Rev.Acad.Canar.Cienc., XI (Nums. 1-2), 29-40 (1999)

TENSOR PRODUCT AND I-TWO PARANORMED STRUCTURES
D. K. Bhattacharya and T. Roy

ABSTRACT : The paper generalizes the idea of tensor product of two normed linear
spaces to that of two |-paranormed spaces relative to a given I-paranormed space and
discusses different types of I-paranorms which generate different types of |-two paranorm
structures on the tensor product space. It also considers the tensor product of a Banach
algebra and a complete |-paranormed algebra relative to a given complete I-paranormed

algebra and shows that, in this case, the tensor product is a I-two paranormed algebra.

Keywords : Tensor Product, |-two Paranormed space, I-two Paranormed algebra.

1. INTRODUCTION : The distinction between a homogeneous norm and a
nonhomogenous norm was made by W. Orlicz (1950); he called them a B-norm and a
F-norm respectively. Later on, B. Chaudhury and S. Nanda (1991) called such a
nonhomogeneous norm a paranorm. A. Taylor (1958) defined a metric linear space and L.
Collatz (1966) defined a supermetric space. Moreover, they showed that every metric linear
space or a supermetric space (X, p) was such that p could induce such paranorm p on the
linear space x given by p(x) = p(x, 6) ,8 being the additive identity of X. D. K. Bhattacharya
and T. Roy (1997) defined a |-paranormed space and a I-paranormed algebra and studied
some properties of such an algebra. They also showed that every |-paranormed space
was a paranormed space but the converse was not true. Also, it followed from the
definitions that a normed linear space was not a |-paranorm space. As normed linear
spaces were obviously paranormed spaces, so it was remarked that normed linear spaces
and |-paranormed spaces formed two distinct subsets of the set all paranormed spaces.

This necessitated further study of such |-paranormed spaces and algebras.
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The idea of a two normed space was introduced by W. Orlicz (1950) and the
importance of such a space was subsequently highlighted by A. Alexiewicz and Z.
Semadeni [1954, 1958, 1960] and several others.

The idea of a two normed algebra was given by R. K. Srivastava (1990) while
studying the space of entire Dirichlet series. D. Bhattacharya and S. Manna (1997) defined
a two paranormed space and different types of two paranormed algebras and cited
examples from the set of entire Dirichlet series with different exponents.

Extensive work was done by R. Shattern (1950), A. Grothendieck (1955),
B. Gelbaum (1959), F. Bonsall and J. Duncan (1973) and many others on the tensor
product of two Banach spaces and on that of two Banach algebras. In the latter case, out
of the three possible types of norms on such a space, only one norm viz. projective norm
was an algebra norm. As in the definition of a two normed algebra, both types of norms
were to be algebra norms, so it remained open to investigate whether the tensor product
of two Banach algebras was a two normed algebra.

In the present paper, we answer the question in the affirmative by considering
the tensor product of a Banach algebra and a complete |-paranormed algebra relative to
another complete I-paranormed algebra.

Throughout the paper, we use the definitions and examples as given in [4].

2.SOME NEW DEFINITIONS AND EXAMPLES:
DEFINITION 2.1. Let X be a linear space equipped with two |-paranorms p and P* where
P" is weaker than p. A sequence {x, } c X is said to be Y -convergent to x, € X, if there

exists k > 0 such that sup p(x,)<k<e and p’(x,—X,) >0 asn— .
DEFINITION 2.2. A linear space x equipped with two I-paranorms p and P* (P’ being

weaker than p) is called a I-two paranormed space if convergence of a sequence of x

means its y -convergence. It is denoted by (x p,-p") and is abbreviated as I-TPS.
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DEFINITION 2.3. A sequence {x,} of al-TPS (x p, p) is called a Cauchy sequence if
there exists k > 0 such that sup p(x,)<k<< and if corresponding to €>0, arbitrary
small, there exists a positive int;ger m such that P’(x, -x,)<¢€, for Vp, q2m,

A |-TPS is called ) -complete if every Cauchy sequence is 9 -convergent in

the space.

EXAMPLE 2.1. The class of all real sequences x = {x,} with componentwise addition

. X
and scalar multiplication is a I-TPS if p and P are defined as p(x) = Zlm and
p(x)= 5 zi ( "Tl ) . Other examples of I-TPS are considered in the next two articles.
2" (14+]x,

3. BOUNDED LINEAR MAPS AND I-TWO PARANORM SPACES

DEFINITION 3.1. Let (X, p,). (Y. p,) be two I-paranormed spaces over the field F. A
X

P.(X)

linear map T: X —,Y is said to be bounded if p, (T D <k, V xeX, x#6

(null element of X)

PROPOSITION 3.1. Let B(X, Y) denote the set of all bounded linear maps

T:(X p,)—(Y, p,), Let

X <k V xeX x#0,
P.(x)

(b) p(T)= sup J["' [T (WJJ e M]

(@) p(T) = infk such that P, (T[

Then in both the cases p is a |-paranorm on B(X,Y). Moreover these two p's are same.

PROOF. In order to show that (a) and (b) give I-paranorms of T, we simply verify that in

both the cases.
plaT)<|op(T), |of21

ol (T)<pla T)<p(T), |f<1,0eF
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We have,

ool i) e

X
<|of k where T|——|| € k, Vx£60.
i whers 7 (55
So p|aT [—X—J < | o¢ | k for some suitable | o | < |o]-
P.(x) ,
and hence for [o] > 1, p(a T)=inf | a’ | k=| o’ | inf k
=| o | B(T) < o] (T)
Again for |of=1, p(a T)=p(T).

So, p(a T)<|of p(T), |of21.

Again | Py[ [p ")D < p,[a T(B%(SD < py[T[p:((x)n, laf< 1,V x=6.
So,p,( (X ]<k <k, |fp( x’(‘x)nsk,v“e.

Hence, p(a T) = inf k’ < inf k = p(T) (when lof < 1)'

Thuswhen |of < 1, pla T) < p(T).

posnjinr ;2] <o 525

= lofp,|T (TJ < inf K’ such that py[aT (;%D < K
= o7 (52| = e

X

= ( p(XJ — paT), Vx£0 (ax0)
= p(T):lnf(Mp((xT) — plaT)

i.e, |of (T) < p(aT) < p(T) when |of < 1.
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So, p is a I-paranorm defined by (a). Further, for the case (b) we have,

AaT) = sup py{aT [(ﬁ")m < Jof sup pY[T (p_’(‘;_))] if lof > 1
Also o] sup py[T (5%5)] < sup py|:a T (52((7)]} < sup py[T (p:((X)]J it of < 1

So p(a T) < |of p(T) if |of > 1.
lof p(T) < p(a T) < p(T)if |of < 1.

Thus p is a |I-paranorm for the case (b) also.

To show that the above two I-paranorms are same,
let us denote the right hand sides of (a) and (b) by M, and M,,
Obviously, M, < M,. Again, from (b) it follows that

X
py[T (mn < M, so that from (a) we have M, > M,.

Hence M, =M, = p(T).

PROPOSITION 3.2. p'(T) = sup {P, (T(); p(x) < 1} is a l-paranorm on B(X, Y) and
p'(T) < p(T), VTe B(X V)

PROOF : p’(T) is obviously a I-paranorm on B (X, Y). Now we show that P'(T) < N(T).

First we see that S = {x e X/ p(x) < 1}

cS,={{0}u{;:((—x)},x¢0,xeX}

In fact, for those x which satisfy P.(x) < 1,

x |o_1_ X) =1, x
”*(m)‘pxx)'p*” e %0

Butall ¥ € X, ¥ = 5% , X € X, x#0 may not satisfy P,(X) < I:

In fact, for these X' = —— for which p.(x) > 1,

P«(X)
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(x)

This implies that p,(x’) can never be less than or equal to 1.

1 < p(x) = p,(%) < pu(x).

So p’(T) < p(T) where p(T) is a I-paranorm given by (b).

PROPOSITION 3.3. Let B be the set of all bounded linear transformations

T:(X,p) = (Y, p,) where (X, p,) and (Y, p,) are both I-paranormed spaces.
Let P°(T) = sup {p,(T (¥)), x € X, p,(x) < 1}and

p(T) = sup {py[T [ﬁ)) X e X, xtel

Then (B, p, p*) is a I-two paranormed space.

4. BOUNDED LINEAR MAPS AND I-TWO PARANORMED SPACES
DEFINITION 4.1. Let(X, p), (Y, P,). (Z, p,)be three |-paranormed spaces. Let ¢ : X x Y — 2Z
be a bilinear map, ¢ is said to be bounded if there exists

= LM

Vxe X,VyeY, x0,y=#0.
The set of all such bounded bilinear maps is denoted by B (X, Y; Z)

PROPOSITION 4.1.
Let X, Y, Z, ¢ be given as in definition 4.1.

Then (B, p, p) is a I-two paranormed space, where

P'(®) = sup {p.(0 (x¥)) . P.(¥) < 1. p,(¥) < 1}

p(¢) = squ {P;[‘P [ﬁ ! ﬁ)), X£0, y;ee}_

are two I-paranorms on (é, P, p‘),
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5. TENSOR PRODUCT AND I-TWO PARANORMED ALGEBRA
5.1. TENSOR PRODUCT OF TWO I-PARANORMED SPACES W.R.T. ANOTHER
I-PARANORMED SPACE

DEFINITION 5.1.

Let (X, p), (Y, py), (Z, p,) be I-paranormed spaces over F.

Let X, denote the set of all bounded linear maps from X to Z and let v’ denote the set of
all bounded linear functionals on Y. Let B (X,, Y’ ; Z) denote the set of all bounded bilinear
maps from X, xY’'—5Z. Given x € X,y € Y, let x®y denote an element of
B (X, Y’; Z) defined by (x®y) (f, g) = g(x) f(y) for all 1-1 maps fe X,andg e Y.
Then (X®Y),, the algebraic tensor product relative to Z, is defined by the linear span of
{x®y, x e x,y e Y} inB(X, Y'; Z). When Xand Y are both normed linear spaces
over F, the usual algebraic tensor product of X and Y follows by taking Z = F.

The following propositions now easily follow :

PROPOSITION 5.1.
Givenu € X ® Y, there exists linearly independent sets {x} = X, {y} < Y,

n

i=1,23,...n suchthatu = >, x®y,

i=1

PROPOSITION 5.2.

Ifu = Z X @y, =0, where { x } is a linearly independent set, theny, = 0; i = 1,2,...n.

PROPOSITION 5.3.
If{x},i=12,..mand{ y;},i=1.2,...n be two linearly independent subsets of Xand,
then {x ®y,} is a linearly independent subset of x®Y .

The above propositions lead to the following
THEOREM 5.1. Let X, Y, Z be three |-paranormed spaces over F and let

v : (X®Y) - XxY be a bilinear map. Then corresponding to each bilinear map

¢: XxY—2Z, there exists a unique linearmap ¢ : (X®Y), —» Z suchthat¢ = coy.
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PROPOSITION 5.4.
Let X, Z be two complete I-paranormed algebras over F and let Y be a Banach algebra

over F. Let X denote the set of all bounded linear maps from Xto Z. Let

Z x®y, € (X®Y) andw’, p": (X®Y) >R be defined as.

U)—sup(2|9

e ()il ol < 10,0 < 1

p(u) = inf[ Z | .| sup {p.(f (x)): p(F) < 1. e X})

where the infimum is taken over all finite representations of u.

Then w" and p” are both I-paranorms on (X®Y), and w'(u) < p'(u), 7u e (X2Y) .

rersitaria, 2017
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PROOF : Obviously w*and P are |-paranorms on (X ®Y). .

We simply verify that w'(u) < p(u).

2
£
S
g
i<l
g
<
=
5
H
£
N
T

NowZ | av) |puf(x) < [ o] Z FAEXEY)

o, (£ | o[ 2t 0,0 < 1. [ o] = 1)
<ol (3 et p0 s 1. To] <)

< (Z | Ra(F%)) : B () < 1) S

So, w(u) = s,f‘gp{ Z, |

Hence w'(u) < inf{ zl || sup (P.f(x)) : p,,(f) < 1 }

x):lef st

. “ sup (P,(f(xe))' P (f) < l) }

IN
—
(O—

p'(u)

where the infimum is taken over all finite representations of u. Thus w’(u) < p’(u).
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PROPOSITION 5.5.

Let X, Y, Z, X, be defined as in proposition 5.4.

fx) | 3 _ |
o] ol < 1,00 2 1,12,

mwM=WL§MMw&LX%DmmSLHm]

where infimum is taken over all finite representations of u. Then w and p are both

Let w(u) = sup
fo

I-paranorms on (X ®Y), such that

(i) w(u) < p(u), Yue X®Y.

Further (i) w'(u) < w(u) and p*(u) < p(u).

PROOF : (i) is proved as in prop. 5.4. and (ii) and (iii) follow from definitions.

PROPOSITION 5.6.
Let X, Y, Z be defined as in prop. 5.4. Let X, denote the set of all bounded linear algebra
homomorphisms from X to Z.

Let p* be defined as in prop. 5.4. then ((X®Y),, p") is a I-paranormed algebra.

PROOF : We simply verify that p(uv) < p’(u) p’(v), Yu, v € (X®Y),.

n

Letu = i x®y ;v =Y x®y,.
i=1

i=1
n

Then uv = i Y xx®y,y,

i=1 j=1

p’(uv) = inf {

> | vy, | sup (p(x x): t € X, p, (1) = 1)}

i=1 j=1

<ot 3 3 |nlln] e o) 16) .00 < 1

i=1j=1

(as f is an algebra homomorphism)

<o 5 5 [nl]n] e stx) s oits) 0.0 < 1)

i=1j 1
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= inf { i " y, || sup p.(f(x)); p, (f) < 1} X inf{ i. “ Y, " sup p.f(x); P, (f) < 1}

= p'(u) p'(v)-

PROPOSITION 5.7.

Let X, Y, Z, f be defined as in prop. 5.6. and p be defined as in proposition 5.5.
Then ((x ®Y), p) is a |-paranormed algebra.

PROOF : We verify that p(uv) < p(u) p(v), Y u, ve (X®Y),.
Now it follows from the definition of p(uv) that we are to consider only those
fe X, for which p,f(x x) < 1.

As P,(f(x %)) < p.(f(x)) p.(f(x)), so without any loss of generality, we may assume that
p.1x)) = 1. pi(f(x)) = 1.

Now p(uv) = " [2} " Y. Y, ” sup Px[f[pz (;Z:X,-))); pf(xx) <1, f¢9,zﬂ

R Co s A

- w3 )

<or(2 | nl] ]

= inf | % [y v, ] sup p.(f(x)) sup p.(f(x)): p..(F) < l]

[as sup p,f(x) = 1 = sup p,(f(xj))]

=inf(2i || Y, || sup (p.f(x) : p,,(f)<1, feXz) x inf(zj " Y, " sup p.f(x,) ; p,, ()<L, feX,)
- P PY) S PU) PY)-

This completes the proof.
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5.2. L-TWO PARANORMED ALGEBRA

DEFINITION 5.2.

A I-two paranormed space (X, p, p*) over F where X is also an algebra over F is called
a I-two paranormed algebra (abbreviated as |-TPA)

if Vx,yeX, p(xy) < p(x)p'(y) andp(xy) < p(x) p(y)-

From propositions 5.4. - 5.7. the following result readily follows :

THEOREM 5.2.
Let X, Z be two I-paranormed algebras over F. Let Y be a normed algebra over F. Then

(x®Y),, p, p°) is a I4wo paranormed algebra over F where p", p: (X®Y) >R are

defined respectively as P'(u) = inf (i " Y, " sup [Pz(f(xi))' P.(f) < 1, fEXzD

p(u) = inf 2 | v.| sue {p,[p(fx'))]]. p.(f) < 1,126, |

infimum being taken over all finite representations of U € (X®Y),, u = ¥ x®y,,

CONCLUDING REMARKS :

1. Alinear map between two I-paranormed spaces is bounded if it is continuous. But the
converse is not true.

2. Unlike the space of bounded linear maps between two normed linear spaces, the
space of bounded linear maps between two |-paranormed spaces is a two normed space
only because there exist two distinct nonequivalent norms in the latter case, which,
however, coincide in the former case.

3. The presence of two nonequivalent norms ultimately resulted in the introduction of two
distinct algebra I-paranorms on the corresponding tensor product of |-paranormed

algebras.

39

iversitaria, 2017

© Del documento, de los autores. Digitalizacion realizada por ULPGC. Biblioteca Uniy



REFERENCE

1.

10.

1.

Alexiewicz, A

Alexiewicz, A

Alexiewicz, A
and Semadeni, Z

Bhattacharya, D.K.

and Roy, T

Bhattacharya, D.K.

and Manna,S.
Bansall , F.F.
and Duncan, J
Chaudhury, B
and Nanda, S -
Collatz, L

Orliez, W

Srivastava, R.K.

Taylor, AE.

On two norm convergence - Studia Math.

14 (1954) pp. 49-56.

Linear functionals on two norm spaces-studia
Math. 17 (1958), pp. 121-140.

Some properties of two norm spaces and charac-
terisation of reflexivity of Banach spaces-studia
Math. 19(1960), 115-132.

Regular and singular elements of a complete metric
paraalgebra and a metric para-semialgebra
(communicated) 1997. Rev. Acad. Canaria Cienc.
Two paranorm and the set of all entire Dirichlet
series, communicated (1997), REVISTA DE LA
ACADEMIA CANARIA DE CIENCIAS.

Complete normed algebra, springer verlag, Berlin,
Heidelburg, New York, 1973.

Functional Analysis with applications - Wiley
Eastern Ltd., New Delhi, Bombay, Calcutta, 1991.
Functional analysis and Numerical Mathematics -
Academic Press, New York and London, 1996.
Linear operations in saks spaces-I. Studia Math.
11 (1950), 237-272.

Functional Analysis structures for various class

with of entire Dirichlet series with variable sequence of
exponents-Bulletin of Institute of Math-Academic Sinica,

vol. 18, No. 3, June, 1996.
Introduction to Functional Analysis - John Willey
and Sons, Inc. New York, London, 1958.

Department of Pure Mathematics

35, Ballygunge Circular Road

University of Calcutta

Calcutta - 700 019, INDIA

40

realizada por ULPGC. Biblioteca Univ

g
|
l
a

4
£
£
3
£

£

g

£

3

8
3
2
o





