PADE-TYPE APPROXIMANTS FOR A FORMAL LAURENT SERIES

M. Camacho and P. González-Vera
Departamento de Análisis Matemático
Universidad de La Laguna

Abstract

In this paper, we obtain the Laurent Padé Approximats (LPA) to a given formal Laurent series, as a Laurent Padé-Type Aproximant (LPTA) of higher order, in a similar way as the process carried out by Brezinski ([1]), for the classic case. For this purpose a new concept of Padé-Type Approximant to a Laurent series is introduced.

Keywords: Padé-Type Approximants, Formal Laurent series, Laurent polynomials. AMS Classification: 40G; 41

1. PRELIMINARY CONSIDERATIONS.

Let $\left\{c_{k}\right\}_{-\infty}^{\infty}$ be a bi-infinite sequence of complex numbers, and L the set of all the formal series $G(z)$ of the form,

$$
\begin{equation*}
G(z)=\sum_{-\infty}^{\infty} c_{k} z^{k} \tag{1.1}
\end{equation*}
$$

We shall denote by π_{n} the linear space of the polynomials of degree n at most, and by $\Pi=U \Pi_{n}$ the space of all polynomials. For every pair of integers p, q with $\mathrm{p} \leq \mathrm{q}$, we shall denote by $\Lambda_{\mathrm{p}, \mathrm{q}}$ the linear space of the Laurent polynomials (L-polynomials) or functions of the form

$$
L(z)=\sum_{j=p}^{q} \alpha_{j} z^{j}
$$

and $\Lambda=U \Lambda_{p, q}$ the linear space of all L-polynomials (obviously $\Pi_{n}=\Lambda_{0, n}$).
For each $\mathrm{p}, \mathrm{q} \in \mathbb{Z}$ with $\mathrm{p} \leq \mathrm{q}$, the projection operator is defined by

$$
\begin{equation*}
\Pi_{\mathrm{p}: \mathrm{q}} \mathrm{G}(\mathrm{z})=\sum_{j=\mathrm{p}}^{\mathrm{q}} \mathrm{c}_{\mathrm{J}} \mathrm{z}^{\mathrm{j}} \tag{1.2}
\end{equation*}
$$

For a formal Laurent series, if the nonzero coefficients extend only to one side, which can be $+\infty$ or $-\infty$, it is necessary to have a notation to indicate which part of the formal Laurent series is zero. So, the notations O_{+} and O need to be defined as follows

$$
\begin{aligned}
& G(z)=o_{+}\left(z^{m}\right) \Leftrightarrow \Pi_{-\infty: m-1} G(z)=0 \Leftrightarrow G(z)=\sum_{j=m}^{\infty} c_{j} z^{j} \\
& G(z)=o_{-}\left(z^{m}\right) \Leftrightarrow \Pi_{m+1: \infty} G(z)=0 \Leftrightarrow G(z)=\sum_{-\infty}^{m} c_{j} z^{J}
\end{aligned}
$$

being $G(z) \in L$.
As a natural extension of the classical concept of Padé Approximant to a
formal power series, in [5] the so-called Laurent Padé Approximants (LPA) to a formal Laurent series have been defined. On the other hand Bultheel, in [2] makes an algorithmic and algebraic study for such those approximations. Indeed, splitting $G(z)$ in two, that is $G(z)=G^{(0)}(z)+\hat{G}^{(0)}(z)$, being

$$
\begin{align*}
& G^{(0)}(z)=c_{0} / 2+\sum_{k=1}^{\infty} c_{k} z^{k} \tag{1.3a}\\
& \hat{G}^{(0)}(z)=c_{0} / 2+\sum_{k=1}^{\infty} c_{-k} z^{-k} \tag{1.3b}
\end{align*}
$$

we have first the following

Definition 1 ([2], p.26)
Let m and n be nonnegative integers and the rational functions $R(z)=\frac{P_{m}(z)}{Q_{n}(z)}$; $\hat{R}(z)=\frac{\hat{P}_{m}(z)}{\hat{Q}_{n}(z)}$, where $P_{m}(z), Q_{n}(z), \hat{P}_{m}(z), \hat{Q}_{n}(z) \in \Lambda$, such that

1) $Q_{n}(z) \in \Lambda_{0, n}$ and $\hat{Q}_{n}(z) \in \Lambda_{-n, 0}$
2) $G^{(0)}(z)-R(z)=O_{+}\left(z^{m+n+1}\right)$
3) $\hat{G}^{(0)}(z)-\hat{R}(z)=O_{-}\left(z^{-(m+n+1)}\right)$
4) $R(z)+\hat{R}(z)$ is equivalent with the quotient of L-polynomials $P(z) / Q(z)$, with $P(z) \in \Lambda_{-m, m}$ and $Q(z) \in \Lambda_{-n, n}$. We shall then call the pair $(R(z), \hat{R}(z))$ a Laurent Padé Approximant (LPA) of type (m, n).

These approximants are obviously an extension of the classic Padé Approximants because the Laurent expansion of $R(z)+\hat{R}(z)$ matches the coefficients of z^{k} in L for $|k| \leq m+n$.

On the other hand, as is well known, Padé-Type Approximants (PTA) are an special interesting case in the study of the rational approximations, because of the free election of the denominator mean, that a lesser number of coefficients in the initial series is required to be known. Such approximants used to provide, in some cases, better estimations than Padé Approximants (see [1] for more details).

Thus, we can also consider rational approximants to $F(z)$ with a given denominator in the sense of the following

Definition 2
Let m and n be nonnegative integers and $Q_{n}(z) \in \Lambda_{0, n}, \hat{Q}_{n}(z) \in \Lambda_{-n, 0}$ two given L-polynomials. The pair $(R(z), \hat{R}(z))$ where $R(z)=\frac{P_{m}(z)}{Q_{n}(z)} ; \hat{R}(z)=\frac{\hat{P}_{m}(z)}{\hat{Q}_{n}(z)}$, is a Laurent Padé-Type Approximant (LPTA) of type (m, n) for $F(z)$ if the following conditions are satisfied

1) $P_{m}(z), \hat{P}_{m}(z) \in \Lambda$
2) ${\underset{G}{m}}^{(0)}(z)-R(z)=O_{+}\left(z^{m+1}\right)$
3) $\hat{G}^{(0)}(z)-\hat{R}(z)=O_{-}\left(z^{+(m+1)}\right)$
4) $R(z)+\hat{R}(z)$ is equivalent with $\tilde{P}(z) / \tilde{Q}(z)$, where $\tilde{P}(z) \in \Lambda_{-m, m}$ and $\tilde{Q}(z) \in \Lambda_{-n, n}$.
$\tilde{Q}(z)$ will be called the generating L-polynomial of the approximant. Such approximants have been studied by us from an algebraic point of view (see [3], [4]).

In this paper, we shall obtain the LPA as a LPTA of higher order, making use of an analogous process followed in [1] for the classic case. For this purpose it is necessary to define the concept of Padé-Type Approximant to a Laurent series in a similar way as that used by Bultheel in [2].

2. PADE-TYPE APPROXIMANTS TO A FORMAL LAURENT SERIES.

In ([2], p.25) the concept of Padé Approximant for a Laurent series was defined as follows

Definition 3

Let m and n be integers and $n \geq 0$, then the pair $\left(A_{m}(z) / B_{n}(z)\right.$) with $B_{n}(z) \in \Pi_{n}$ and $A_{m}(z)=O_{-}\left(z^{m}\right)$ is a Pade Approximant of type (m, n) for the formal Laurent series (1.1) and we shall denote by $P A_{L}$, if

$$
\begin{equation*}
G(z) B_{n}(z)-A_{m}(z)=O_{+}\left(z^{m+n+1}\right) ; B_{n}(0) \neq 0 \tag{2.1}
\end{equation*}
$$

Observe that $A_{m}(z) / B_{n}(z)$ should be understood as a notation for a pair of elements rather as a quotient.

In the particular case in which $c_{k}=0$ for $k=-1,-2, \ldots$ (that is, $G(z)$ is a formal power series) and $m \geq 0$ then $A_{m}(z) \in \Pi_{m}$ and the pair $\left(A_{m}(z) / B_{n}(z)\right.$) coincides with the classic [m/n] PA for $G(z)$.

It can be easily seen that a necessary and sufficient condition for the existence of $A_{m}(z)$ and $B_{n}(z)$ (except a multiplicative factor) is $\left|T_{n}^{(m)}\right| \neq 0$, $m \in \mathbb{Z} ; n \in \mathbb{N}, T_{n}^{(m)}$ being the Toeplitz matrices represented by

$$
T_{n}^{(m)}=\left(c_{m+1-1}\right)_{1, j=0}^{n}=\left[\begin{array}{cccc}
c_{m} & c_{m-1} & \cdots \cdots & c_{m-n} \\
c_{m+1} & c_{m} & \cdots \cdots & c_{m-n+1} \\
& \vdots & & \vdots \\
c_{m+n} & c_{m+n-1} \ldots \ldots & c_{m}
\end{array}\right]
$$

In such case it will be said that $G(z)$ is a normal series.
Since we have only taken into account in the correspondence conditions the increasing character (i.e. toward $+\infty$) we might wonder if an alternative definition with decreasing correspondence conditions (toward $-\infty$) could be
given. In this way, the rational approximants defined in (2.1) will be called Padé Approximants in an increasing sense. Thus, to define the $P A_{L}$ in decreasing sense the so-called dual series $F(z)$ to $G(z)$ will be required. Thus we have

$$
F(z)=\sum_{-\infty}^{\infty} d_{k} z^{k} \quad \text { with } d_{k}=c_{-k}, k \in \mathbb{Z}\left(F(z)=G\left(z^{-1}\right)\right)
$$

and if we denoted by $S_{n}^{(m)}=\left(d_{m+1-j}\right)_{1, J=0}^{n}=\left(c_{-m-1+J}\right)_{1, j=0}^{n}$ we have first the following

Proposition 1

$G(z)$ is normal iff $F(z)$ is normal too.
Proof.
One has

$$
\begin{array}{r}
\left(S_{n}^{(m)}\right)^{T}=\left(d_{m+j-1}\right)_{1, j=0}^{n}=T_{n}^{(-m)}, \text { henceforth }\left|S_{n}^{(m)}\right|=\left|\left(S_{n}^{(m)}\right)^{T}\right|=\left|T_{n}^{(-m)}\right| ; \\
m=0, \pm 1, \pm 2, \ldots ; n=0,1,2, \ldots
\end{array}
$$

and the proof follows.

Let $\left(\bar{A}_{m}(z) / \bar{B}_{n}(z)\right)$ be the $P A_{L}$ of type (m, n) in increasing sense for $F(z)$, with

$$
\bar{A}_{m}(z)=O_{-}\left(z^{m}\right)=\sum_{-\infty}^{m} \bar{a}_{j} z^{j} \text { and } \bar{B}_{n}(z)=\sum_{j=0}^{n} \bar{b}_{j} z^{j} ; \bar{B}_{n}(0)=\bar{b}_{0} \neq 0
$$

then, by (2.1) we have

$$
F(z) \bar{B}_{n}(z)-\bar{A}_{m}(z)=O_{+}\left(z^{m+n+1}\right)
$$

Thus,

$$
F\left(z^{-1}\right) \bar{B}_{n}\left(z^{-1}\right)-\bar{A}_{m}\left(z^{-1}\right)=O_{-}\left(z^{-(m+n+1)}\right)
$$

and consequently if we write

$$
\tilde{\mathrm{B}}_{\mathrm{n}}(\mathrm{z})=\overline{\mathrm{B}}_{\mathrm{n}}\left(z^{-1}\right) \text { and } \tilde{\mathrm{A}}_{\mathrm{m}}(z)=\overline{\mathrm{A}}_{\mathrm{m}}\left(z^{-1}\right)=O_{+}\left(z^{-m}\right)
$$

it follows that

$$
G(z) \tilde{B}_{n}(z)-\tilde{A}_{m}(z)=O_{-}\left(z^{-(m+n+1)}\right)
$$

The pair $\left(\tilde{A}_{m}(z) / \tilde{B}_{n}(z)\right)$ it will be called the $P A_{L}$ in decreasing sense of type (m, n) for $\mathrm{G}(\mathrm{z})$ the following immediately holds

Proposition 2

The pair $\left(\tilde{A}_{m}\left(z^{-1}\right) / \tilde{B}_{n}\left(z^{-1}\right)\right)$ coincides with the $P A_{L}$ in increasing sense for the dual series $F(z)$.

Proof.
It is enough to take into account the unicity property of the PA for G(z).

In [2], connection between the LPA and PA (see [2], Theorems 4.2 and 4.3) is exhibited. On the other hand, if $(R(z), R(z))$ represents the LPA of type (m, n) for $G(z)$ and $(S(z), \hat{S}(z))$ is the LPA of type (m, n) for the dual series $F(z)$, then we have

Proposition 3
$\left(\hat{R}\left(z^{-1}\right), R\left(z^{-1}\right)\right)$ coincides with ($\left.S(z), \hat{S}(z)\right)$
Proof.
Since $(R(z), \hat{R}(z))$ is the LPA for $G(z)$, and from conditions 2 and 3 in the Definition 1 we have,

$$
\begin{align*}
& G^{(0)}\left(z^{-1}\right)-R\left(z^{-1}\right)=O_{+}\left(\left(z^{-1}\right)^{m+n+1}\right)=O_{-}\left(z^{-(m+n+1)}\right) \tag{2.2a}\\
& \hat{G}^{(0)}\left(z^{-1}\right)-\hat{R}\left(z^{-1}\right)=O_{-}\left(\left(z^{-1}\right)^{-(m+n+1)}\right)=O_{+}^{\left(z^{m+n+1}\right)} \tag{2.2b}
\end{align*}
$$

Now, taking $F(z)=F^{(0)}(z)+\hat{F}^{(0)}(z)$, with

$$
F^{(0)}(z)=c_{0} / 2+\sum_{k=1}^{\infty} c_{-k} z^{k} \quad \text { and } \quad \hat{F}^{(0)}(z)=c_{0} / 2+\sum_{k=1}^{\infty} c_{k} z^{-k} \text {, we have }
$$

$G^{(0)}\left(z^{-1}\right)=\hat{F}^{(0)}(z)$ and $G^{k=1}(0)\left(z^{-1}\right)=F^{(0)}(z)$ and replacing in (2.2) one has that the pair $\left(\hat{R}\left(z^{-1}\right), R\left(z^{-1}\right)\right.$) constitutes the LPA for the dual series $F(z)$.

From the two last propositions we can conclude that it does not matter which definition of $P A_{L}$ (increasing or decreasing) can be taken. We shall consider throughout the paper the $P A_{L}$ in the increasing sense.

Now, as a new extension of the classical concept of Padé-Type Approximant we shall define this one for a Laurent series, as follows

Definition 4

Let m and n be integers with $n \geq 0$, and the polynomial $B_{n}(z) \in \Pi_{n}$ with $B_{n}(0) \neq 0$. The pair $\left(A_{m}(z) / B_{n}(z)\right)$, being $A_{m}(z)=O_{-}\left(z^{m}\right)$, is said to be a Padé-Type Approximant of type (m, n) for the formal Laurent series (1.1) with generator polynomial $B_{n}(z)$ and we shall represent it by PTA A_{L}, if

$$
\begin{equation*}
G(z) B_{n}(z)-A_{m}(z)=O_{+}\left(z^{m+1}\right) ; \tag{2.3}
\end{equation*}
$$

It is readily seen that the coefficients of $A_{m}(z)$ can be obtained from the coefficients of the series and from the generator polynomial. Indeed, if we write $A_{m}(z)=\sum_{-\infty}^{m} a_{j} z^{j}$ and $B_{n}(z)=\sum_{j=0}^{n} b_{j} z^{j}$ by (2.3), then the coefficients are given by

$$
\begin{equation*}
a_{j}=\sum_{k=0}^{n} c_{J-k} b_{k}, \quad j=\ldots, m-2, m-1, m \tag{2.4}
\end{equation*}
$$

When $m \geq 0$ and $G(z)$ is a formal power series ($c_{k}=0$ if $k \leq-1$), then by (2.4), one has, $a_{j}=0$ for $j \leq-1$, that is, $A_{m}(z) \in \Pi_{m}$ and the pair $\left(A_{m}(z) / B_{n}(z)\right)$ takes sense as a quotient, and represents the (m / n) PTA for the formal power series
$G(z)$ with denominator $B_{n}(z)$.
On the sequel we shall show how an LPTA can be deduced from two PTA. For that, we shall use a more general decomposition than (1.3) for $G(z)$. So if $m \in \mathbb{Z}$, then we write

$$
\begin{equation*}
G(z)=G^{(m)}(z)+\hat{G}^{(m)}(z) \tag{2.5a}
\end{equation*}
$$

with $G^{(m)}(z)=1 / 2 c_{m} z^{m}+\sum_{k=m+1}^{\infty} c_{k} z^{k}$ and $\hat{G}^{(m)}(z)=1 / 2 c_{m} z^{m}+\sum_{-\infty}^{m-1} c_{k} z^{k}$

Theorem 1.

a) Let $\left(P_{n}^{(m)}(z) / Q_{n}^{(m)}(z)\right)$ be a PTA A_{L} of type $(m+n, n)$ for the normal series (1.1) being $Q_{n}^{(m)}(z) \in \Pi_{n}$ its generator polynomial such that $Q_{n}^{(m)}(0)=1$, and define $A_{n}^{(m)}(z)$ by

$$
\begin{equation*}
z^{m} A_{n}^{(m)}(z)=P_{n}^{(m)}(z)-\hat{G}^{(m)}(z) Q_{n}^{(m)}(z) \tag{2.6a}
\end{equation*}
$$

Then $A_{n}^{(m)}(z)$ is a polynomial of degree n and $R_{n}^{(m)}(z)=\frac{A_{n}^{(m)}(z)}{Q_{n}^{(m)}(z)}$ is a (n/n) PTA to the formal series $z^{-m} G^{(m)}(z)$.
b) If $\left(\hat{P}_{n}^{(m)}(z) / \hat{Q}_{n}^{(m)}(z)\right)$ is a PTA L_{L} of type (m-1,m) for $G(z)$ with generator polynomial $\hat{Q}_{n}^{(m)}(z)$, then $\hat{R}_{n}^{(m)}(z)=\frac{z^{-n} \hat{A}_{n}^{(m)}(z)}{z^{-n} \hat{Q}_{n}^{(m)}(z)}$ represents a (n/n) PTA to the formal power series $z^{-m} \hat{G}^{(m)}(z)$. Now $\hat{A}_{n}^{(m)}(z)$ is given by

$$
\begin{equation*}
z^{m} \hat{A}_{n}^{(m)}(z)=\hat{G}^{(m)}(z) \hat{Q}_{n}^{(m)}(z)-\hat{P}_{n}^{(m)}(z) \tag{2.6b}
\end{equation*}
$$

Proof.
a) If we denote by $E_{n}^{(m)}$ the residual of the PTA ${ }_{L}\left(P_{n}^{(m)}(z) / Q_{n}^{(m)}(z)\right)$, then

$$
E_{n}^{(m)}(z)=G(z) Q_{n}^{(m)}(z)-P_{n}^{(m)}(z)=O_{+}\left(z^{m+n+1}\right)
$$

hence, by (2.5),

$$
E_{n}^{(m)}(z)=\left[G^{(m)}(z)+\hat{G}^{(m)}(z)\right] Q_{n}^{(m)}(z)-P_{n}^{(m)}(z)
$$

and consequently,

$$
\begin{equation*}
G^{(m)}(z) Q_{n}^{(m)}(z)-E_{n}^{(m)}(z)=P_{n}^{(m)}(z)-\hat{G}^{(m)}(z) Q_{n}^{(m)}(z) \tag{2.7a}
\end{equation*}
$$

 the left-hand side of $(2.7 \mathrm{a})$ is $O\left(z^{\mathrm{m}}\right)$, meanwhile the right-hand side is $O_{-}\left(z^{m+n}\right)$, thus (2.7a) represents a polynomial of degree $m+n$, denoted by $z^{m} A_{n}^{(m)}(z)$, with $A_{n}^{(m)}(z) \in \Pi_{n}$, hence

$$
\begin{equation*}
z^{m} A_{n}^{(m)}(z)=G^{(m)}(z) Q_{n}^{(m)}(z)-E_{n}^{(m)}(z) \tag{2.7b}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{(m)}(z) Q_{n}^{(m)}(z)-z^{m} A_{n}^{(m)}(z)=E_{n}^{(m)}(z)=O_{+}\left(z^{m+n+1}\right) \tag{2.8}
\end{equation*}
$$

After dividing by $z^{m} Q_{n}^{(m)}(z)$ we get

$$
\begin{equation*}
z^{-m} G^{(m)}(z)-\frac{A_{n}^{(m)}(z)}{Q_{n}^{(m)}(z)}=O_{+}\left(z^{n+1}\right) \tag{2.9}
\end{equation*}
$$

which proves that $\frac{A_{n}^{(m)}(z)}{Q_{n}^{(m)}(z)}$ is an (n / n) PTA to the series $z^{-m} G^{(m)}(z)$
b) Let now $\left(\hat{P}_{n}^{(m)}(z) / \hat{Q}_{n}^{(m)}(z)\right.$) be a PTA ${ }_{L}$ for $G(z)$ of type (m-1,n), and denote by $\hat{E}_{n}^{(m)}(z)$ the residual, then we have

$$
\begin{equation*}
\hat{E}_{n}^{(m)}(z)=\left[G^{(m)}(z)+\hat{G}^{(m)}(z)\right] \hat{Q}_{n}^{(m)}(z)-\hat{P}_{n}^{(m)}(z)=o_{+}\left(z^{m}\right) \tag{2.10a}
\end{equation*}
$$

Hence,

$$
\hat{E}_{n}^{(m)}(z)-G^{(m)}(z) \hat{Q}_{n}^{(m)}(z)=\hat{G}^{(m)}(z) \hat{Q}_{n}^{(m)}(z)-\hat{P}_{n}^{(m)}(z)
$$

being the left-hand side $O_{+}\left(z^{m}\right)$ and the right-hand side $O_{-}\left(z^{m+n}\right)$, and therefore

$$
\begin{equation*}
z^{m} \hat{A}_{n}^{(m)}(z)=\hat{G}^{(m)}(z) \hat{Q}_{n}^{(m)}(z)-\hat{P}_{n}^{(m)}(z) \tag{2.10b}
\end{equation*}
$$

with $\hat{A}_{\mathrm{n}}^{(\mathrm{m})}(\mathrm{z}) \in \Pi_{\mathrm{n}}$. Consequently

$$
\begin{equation*}
\hat{G}^{(m)}(z) \hat{Q}_{n}^{(m)}(z)-z^{m} \hat{A}_{n}^{(m)}(z)=\hat{P}_{n}^{(m)}(z)=O_{-}\left(z^{m-1}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{-m} \hat{G}^{(m)}(z)-\frac{z^{-n} \hat{A}_{n}^{(m)}(z)}{z^{-n} \hat{Q}_{n}^{(m)}(z)}=O_{-}\left(z^{-n-1}\right) \tag{2.12}
\end{equation*}
$$

and the proof follows.

For the sake of simplicity, if we set $\mathrm{m}=0$ then one has

Corollary 1

Under the same conditions as in Theorem 1, the pair

$$
\left(\frac{A_{n}^{(0)}(z)}{Q_{n}^{(0)}(z)}, \frac{z^{-n} \hat{A}_{n}^{(0)}(z)}{z^{-n} \hat{Q}_{n}^{(0)}(z)}\right)
$$

represents a LPTA of type (n, n) for the series $G(z)$.
Proof.
Use Theorem 1 and Definition 2 .

As a result, we have seen how from two PTA ${ }_{L}$ of types $(-1, n)$ and (n, n) we can obtain an LPTA of type (n, n) for the same formal Laurent series $G(z)$.

3. HIGHER ORDER APPROXIMANTS

Since to obtain the LPTA for a formal Laurent series $G(z)$ we need two arbitrary polynomials $Q_{n}^{(0)}(z)$ and $\hat{Q}_{n}^{(0)}(z)$, we might think how to choose these ones, so that the order of correspondence were increased as much as possible. Thus, the so-called higher order approximant arise (see [1]). On the sequel, when $\mathrm{m}=0$, upperindex (0) will be deleted.

Let us suppose that the pair $\left(P_{n}(z) / Q_{n}(z)\right)$ is a PTA of type (n, n), where

$$
P_{n}(z)=\sum_{-\infty}^{n} a_{j} z^{j}, Q_{\eta}(z)=\sum_{j=0}^{n} b_{j} z^{j}, b_{0} \neq 0
$$

By (2.4), one has

$$
a_{j}=\sum_{k=0}^{n} c_{j-k} b_{k} \quad j=\ldots, n-2, n-1, n
$$

Moreover, because of $\left(\hat{P}_{n}(z) / \hat{Q}_{n}(z)\right)$ is a PTA L_{L} of type $(-1, n)$, with

$$
\hat{P}_{n}(z)=\sum_{-\infty}^{-1} \hat{a}_{j} z^{j}=O_{-}\left(z^{-1}\right), \hat{Q}_{n}(z)=\sum_{j=0}^{n} \hat{b}_{j} z^{j}, \hat{b}_{0} \neq 0
$$

then,

$$
\hat{a}_{j}=\sum_{k=0}^{n} c_{j-k} \hat{b}_{k}, \quad j=-1,-2, \ldots
$$

Now, if $E_{n}(z)$ is the residual of the $\operatorname{PTA}_{L}\left(P_{n}(z) / Q_{n}(z)\right.$), one has

$$
E_{n}(z)=G(z) Q_{n}(z)-P_{n}(z)=O_{+}\left(z^{n+1}\right)=\sum_{J=n+1}^{\infty} e_{J} z^{J}
$$

and the following Theorem holds.
Theorem 2
With the above notations if the coefficients b_{j} and \hat{b}_{j} of the denominator polynomials satisfy the conditions

$$
\begin{align*}
& \sum_{j=0}^{n} c_{-1-j} \hat{b}_{j}=\hat{a}_{-1}=0 \quad i=1,2, \ldots, p(1 \leq p \leq n) \tag{3.1a}\\
& \sum_{j=0}^{n} c_{1-j} b_{j}=e_{1}=0 \quad i=n+1, n+2, \ldots, n+q \tag{3.1b}
\end{align*}
$$

then, for the pair $\left(\frac{A_{n}(z)}{Q_{n}(z)}, \frac{z^{-n} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)$ one has,

$$
\begin{equation*}
G^{(0)}(z)-\frac{A_{n}(z)}{Q_{n}(z)}=O_{+}\left(z^{n+q+1}\right) \text { and } \hat{G}^{(0)}(z)-\frac{z^{-n} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}=O_{-}\left(z^{-n-p-1}\right) \tag{3.2}
\end{equation*}
$$

Proof.
Let us first suppose that (3.1a) holds, then $\hat{P}_{n}(z)=O\left(z^{-p-1}\right)$ and by (2.11) one has

$$
\hat{G}^{(0)}(z) \hat{Q}_{n}(z)-\hat{A}_{n}(z)=\hat{P}_{n}(z)=O_{-}\left(z^{-p-1}\right)
$$

and henceforth

$$
\hat{G}^{(0)}(z)-\frac{z^{-n} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}=O_{-}\left(z^{-n-p-1}\right)
$$

In other words, we see that the order of correspondence for the PTA ${ }_{L}$ to $\hat{\mathrm{G}}^{(0)}(\mathrm{z})$ has been increased up to $\mathrm{n}+\mathrm{p}+1$.

From (3.1b), we have $E_{n}(z)=O_{+}\left(z^{n+q+1}\right)$ so, by using (2.8), it results

$$
G^{(0)}(z) Q_{n}(z)-A_{n}(z)=E_{n}(z)=O_{+}\left(z^{n+q+1}\right)
$$

and consequently

$$
G^{(0)}(z)-\frac{A_{n}(z)}{Q_{n}(z)}=O_{+}\left(z^{n+q+1}\right)
$$

In such that case, it will be said that

$$
\left(\frac{A_{n}(z)}{Q_{n}(z)}, \frac{z^{-n} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)
$$

represents an LPTA of higher order.
Obviously, the highest order of correspondence will be reached when $p=q=n$, and the coefficients of the polynomial $Q_{n}(z)=\sum_{j=0}^{n} b_{j} z^{j}$, will be determined from the linear system of equations

$$
\begin{equation*}
\sum_{j=0}^{n} c_{1-j} b_{j}=0 \quad i=n+1, n+2, . ., 2 n \tag{3.3}
\end{equation*}
$$

Since $G(z)$ is a normal series, then the polynomial $Q_{n}(z)$ satisfying the relations (3.3) is uniquely given by

$$
Q_{n}(z)=K\left|\begin{array}{cccc}
1 & z & & z^{n} \\
c_{n+1} & c_{n} & \cdots & c_{1} \\
c_{n+2} & c_{n+1} & \cdots & c_{2} \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
c_{2 n} & c_{2 n-1} & \cdots & c_{n}
\end{array}\right|
$$

In short, $Q_{n}(z)$ coincides apart a multiplicative factor with the denominator polynomial of the $[n / n]$ PA to the formal power series $G^{(0)}(z)$ (see [1]).

On the other hand, if $\hat{Q}_{n}(z)$ satisfies the conditions (3.1a) with $p=n$, then the coefficients \hat{b}_{j} are now obtained by solving the linear system

$$
\begin{equation*}
\sum_{j=0}^{n} c_{-1-j} \hat{b}_{j}=0 \quad i=1,2, \ldots, n \tag{3.4}
\end{equation*}
$$

Taking into account that

$$
z^{-n} \hat{Q}_{n}(z)=\sum_{j=0}^{n} \hat{b}_{n-j} z^{-j}
$$

$$
F_{1}(z)-\frac{A_{n}(z)}{Q_{n}(z)}=O_{+}\left(z^{n+1}\right)
$$

hence

$$
z^{-1} F_{1}(z)-\frac{z^{-1} A_{n}(z)}{Q_{n}(z)}=O_{+}\left(z^{n}\right)
$$

but $z^{-1} F_{1}(z)=G^{(0)}(z)$ and $z^{-1} A_{n}(z) \in \Pi_{n-1}$, that is,

$$
\begin{equation*}
G^{(0)}(z)-\frac{z^{-1} A_{n}(z)}{Q_{n}(z)}=O_{+}\left(z^{n}\right) \tag{3.5}
\end{equation*}
$$

Let $\left(\hat{P}_{n}(z) / \hat{Q}_{n}(z)\right)$ be now the $P T A_{L}$ to $F(z)$ of type $(-1, n)$, being $\hat{Q}_{n}(z)$ the generator polynomial, then by (b) in Theorem 1 , there exists $\hat{A}_{n}(z) \in \Pi_{n}$ such that

$$
\hat{F}_{1}(z)-\frac{z^{-n} \hat{A}_{n}(z)}{z^{-n} Q_{n}(z)}=O_{-}\left(z^{-n-1}\right)
$$

Moreover, the highest degree coefficient in $\hat{A}_{n}(z)$ is zero, because of $d_{0}=0$, that is, $\hat{A}_{n}(z) \in \Pi_{n-1}$, and then

$$
z \hat{F}_{1}(z)-\frac{z^{-(n-1)} \hat{A}_{n}(z)}{z^{-1 i} \hat{Q}_{n}(z)}=O_{-}\left(z^{-n}\right)
$$

and due to the fact that $z \hat{F}_{1}(z)=\hat{G}^{(0)}(z)$, one has

$$
\begin{equation*}
\hat{G}^{(0)}(z)-\frac{z^{-(n-1)} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}=O_{-}\left(z^{-n}\right) \tag{3.6}
\end{equation*}
$$

from (3.5) and (3.6) the proof follows.

REMARK 1:
According to Definition 2, the pair $\left(\frac{z^{-1} A_{n}(z)}{Q_{n}(z)}, \frac{z^{-(n-1)} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)$ is not estrictly an LPTA of type ($n-1, n$), because when adding both components, the resulting rational function has as numerator and denominator L-polynomials both in the linear space $\Lambda_{-n, n}$. However, taking into account that $Q_{n}(0) \hat{Q}_{n}(0) \neq 0$ then by ([4],p.11), we can obtain two constants α_{n}^{+}and α_{n}^{-}such that the pair

$$
\left(\frac{\alpha_{n}^{+} z^{n}+z^{-1} A_{n}(z)}{Q_{n}(z)}, \frac{\alpha_{n}^{-} z^{-n}+z^{-(n-1)} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)
$$

is in effect an LPTA of type ($n-1, n$).
In the next two Theorems, we shall see how obtain LPTA of arbitrary type (m, n) with m and n nonnegative integers. For this purpose, we first define the
is the denominator of the second component of the LPTA of type (n, n), and because of $\hat{Q}_{n}(z)=\sum_{j=0}^{n} \hat{b}_{n-j} z^{j}\left(\hat{b}_{j}\right.$ solutions of (3.4)), represents the denominator of the PA for the series

$$
\hat{\mathrm{G}}^{0)}\left(\mathrm{z}^{-1}\right)=\mathrm{c}_{0} / 2+\sum_{k=1}^{\infty} c_{-k} z^{k}
$$

then $\tilde{Q}_{n}\left(z^{-1}\right)=z^{-n} \hat{Q}_{n}(z)$ will be the denominator of the classic PA to $G^{(0)}(z)$. In other words, we have proved the following

Theorem 3
Let $\left(\frac{A_{n}(z)}{Q_{n}(z)}, \frac{z^{-n} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)$ be a pair so that conditions (3.3) and (3.4) are satisfied by the coefficients of the polynomials $Q_{n}(z)=\sum_{j=0}^{n} b_{j} z^{j}$ and $\hat{Q}_{n}(z)=\sum_{j=0}^{n} \hat{b}_{j} z^{j}$ respectively then, such pair represents the LPA of type (n, n) to the Laurent series $G(z)$.

Nextly, we shall concentrate on how obtaining the LPTA of order ($n-1, n$) for $G(z)$. For this purpose we define $F(z)=\sum_{-\infty}^{\infty} d_{k} z^{k}$, with $d_{0}=0 ; d_{1}=d_{-1}=c_{0} / 2$; $d_{1}=c_{1-1}$ if $i=2,3, \ldots$; and $d_{i}=c_{1+1}$ if $i=-2,-3, \ldots$. Then one has

Proposition 4
Let $\left(\frac{A_{n}(z)}{Q_{n}(z)}, \frac{z^{-n} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)$ be a LPTA of type (n, n) for $F(z)$, with $n \geq 1$ then, the pair $\left(\frac{z^{-1} A_{n}(z)}{Q_{n}(z)}, \frac{z^{-(n-1)} \hat{A}_{n}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)$ represents the LPTA of type $(n-1, n)$ for $G(z)$ with the same generator polynomial, being $Q_{n}(0) \hat{Q}_{n}(0) \neq 0$.

Proof.
Set

$$
\begin{aligned}
& F_{1}(z)=0+\frac{c_{0}}{2} z+c_{1} z^{2}+\ldots \\
& \hat{F}_{1}(z)=0+\frac{C_{0}}{2} z^{-1}+c_{1} z^{-2}+\ldots
\end{aligned}
$$

so that $F(z)=F_{1}(z)+\hat{F}_{1}(z)$.
Let $\left(P_{n}(z) / Q_{n}(z)\right)$ be the $P T A_{L}$ for $F(z)$ with $Q_{n}(0)=1$. If we denote by $E_{n}(z)$ the residual, that is,

$$
E_{n}(z)=F(z) Q_{n}(z)-P_{n}(z)=O_{+}\left(z^{n+1}\right)
$$

using (a) in Theorem 1 , we can obtain $A_{n}(z)=F_{1}(z) Q_{n}(z)-E_{n}(z), A_{n}(z)$ being a polynomial of degree n. Furthermore, since $d_{0}=0$, one has $A_{n}(0)=0$ and
formal Laurent series $F(z)=\sum_{-\infty}^{\infty} d_{k} z^{k}$, with $d_{1}=0 ; \quad-(k-1) \leq i \leq k-1$

$$
\begin{aligned}
& d_{ \pm k}=c_{0} / 2 \text { and } d_{1}=c_{1+k} \text { if } i=-(k+1),-(k+2), \ldots \\
& d_{1}=c_{1-k} \text { if } i=k+1, k+2, \ldots
\end{aligned}
$$

clearly, taking

$$
\begin{aligned}
& \mathrm{F}_{k}(z)=\frac{c_{0}}{2} z^{k}+c_{1} z^{k+1}+\ldots \\
& \hat{F}_{k}(z)=\frac{c_{0}}{2} z^{-k}+c_{-1} z^{-k-1}+\ldots
\end{aligned}
$$

then $F(z)=F_{k}(z)+\hat{F}_{k}(z)(1 \leq k \leq n)$, and

$$
\begin{equation*}
z^{-k} F_{k}(z)=G^{(0)}(z) \text { and } z^{k} F_{k}(z)=\hat{G}^{(0)}(z) \tag{3.7}
\end{equation*}
$$

one has
Theorem 4
If the pair $\left(\frac{A_{n}^{(k)}(z)}{Q_{n}(z)}, \frac{z^{-n} \hat{A}_{n}^{(k)}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)$ represents the LPTA for $F(z)$ of type (n,n), with denominator polynomials $Q_{n}(z)$ and $\hat{Q}_{n}(z)$, then the pair

$$
\begin{equation*}
\left(\frac{z^{-k} A_{n}^{(k)}(z)}{Q_{n}(z)}, \frac{z^{-(n-k)} \hat{A}_{n}^{(k)}(z)}{z^{-n} \hat{Q}_{n}^{(z)}}\right) \tag{3.8}
\end{equation*}
$$

represents an LPTA of type $(n-k, n)$ for $G(z)$.
Proof.
Taking into account the correspondence conditions for the LPTA $\left(\frac{A_{n}^{(k)}(z)}{Q_{n}(z)}, \frac{z^{-n} \hat{A}_{n}^{(k)}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)$ and by (3.7), it is easy to see that

$$
\begin{equation*}
G^{(0)}(z)-\frac{z^{-k} A_{n}^{(k)}(z)}{Q_{n}(z)}=O_{+}\left(z^{n-k+1}\right) \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\hat{G}^{(0)}(z)-\frac{z^{-n+k} \hat{A}_{n}^{(k)}(z)}{z^{-n} \hat{Q}_{n}^{(z)}}=O_{-}\left(z^{-(n-k)-1}\right) \tag{3.10}
\end{equation*}
$$

Now, from (2.7b) one has

$$
A_{n}^{(k)}(z)=F_{k}(z) Q_{n}(z)-E_{n}(z) \text {, being } E_{n}(z)=O_{+}\left(z^{n+1}\right)
$$

and since the $k-1$ terms for $F_{k}(z)$ are zeros, $A_{n}^{(k)}(z)=\sum_{j=k}^{n} a_{j} z^{j}$, that is, $z^{-k} A_{n}^{(k)}(z)$ is a polynomial of degree $\leq n-k$.

Moreover, from (2.10b), the polynomial $\hat{A}_{n}^{(k)}(z)=\hat{F}_{k}(z) \hat{Q}_{n}(z)-\hat{P}_{n}(z)$
will be of degree $\leq n-k$, and by this, $z^{-(n-k)} A_{n}^{(k)}(z) \in \Lambda_{-(n-k), 0}$ and the proof follows.

In order to determine an LPTA of type $(n+k, n)$, with $k \geq 1$, we must introduce the formal Laurent series $H(z)=H_{k}(z)+\hat{H}_{k}(z)$ being

$$
\begin{align*}
& H_{k}(z)=c_{k}+c_{k+1} z+\ldots \tag{3.11a}\\
& \hat{H}_{k}(z)=c_{-k}+c_{-k-1} z^{-1}+\ldots
\end{align*}
$$

Let $\left(\frac{A_{n}^{(k)}(z)}{Q_{n}(z)}, \frac{z^{-n} \hat{A}_{n}^{(k)}(z)}{z^{-n} \hat{Q_{n}}(z)}\right)$ be an LPTA of type (n,n) for H(z) obtained
the PTA of types (n, n) and $(-1, n)$ for $H(z)$ and $\hat{H}(z)$ and with from the PTA A_{L} of types (n, n) and $(-1, n)$ for $H_{k}(z)$ and $\hat{H}_{k}(z)$ and with denominator polynomials $Q_{n}(z), \hat{Q}_{n}(z)$ respectively Let

$$
\begin{equation*}
\frac{A_{n+k}(z)}{Q_{n}(z)}=\sum_{j=0}^{k-1} c_{j} z^{j}+z^{k} \frac{A_{n}^{(k)}(z)}{Q_{n}(z)} \tag{3.12}
\end{equation*}
$$

be a rational function, being $A_{n+k}(z) \in \Pi_{n+k}$ and consider

$$
\begin{equation*}
\frac{z^{-(n+k)} \hat{A}_{n+k}(z)}{z^{-n} \hat{Q}_{n}(z)}=\sum_{j=0}^{k-1,} c_{-j} z^{-j}+\frac{z^{-(n+k)} \hat{A}_{n}^{(k)}(z)}{z^{-n} \hat{Q}_{n}(z)} \tag{3.13}
\end{equation*}
$$

and $\hat{A}_{n+k}(z)=z^{k} \hat{Q}_{n}(z) \sum_{j=0}^{k-1} c_{-j} z^{-J}+\hat{A}_{n}^{(k)}(z) \in \Pi_{n+k}$
With these notations we have the next

Theorem 5.-
Let $\left(\frac{A_{n}^{(k)}(z)}{Q_{n}(z)}, \frac{z^{-n} \hat{A}_{n}^{(k)}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)$ be the LPTA of type (n, n) for $H(z)$ with generator polynomials $Q_{n}(z)$ and $\hat{Q}_{n}(z)$, then the pair

$$
\left(\frac{A_{n+k}(z)}{Q_{n}(z)}, \frac{z^{-(n+k)} \hat{A}_{n+k}(z)}{z^{-n} \hat{Q}_{n}(z)}\right)
$$

represents a LPTA for $G(z)$ of type $(n+k, n)$ (with the same generator polynomials), with $A_{n+k}(z)$ and $\hat{A}_{n+k}(z)$ given by (3.12) and (3.13) respectively.

Proof.
By using the definition of LPTA, one has

$$
\begin{align*}
& z^{k} H_{k}(z)-\frac{z^{k} A_{n}^{(k)}(z)}{Q_{n}^{(z)}}=O_{+}\left(z^{n+k+1}\right) \tag{3.14a}\\
& z^{-k} \hat{H}_{k}(z)-\frac{z^{-(n+k)} \hat{A}_{n}^{(k)}(z)}{z^{-n} \hat{Q}_{n}(z)}=O_{-}\left(z^{-n-k-1}\right) \tag{3.14b}
\end{align*}
$$

Now, because of

$$
G^{(0)}(z)=\sum_{j=0}^{k-1} c_{j} z^{J}+z^{k} H_{k}(z) \text { and } \hat{G}^{(0)}=\sum_{j=0}^{k-1} c_{-j} z^{-J}+z^{-k} \hat{H}_{k}(z)
$$

from (3.12), (3.13) and (3.14), it yields
$G^{(0)}(z)-\frac{A_{n+k}(z)}{Q_{n}(z)}=O_{+}\left(z^{n+k+1}\right)$ and $\hat{G}^{(0)}-\frac{z^{-(n+k)} \hat{A}_{n+k}(z)}{z^{-n} \hat{Q}_{n}(z)}=O_{-}\left(z^{-n-k-1}\right)$
and the Theorem follows.

REFERENCES

[1] C. Brezinski, Padé-Type approximants and general orthogonal polynomials, (Birkhaüser, Basel, 1980).
[2] A. Bultheel, Laurent series and their Padé Approximations (OT, Vol. 27 Birkhaüser, Basel 1987)
[3] M. Camacho, P. González-Vera, "Aproximaciones racionales a series doblemente infinitas", XIII Jornadas Hispanolusas de Matemáticas (Universidad de Valladolid, 1988) to appear.
[4] M. Camacho, Sobre funciones racionales asociadas a sucesiones doblemente infinitas, (Doctoral Thesis; Universidad de La Laguna, 1991)
[5] W.B. Gragg, G.D. Johnson, "The Laurent Padé Table". Information Processing 74, (North Holland, Amsterdam, 1974) pp.78-89.

