURAS

DE LAS DUNAS TRANSVERSALES DEL SECTOR NE

DEL CAMPO

MEDIDAS:

Intervalos de alturas en m.	nº de observaciones
0'01 - 1'81	4
1'82 - 3'62	18
3'63 - 5'43	7
5'44 - 7'24	6
7'25 - 9'05	1

clase	Xi	Yi	di	∡ i.Yi	≮i². Yi	Zi	Yi. Zi
0'01-1'81	0'91	4	-3'62	-14'48	52'4176	0	0
1'82-3'62	2'72	18	-1'81	-32'58	58'9698	1	18
3'63-5'43	4'53	7	0	0	0	2	14
5'44-7'24	6'34	6	1'81	10'86	19'6566	3	18
7'25-9'05	8'15	1	3'62	3'62	13'1044	4	4

 $a = 1^{\circ}80$ $\geq Yi = 36$ $\geq \measuredangle i. Yi = -32^{\circ}58$ $\geq \measuredangle i^{2}.Yi = 144^{\circ}1484$ $\geq Yi.Zi = 54$

Cuadro 27

media de la muestra = 3'61desviación respecto a la marca de clase = -0'905desviación al cuadrado = 0'829025varianza de la muestra = 3'1850972desviación típica de la muestra = 1'784684desviación típica de la población = 1'8099997

> Intervalo de confianza para un nivel de confianza del 95%, t \measuredangle = 1'96 I = (3'0187335; 4'2012663) Error de estimación = 0'5912663

INTERPRETACION

Si se estima, como media de las alturas, para las dunas transversales del sector NE del campo, el valor 3'61 m., se comete un error de \pm 0'59 m., para un nivel de confianza del 95%.

INFERENCIAS ESTADISTICAS SOBRE LAS ALTURAS

DE LAS DUNAS TIPO BARJAN DEL SECTOR NE

DEL CAMPO

MEDIDAS:

Intervalos de alturas en m.	nº de observaciones
1'14 - 1'97	4
1'98 - 2'84	6
2'85 - 3'71	5
3'72 - 4'58	1
4'59 - 5'45	1

clase	Xi	Yi	Li	∡i.Yi	Li ² . Yi	Zi	Yi. Zi
1'11-1'97	1'54	4	-1'74	-6'96	12'1104	0	0
1'98-2'84	2'41	6	-0'87	-5'22	4'5414	1	6
2'85-3'71	3'28	5	0	0	0	2	10
3'72-4'58	4'15	1	0'87	0'87	0'7569	3	3
4'59-5'45	5'02	1	1'74	1'74	3'0276	4	4

a= 0.86 $\sum Y_i = 17$ $\sum \lambda_i. Y_i = -9.57$ $\sum \lambda_i^2. Y_i = 20.4369$ $\sum Y_i. Z_i = 23$

Cuadro 29

media de la muestra = 2'7035293desviación respecto a la marca de clase = -0'5629411desviación al cuadrado = 0'3169026varianza de la muestra = 0'8852326desviación típica de la muestra = 0'940868desviación típica de la población = 0'9698245

> Intervalo de confianza para un nivel de confianza del 95%, t $\measuredangle = 1$ '96 I = (2'2425041; 3'1645545) Error de estimación = 0'4610252

INTERPRETACION

Si se estima, como media de las alturas, para las dunas tipo barjan del sector NE del campo, el valor 2'70 m., se comete un error de \pm 0'46 m., para un nivel de confianza del 95%.

INFERENCIAS ESTADISTICAS SOBRE LAS ALTURAS

DE LAS DUNAS TRANSVERSALES DEL SECTOR SE

DEL CAMPO

MEDIDAS:

Intervalos de alturas en m.	nº de observaciones			
1'18 - 3'18	13			
3'19 - 5'19	15			
5'20 - 7'20	3			
7'21 - 9'21	2			
9'22 - 11'22	2			

clase	Xi	Yi	Цi	∠i.Yi	≪i². Yi	Zi	Yi. Zi
1'18-3'18	2'18	13	-4°02	-52'26	210'0852	0	0
3°19-5°19	4'19	15	-2'01	-30.15	60.6015	1	15
5.20-7.20	6'20	3	0	0	0	2	6
7.21-9.21	8.21	2	2'01	4'02	8'0802	3	6
9.22-11.22	10.22	2	4'02	8'04	32'3208	4	8

a=2 $\ge Yi=35$ $\ge \downarrow i. Yi=-70^{\circ}35$ $\ge \downarrow i^{2}. Yi=311^{\circ}0877$ $\ge Yi.Zi=35$

Cuadro 31

media de la muestra = $4^{\circ}18$ desviación respecto a la marca de clase = $-2^{\circ}01$ desviación al cuadrado = $4^{\circ}0401$ varianza de la muestra = $4^{\circ}84812$ desviación típica de la muestra = $2^{\circ}2018446$ desviación típica de la población = $2^{\circ}2339897$

> Intervalo de confianza para un nivel de confianza del 95%, t $\lambda = 1$ '96 I = (3'4398785; 4'9201213) Error de estimación = 0'7401215

INTERPRETACION

Si se estima, como media de las alturas, para las dunas transversales del sector SE del campo, el valor 4'18 m., se comete un error de $\pm 0'74$ m., para un nivel de confianza del 95%.

INFERENCIAS ESTADISTICAS SOBRE LAS ALTURAS

DE LAS DUNAS TRANSVERSALES DE LA FRANJA CENTRAL

DEL CAMPO

MEDIDAS:

Intervalos de alturas en m.	nº de observaciones		
1'80 - 5'00	9		
5.01 - 8.21	9		
8'22 - 11'42	6		
11`43 - 14`63	4		
14`64 - 17`84	1		

clase	Xi	Yi	Li	∡i.Yi	∠i². Yi	Zi	Yi. Zi
1'80-5'00	3'4	9	-6'42	-57'78	370'9476	0	0
5'01-8'21	6'61	9	-3'21	-28'89	92'7369	1	9
8'22-11'42	9'82	6	0	0	0	2	12
11'43-14'63	13'03	4	3'21	12'84	41'2164	3	12
12'64-17'84	16'24	1	6'42	6'42	41'2164	4	4

 $a = 3^{\circ}2$ $\geq Yi = 29$ $\geq \measuredangle i. Yi = -67^{\circ}41$ $\geq \measuredangle i^{2}. Yi = 546^{\circ}1173$ $\geq Yi. Zi = 37$

Cuadro 33

media de la muestra = 7'4827584 desviación respecto a la marca de clase = -2'3244827 desviación al cuadrado = 5'4032198 varianza de la muestra = 13'428412 desviación típica de la muestra = 3'6644797 desviación típica de la población = 3'7293424

> Intervalo de confianza para un nivel de confianza del 95%, t \measuredangle = 1'96 I = (6'12544166; 8'8401002) Error de estimación = 1'3573418

INTERPRETACION

Si se estima, como media de las alturas, para las dunas transversales de la franja central del campo, el valor 7⁴8 m., se comete un error de \pm 1³6 m., para un nivel de confianza del 95%.

INFERENCIAS ESTADISTICAS SOBRE LAS ALTURAS

DE LAS DUNAS TRANSVERSALES DEL SECTOR SW

DEL CAMPO

MEDIDAS:

Intervalos de alturas en m.	nº de observaciones
3'04 - 5'12	6
5'13 - 7'21	9
7'22 - 9'30	3
9'31 - 11'39	3
11'40 - 13'48	1

clase	Xi	Yi	Цi	∠i.Yi	∠i². Yi	Zi	Yi. Zi
3.04-5.12	4 ` 08	6	-4'18	-25'08	104'8344	0	0
5.13-7.21	6'17	9	-2'09	-18'81	39'3129	1	9
7*22-9*30	8'26	3	0	0	0	2	6
9'31-11'39	10'35	3	2'09	6'27	13'1043	3	9
11'40-13'48	12'44	1	4'18	4'18	17'4724	4	4

a= $2^{\circ}08$ $\sum Y_i = 22$ $\sum i. Y_i = -33^{\circ}44$ $\sum i^2 Y_i = 174^{\circ}724$ $\sum Y_i.Z_i = 28$

media de la muestra = 6.7272725desviación respecto a la marca de clase = -1.52desviación al cuadrado = 2.3104varianza de la muestra = 5.6316desviación típica de la muestra = 2.3730992desviación típica de la población = 2.4289443

> Intervalo de confianza para un nivel de confianza del 95%, t &lambda = 1'96 I = (5'7122814; 7'7422639) Error de estimación = 1'0149911

INTERPRETACION

Si se estima, como media de las alturas, para las dunas transversales del sector SW del campo, el valor 6'73 m., se comete un error de <u>+</u> 1'01 m., para un nivel de confianza del 95%.

SIMBOLOS ESTADISTICOS UTILIZADOS:

Xi = marca de clase

a =amplitud o tamaño del intervalo de clase

 \measuredangle =desviación respecto a la marca de clase

∠i = media de la desviación respecto a la marca de clase

Yi =frecuencia

Zi = número de filas que proceden en el cuadro de datos estadísticos

 $\overline{\mathbf{X}}$ = media de la muestra

 \overline{n} = media de la población = × $\frac{1}{2}$ error de estimación

 $S_x^2 = varianza de la muestra$

Sx = desviación típica de la muestra

 $\hat{\sigma}$ =desviación típica de la población

I = estimación por intervalo de confianza de la media de la población

 $t \swarrow = coeficiente de confianza$

n =tamaño de la muestra

 $\mathcal{D} = n - 1 = n$ úmero de grados de libertad.

IMPACTO DEL ENTORNO GEOGRAFICO EN EL EQUILIBRIO DEL CAMPO DUNAR

Muy cerca de la Playa del Inglés, a escasos kilómetros hacia el NE, se encuentra la playa de Las Burras. En ella, los aportes de arenas son abundantes, como lo demuestra la formación de un incipiente campo de dunas, en la parte más interna de la trasplaya.

La dinámica de las dunas está controlada por vientos del E - SE (normalmente brisas marinas), y esto lo demuestra el hecho de que las formas observadas sean clasificables y denominables como dunas transversales y de tipo barjan, con planos de simetría, cuyas direcciones coinciden con las componentes de esos vientos.

Los vientos en cuestión, a su vez, serían, en parte, los responsables de un oleaje del E - SE, aunque éste también se podría deber a la tendencia de las olas del NE, controladas generalmente por los alisios, a orientar sus componentes perpendicularmente a la línea de costa. También son identificados aportes sedimentarios por ocasionales oleajes del SW, después de que sufran reflexión.

Por otro lado, en la playa se dan corrientes de deriva, determinan un transporte neto positivo hacia zonas situadas al SW de Las Burras: Playa del Inglés. La dinámica descrita ratifica la ausencia de una playa con acúmulos importantes de arenas antes de la construcción de un malecón en el borde sud - occidental de la misma.

Una vez construido el malecón (en 1966), cambia la dinámica formulada para la playa: el aporte sedimentario se acumula en la zona y el viento del E - SE transporta el generoso suministro de arenas hacia el interior de la playa, formándose las dunas. Estas migran tierra adentro y, por la dirección del viento y por las geometrías y emplazamientos de las construcciones en el perímetro de la playa, se desplazan hacia el barranco próximo, en donde las arenas son ya extraidas por el hombre.

El anterior aporte de arenas, con la ausencia del espigón, habría ido a para a la Playa del Inglés y desde allí intervendría en la dinámica del campo de dunas de Maspalomas. De todas maneras, a pesar del espigón, de no existir otra sobresaliente construcción en la zona (Hotel D. Gregory, que resguarda la playa de los alisios), tendería a restablecerse el aporte de arenas hacia la Playa del Inglés: los alisios, hoy aquí interferidos, transportarían los sedimentos hasta el otro lado del espigón y desde aquí se incorporarían de nuevo a la dinámica marina. Algo parecido es lo que ocurre en Jandía (Fuerteventura): las arenas cruzan el itsmo desde las playas de barlovento a las de sotavento.

En las actuales circunstancias, se puede afirmar que el aporte sedimentario "bloqueado" en la playa de Las Burras está influyendo, en cierta medida, en la dinámica de las dunas de Maspalomas, con el riesgo de romper el equilibrio de las mismas.

2004

- 130 -

LAS PALEO - BARRAS MARINAS DEL CAMPO DE DUNAS DE MASPALOMAS

Se trata de unos depósitos alineados de cantos gruesos (mayoritariamente de unos 71 mm. de diámetro), y muy redondeados y esféricos (parámetros entre 0'7 y 0'8 grados, según las escalas de Krumbein).

Las barras definen bandas, con anchuras que pueden rebasar los 12'75 m. Las bandas definen estructuras que recuerdan a las mega - rizaduras, clasificadas y denominadas como "cresta y surcos inter - inframareales" o "low and full" (Martínez, 1.984). Las estructruras serían explicables mediante procesos dinámicos que jueguen, junto con los barridos por el oleaje de cantos erosivos, con las oscilaciones de mareas y/o con las sombras energéticas, sin capacidad de transporte, entre las corrientes de deriva de playa, conocidas como " longshore currents " y offshore currents, corrientes que, en este caso, sufrirían oscilaciones posicionales.

Cuadro 36 Dinámica de las Paleo - barras de Maspalomas.

Los depósitos, aunque parcialmente se encuentran fosilizados, se localizan en depresiones, a tres o cuatro metros sobre el nivel del mar, en forma de pequeños llanos elípticos, del campo de dunas. Destaca la barra cartografiable al N. de la "Cañada de la Penca".

Las observaciones de campo y las cartografías de las barras apuntan hacia unas determinadas pautas geométricas en las deposiciones sedimentarias. Estas pautas habrían estado controladas por las evoluciones fisiográficas, o sentido de las regresiones marinas, de las paleo - líneas de agua, tanto del NE como del NW a partir del escarpe de la llanura aluvial.

a) La regresión de la paleo - línea de agua del NE determinaría una disposición en abanico de las barras, en la zona de la Punta de La Bajeta. El eje de divergencia o giro de este abanico se encontraría al SW de la zona en cuestión y el sentido de abertura coincidiría con el de las agujas del reloj. Las direcciones, todas del NE, tenderían progresivamente a ajustarse a la dirección E - W. Las últimas deposiciones tienen una componente media de N 76 ° E. Esta tendencia direccional de la regresión marina, desde el escarpe NE de la llanura aluvial, estaría marcando en parte, la configuración de la actual línea de costa de la Playa de Maspalomas.

b) La regresión de la paleo - línea de costa del NW desarrollaría otro abanico de barras, en la zona central del campo, adosado septentrionalmente al anterior. Muchas de estas barras se encuentran muy bien conservadas (zona de la Cañada de la Penca). El eje de giro ahora se situaría hacia el vértice de confluencia de los escarpes de la llanura aluvial (hacia el NE), y el sentido de abertura sería el contrario al de las agujas del reloj. Las direcciones, en este caso también todas del NE, tenderían cada vez a aproximarse a las direcciones comprendidas entre N 30 ° E y N 40 ° E.

Las barras, como ya se ha indicado, quedan justificadas en un contexto de regresiones marinas, precedidas de una transgresión. La formulación de una hipótesis al respecto constaría de una secuencia de acontecimientos. Por ejemplo, cabría enunciar los siguientes episodios:

- 1.- Transgresión marina.
- 2.- Depósitos de arenas inter inframareales y ataques erosivos de la llanura aluvial, con lo que se desarrolla un acantilado, con dos frentes: el frente NE y el frente NW.
- 3.- Formación de las primeras barras marinas (las más internas). Los cantos proceden de la erosión de la llanura aluvial.
- 4.- Inicio de una regresión marina. El nivel del mar desciende paulatinamente.
- 5.- Con el desarrollo de la regresión, toman posiciones cada vez más meridionales (retroceden) las condiciones dinámicas que permiten el desarrollo de las bandas constituyentes de las barras. De esta manera, se forman progresivamente nuevas bandas, con aberturas en abanico. Las últimas en formarse serán las más externas. La emersión avanza desde las más internas a las más externas.
- 6.- A medida que las antiguas zonas inter inframareales, con sus barras de cantos, evolucionan a trasplayas, sobre éstas se desarrollan dunas móviles, con las arenas transportadas eólicamente desde las nuevas zonas intermareales. Las dunas fosilizarán parcialmente a las barras.

Para algunos autores, entre ellos Klug (1.968), la transgresión, que inicia la secuencia de acontecimientos, sería posterior a la glaciación Würm. Si la datación fuera cierta, la regresión se debería a fuertes movimientos epirogénicos, en este caso positivos, ya que aún se está en el periodo interglaciar inmediato a dicha glaciación. No cabe admitir una glaciación post - Würm que explique la regresión que haga emerger las barras marinas. Unos activos "horsts tectónicos", como sustratos de las islas, encajarían en este esquema.

Si se acepta esta hipótesis cronológica, la secuencia de acontecimientos descrita se sitúa dentro de los últimos 10.000 años.

Una alternativa a la anterior cronología:

- 1.- que no atribuya a los movimientos epirogénicos un papel tan relevante en la regresión, y
- 2.- que no determine una excesiva dilatación en el tiempo, o lo que es lo mismo, que evite admitir posteriores transgresiones que destruyan las barras.

consistiría en asignar la transgresión de partida a la pausa interglaciar entre las dos fases del glaciarismo Würm, y la regresión a la 2º fase de este glaciarismo. El actual periodo post - glaciar estaría solapando parte de la regresión, con el consecuente retroceso del campo de dunas. Los movimientos epirogénicos no quedarían totalmente descartados. De acuerdo con estos supuestos, la Historia geológica de las barras se sitúa dentro de los últimos 150.000 años. La sistemática altimétrica de nomenclatura de líneas costeras (Zeuner, 1.958), corrobora esta última hipótesis.

divisiones estratigráficas		edad en años	glaciaciones alpinas	períodos interglaciares
HOLOCENO		actual		Postglaciar
	SUPE	10.000	WÜRM	
	RIOR	150,000		Riss - Würm o Ermiense
Ţ	MEDIO	150.000	RISS	
LEISTOCEN				Mindel - Riss o Holsteiniense
ō		100,000	MINDEL	
		400.000		
	INFE	600.000		Gunz - Mindel o Cromeriense
	RIOR	000,000		
		1.000.000	GUNZ	

CRONOLOGIA DEL CUATERNARIO SEGUN LAS GLACIACIONES E INTERGLACIACIONES

Cuadro 37

de Las

Cuadro 38

SISTEMA ALTIMETRICO DE NOMENCLATURA

DE LINEAS COSTERAS

(ZEUNER, 1.958)

divisiones (nomenclatura de las transgresiones)	nivel	interglaciación					
Epiromonastirense (formaría parte del piso cronoestratigráfico denominado Flandriense)	4 m.	entre la primera y segunda fase de la glaciación Würm					
Monastirense superior tardío	7'5 m.	Riss - Würm					
Monastirense inferior Principal	18 m.	Riss - Würm					

Cuadro 39

- 138 -

Se pueden formular una serie de deducciones en el contraste de cantos, correspondientes a depósitos de las paleo - barras marinas emergidas y a los de una terraza fluvial inferior del barranco de Fataga, al Este del Charco de Maspalomas. El contraste toma más rigor al tratarse de cantos equiparables dimensionalmente (alrededor de $69 \times 49 \times 27$ mm.) y en cuanto a las natura-lezas petrológicas de los mismos (cantos basálticos, traquíticos y fonolíticos).

Un resumen de estas deducciones sería:

1.- Hay unos valores morfoscópicos, de acuerdo con las tablas de Krumbein, que establecen sensibles diferencias entre los depósitos marinos y continentales.

2.- Estos valores morfoscópicos, díscriminatorios se basan tanto en el redondeamiento, en la esfericidad, como en ambos parámetros considerados conjuntamente.

3.- El caracter discriminatorio queda muy marcado para los valores 0.6 y 0.7 en relación con las texturas "redondeamiento" y "esfericidad". Se pasa de un 95 ó de un 73% a un 44 ó a un 39% (depósitos marinos y continentales respectivamente). Si se consideran conjuntamente los dos rasgos texturales, el valor 0.5 también es significativo. En el contraste ahora se pasa de un 97 a un 55%.

4.- El contraste morfoscópico de cantos da identificaciones válidas, respecto al tipo de ambiente sedimentario (marino o continental), si el transporte, por las aguas superficiales, está incapacitado, por la magnitud de sus recorridos, para desarrollar cantos mayoritariamente "maduros" (cantos con redondeamientos y esfericidades entre 0.6 y 0.7, ambos inclusives). Las dimensiones de la Isla precisamente no permiten que los cantos continentales alcancen esa madurez.

5.- La metodología se podría extrapolar a otros ambientes sedimentarios canarios, por ejemplo, a los de la "Terraza de Las Palmas", y máxime cuando solamente se necesita unas tablas morfoscópicas, tipo de las de Krumbein y un calibrador (pie de rey).

tipo	tipo de	dimensiones medias en mm,	% redondeamiento				"» esfericidad				[™] o redondeamiento + esfericidad						
	depósito m		05	6.0	07	(r8	0'9	Ø5	0.6	07	0.8	1)*9	015	0.6	0.7	0.8	(119
1	barra - pre - litoral	71×54×27	99	96	96	60	60	<i>4</i> 7	76	76	4()	40	96	74	76	19	19
2	barra-pre- litoral	72×51×28	100	94	94	47	46	98	71)	70	29	29	98	66	66	5	5
	barra - pre - litoral	71× 53× 27	99:5	95	95	53:5	53	97.5	73	73	34'5	345	97	70	71	12	12
r.	terraza fluvial	67×45×27	79	44	13	13	13	7()	39	.39	4	4	55	23	23	0	0

CONTRASTE MORFOSCOPICO ENTRE LOS CANTOS DE LAS BARRAS MARINAS (DUNAS DE MASPALOMAS) Y LOS DE LA TERRAZA FLUVIAL INFERIOR

~~~~p

~

Cuadro 40

## CONCLUSIONES

1.- Se han seguido las condiciones climáticas diurnas del campo dunar durante un año (Marzo del 84 - Febrero del 85). Las medidas carecen de representatividad estadística.

2.- Se deduce que están representados tres tipos de vientos: del NE, del E - SE y del W - SW.

3.- Se interpretan los vientos del NE como los del alisio. Los del E - SE y del W - SW suelen corresponderse con brisas, que anulan, en parte, a los alisios diurnos.

4.- Las humedades relativas diurnas de los tres tipos de vientos tienen valores muy próximos entre sí. Las medias anuales oscilan entre un 71 y un 75%.

5.- Las velocidades diurnas, normalmente vientos flojos, y la frecuencia de éstos no explican, en su totalidad, la dinámica sedimentaria.

6.- Se debe recurrir a seguimientos nocturnos para completar las medidas climatológicas. De esta forma, se identificarían e interpretarían los condicionantes eólicos en la dinámica sedimentaria.

7.- Sin embargo, mediante criterios geométricos referentes a las formas de los depósitos, se ha deducido:

a) que los alisios, y en cierta medida las brisas marinas del E - SE, condicionan predominantemente los procesos sedimentarios, y

b) que los vientos del W - SW, con velocidades de moderadas a fuertes, determinan procesos de retroceso en el avance sedimentario.

#### CONCLUSIONES DESCRIPTIVAS EN RELACION CON LAS PECULIARIDADES GEOMETRICAS Y CON LOS TRATRAMIENTOS ESTADISTICOS

1.- Las formas que dan identidad al campo son las dunas transversales, y las del tipo barjan. Las laderas de barlovento miran hacia el NE - SE.

2.- En el conjunto de estas formas, el buzamiento medio de sotavento tiene un valor de unos 22°. Para las laderas de barlovento, el buzamiento medio es de unos 13°. La altura media alcanza un valor de 4'90 m., aunque se miden altitudes próximas a los 18m., para las dunas transversales. Estas últimas, pueden tomar dimensiones longitudinales de hasta varios cientos de metros, y sus anchuras rebasar los 70 m.

3.- Después o durante determinadas circunstancias (vientos de moderados a fuertes del W), se desarrollan, en la parte superior de la ladera de barlovento, tramos anómalos, de uno a dos m. de altura y con una pendiente de unos 26°.

4.- Otras formas geométricas identificadas, pero no significativas, son:

- dunas en dorso de ballena,
- dunas fijas en tronco de cono,
- dunas de eco,
- dunas de barlovento y
- dunas juveniles de sotavento.

#### CONCLUSIONES FOTOGEOLOGICAS

1.- Estas conclusiones son válidas, aunque extrapolables, para la situación del campo en marzo de 1.977. Se trabajó a escala 1:5000.

2.- A partir de la cartografía del conjunto y de cada tipo de formas, se han estimado porcentajes y se han levantado croquis con isolíneas.

3.- Las dunas mayoritarias, las transversales del NE, representan un 56'77%. Les siguen los barjanes del NE, con un 28'12%.

4.- Los croquis de isolíneas toman distribuciones que contribuirán a la interpretación de la dinámica sedimentaria.

#### CONCLUSIONES EN RELACION A LA DISTRIBUCION DE LAS FORMAS SEDIMENTARIAS, SEGUN CRITERIOS ESTEREOGRAFICOS

1.- Con el conjunto de dunas, medidas en la campaña de Enero de 1.985, se obtiene la proyección de Smith. En esta proyección, se consideraron dos parámetros: la dirección del plano de simetría de la forma sedimentaria y el buzamiento de sotavento.

2.- Las dunas del NE y SE presentan una distribución continua, con un solo nucleo de máximos porcentajes, que define la dirección N 81° E.

3.- La distribución identificada soporta parte de la especulación sobre los condicionantes eólicos en la dinámica sedimentaria del campo.

#### CONCLUSIONES SEDIMENTOLOGICAS -ESTRATIGRAFICAS

1.- Casi en su totalidad, los depósitos están formados por arenas finas. Los casos extremos y excepcionales son arenas medias con arenas finas.

2.- Entre las estructuras sedimentarias primarias están representadas:

- la estratificación subparalela,

- la estratificación cruzada (cross bedding),

- las rizaduras (ripple marks),
- planos de corrimiento,
- quillas,
- ocasionales y efímeras grietas de desecación (mud cracks), y
- ocasionales y efímeras aristas en cornisa.

3.- Entre las estructuras secundarias, se identifican pequeñas y angostas crestas de erosión diferencial.

#### CONCLUSIONES EN RELACION CON LAS CARACTERISTICAS MORFOSCOPICAS - GRANULOMETRICAS

1.- Se diseña y discute una metodología para las interpretaciones de los rasgos texturales morfoscópicos de las arenas de playas y dunas litorales canarias, procedentes de bioclastos y de rocas basálticas y sálicas, en donde están ausentes los componentes cuarcíferos.

2.- Se definen los posibles parámetros morfoscópicos - granulométricos. De ellos, se deduce que los de mayor identidad para el ambiente sedimentario en cuestión, son el Mrb 5 y el Meb 5 (granos melanocráticos brillantes y con redondeamientos o esfericidades iguales o mayores a 0'5, según la escala de Krumbein, de 1.969).

3.- Para un mismo ambiente sedimentario, el sentido de evolución decreciente de los parámetros Mrb 5 y Meb 5 indican el sentido del transporte de los detritos.

4.- Para redondeamientos y esfericidades iguales o superiores a 0'8 (Krumbein, 1.963) y para granos brillantes, los parámetros melanocráticos corresponden a valores granulométricos relativamente más altos. Esto se interpreta en el marco de las peculiaridades en las distintas variedades del transporte eólico. Se deduce un mayor desgaste para el transporte por reptación, frente a los transportes por saltación y/o suspensión.

5.- Los parámetros de granos leucocráticos, sobretodo los más representativos, traducen una mayor resistencia al desgaste de estos granos, frente a los melanocráticos. Se especula que el desgaste es una función inversa a las densidades. 6.- En definitiva, determinados ambientes sedimentarios como el de las dunas de Maspalomas (Gran Canaria), tienen la suficiente dinámica como para que sus arenas alcancen significativos desarrollos morfoscópicos.

#### CONCLUSIONES EN RELACION CON LAS NATURALEZAS MINERALOGICAS - PETROLOGICAS DE LAS ARENAS

1.- Los componentes bioclásticos determinan la presencia de calcita y aragonito.

2.- Resulta factible determinar la naturaleza litológica de los restantes componentes detríticos, de acuerdo con una metodología basada en las identificaciones mineralógicas por R.X.

3.- La metodología sería aplicable en las identificaciones petrológicas de las arenas de otras dunas litorales y de las playas canarias.

4.- Se obtienen criterios a seguir en las interpretaciones de las naturalezas de las arenas canarias, ante determinadas composiciones mineralógicas que dificultan la metodología.

5.- las arenas de las dunas de Maspalomas, procedentes de la destrucción del relieve, tienen naturaleza fonolítica, aunque la metodología permite que también existan granos de rocas traquíticas.

6.- Sin embargo, criterios oceanográficos, de cartografía geológica regional y climatológicos descartan la existencia de arenas traquíticas.

#### CONCLUSIONES CALCIMETRICAS

1.- Con las arenas de la campaña del 6/10/84, se han obtenido las calcimetrías, mediante el método volumétrico, de muestras globales y de fracciones.

2.- Se estima que el contenido medio en carbonatos oscila alrededor de un 48%. Las laderas de barlovento están algo más carbonatadas que las de sotavento.

3.- Se establecen regresiones logarítmicas entre los porcentajes de carbonatos y los valores granulométricos, tanto para muestras globales como para las fracciones. En estos últimos casos, los coeficientes de correlación toman valores entre 0'96 y 0'99. Todo ello lleva a formular que estas arenas se pueden clasificar como maduras.

4.- La cartografía de los valores calcimétricos se interpreta dentro del contexto dinámico del proceso sedimentario dunar.

#### CONCLUSIONES SOBRE LA DINAMICA SEDIMENTARIA

1.- El campo se clasifica como de dunas actuales y efímeras. Las formas mayoritariamente se encuentran en una fase de madurez geométrica, aunque no de máximo desarrollo.

2.- El diseño del modelo, sobre la dinámica sedimentaria, se obtiene a partir de observaciones, parámetros y análisis:

- meteorológicos,
- de campo,
- fotogeológicos,
- texturales,
- mineralógicos petrológicos,
- calcimétricos y
- estadísticos.

3.- Los condicionantes eólicos, en la dinámica sedimentaria son:

- Los alisios (vientos del NE). Determinan un transporte principal. Los pasillos de sombra eólica traducen la componente promedio de estos vientos dominantes: N 67º E.

- Las brisas marinas del E - SE., implican transportes secundarios. Y

- los vientos del W., en determinadas circunstancias, provocan retrocesos en los depósitos de arenas. Los ocasionales tramos anómalos, de las laderas de barlovento, indican estas pautas dinámicas.

4.- Los condicionantes eólicos determinan un transporte mayoritario de arenas desde el NE, que se distorsiona hacia el NW por los vientos del SE. La resultante sería un transporte de componente N 81º E. Los ocasionales "retrocesos", desde el W, tienden a una homogenización granulométrica del campo dunar.

5.- Los aportes sedimentarios proceden esencialmente de la Playa del Inglés.

6.- La alimentación se inica como aportes reducidos, pero la constancia de éstos equivaldría a una importante disponibilidad de arena.

7.- Los suministros quedarían evaluados por las características y parámetros, en relación con los procesos de sedimentación, de las playas delimitantes.

8.- Para algunos autores, las formas sedimentarias migran a una velocidad media de dos a cinco metros por año.

9.- Se deduce una zona de sombra eólica para los alisios: efecto pantalla del escarpe aluvial.

10.- Diversas cartografías (granulométricas, calcimétricas, fotogeológicas, etc.) revelan este modelo dinámico.

#### CONCLUSIONES REFERENTES A LA GESTION DEL CAMPO DUNAR

1.- La Playa de Las Burras, situada a escasos Km., hacía el NE, del campo, está delimitada por una estructura marítima fija, un espigón, construido en 1.966, en su borde meridional, y por un edificio de considerables dimensiones en su borde occidental.

2.- Estas estructuras están perturbando los procesos sedimentarios de la playa en cuestión. Actualmente, se dispone de datos semi - cuantitativos.

3.- Pero las anteriores perturbaciones repercuten, a su vez, en la alimentación de la Playa del Inglés y, en consecuencia, en los aportes sedimentarios que contribuyen al desarrollo del campo dunar.

4.- Hoy por hoy, solamente se dispone de estimaciones cualitativas de estos impactos.

5.- Perturbaciones como la descrita, pero a otras escalas, provocarían:

a) la degradación de la Playa del Inglés, si los aportes sedimentarios al campo fueran mayores que los que recibiera la playa, al estar estos últimos parcialmente interferidos.

b) la degradación del campo dunar, si la playa no suministrara los suficientes aportes sedimentarios, al encontrarse ésta en situaciones deficitarias, y/o

c) ambas cosas.

En definitiva, se rompería el equilibrio de la dinámica sedimentaria del entorno.

#### CONCLUSIONES REFERENTES A LAS BARRAS MARINAS

1.- Se describen unos depósitos alineados de cantos gruesos, interpretados como barras marinas, dentro del campo dunar, y parcialmente fosilizados por las formas sedimentarias.

2.- En la dinámica de los depósitos habrían intervenido:

- transportes de cantos erosivos por el oleaje,
- oscilaciones de mareas, y/o
- sombras energéticas entre corrientes de deriva de playa.

3.- Las pautas geométricas, en las disposiciones sedimentarias, habrían estado controladas por las evoluciones fisiográficas de paleo - líneas de agua, a partir del escarpe de la llanura aluvial, en el contexto de las regresiones marinas.

4.- Estas tendencias direccionales, de la regresión marina, habrían marcado la configuración de la actual línea de costa de la Playa de Maspalomas.

5.- Se especula con una secuencia de acontecimientos en relación con las barras marinas. Estos, para unos autores, serián posteriores a la glaciación Würm. Otra alternativa cronológica consistiría en iniciar los acontecimientos en la pausa interglaciar entre las dos fases del glaciarismo Würm. La sistemática altimétrica de nomenclatura de líneas costeras (Zeuner, 1.958), corrobora esta última hipótesis.

6.- Se establece una serie de deducciones, en base a un contraste morfoscópico de los cantos de estas barras con los de las formaciones aluviales delimitantes. Con ello, se llega a unos parámetros discriminatorios, para identificaciones de ambientes sedimentarios en el entorno canario.

# BIBLIOGRAFIA

- CALDERON y ARAÑA. 1.984. Areniscas y dunas de las Islas Canarias. Rev. Soc. Esp. Hist. Nat. Actas V, 13.
- GONZALEZ ELVIRA, N. 1.977. Estudio de la vegetación litoral de la zona de Maspalomas. Botánica Macaronésica, nº 4. Las Palmas.
- KLUG, H. 1.968. Morphologischen studien auf den Kanarischen Inseln. Schriften des Geographischen Instituts der Universitat Kiel.
- KRUMBEIN, W. C.; SLOSS, L. L. 1.963. Stratigraphy and sedimentation. London Freeman and Company.
- LABRORESSE, C. 1.976. Estadística. Ejercicios resueltos. Tomo II. Madrid. Paraninfo.
- MARTIN GALAN, GUITIAN AGNETO Y NADAL PERDOMO. 1.978. El sistema de dunas de Maspalomas. Valor científico y reflexión ecologista. Aguayro. Las Palmas.
- MARTINEZ, J. 1.985. Introducción a las dunas litorales de Canarias. I.C.E. Universidad Politécnica de Las Palmas.
- MARTINEZ, J. 1.984. Guía de laboratorio para el estudio de las playas canarias. Primera parte: granulometrías. I.C.E. Universidad Politécnica de Las Palmas.
- NADAL, I.; GUITIAN, C. 1.983. El Sur de Gran Canaria: Entre el turismo y la marginación. Cuadernos Canarios de Ciencias Sociales. Las Palmas.
- NAVARRO VALDIVIESO y otros. 1.978. proyecto para la creación del parque natural "Dunas de Maspalomas". I.C.O.N.A. Las Palmas. Trabajo inédito.
- PRIESMEIER, K. 1.972. Barchane als küstendünen bei Maspalomas auf Gran Canaria. Mitt d. Geogr Ges. München.
- ZEUNER, F.E. 1.958. Lineas costeras del pleistoceno en Las Islas Canarias. An. Est. Atl. 49 - 16.