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Abstract In this paper a relation between the generalized Hankel-Clifford transfonnation and the 
generalized Laplace transformation in the distributional sense is obtained and the theory thus developed 
is used to solve a distributional integral equation in certain spaces of generalized functions. 

KEY WORDS Generalized Hankel-Clifford Transformation , Generalized Laplace Transformation , 
Generalized Functions, Integral Equation,Application. 

l. INTRODUCTION 

After Schwartz' s [11] extension ofthe Fourier transform to generalized functions,the extension of 
classical integral tranformations to generalized functions have comprised an active and interesting area of 
research (see,for example,Dube and Pandey [3], Koh and Zemanian [4],Zemanian [12] and Mendez [9 and 
10]). 

GeneraJly there are three approches to extend any classical transform to generalized functions.The 
first approach is called the method of adjoint in which the transformation can be extended to certain 
generalized functions through a generalization of a suitable Parseval's equation or through a generalization 
ofa suitable mixed Parseval's equation.This approach has been followed by Schwartz [11], Zemanian [14] 
and Mendez [9 and 10],amongst others. 

The second approach is called the kernel method in which a suitable testing function space is 
constructed over the range ofthe integral defining the transformation in such a way that the kernel function 
be a member ofthis space.This approach has been followed by Zemanian [14], Koh and Zemanian [4], 
Dube and Pandey [3] ,and others. The third approach called the method of convolution has been followed 
by Zemanian [13] and others. 

Recently the generalized Hankel-Clifford transformation defined by 
~ ~( ) - (a+ft) /2 

Fa,p {¡(x)){y) = F (y)= Y -a-P f (xy)(a+p)12 Ja-p (2./xY)J(x)dx = f l'.. Ja-p(2./xY)J(x)dx , 
o 0 X 

where (a-P)~ - Y:z and Ia- ~(z) is a Bessel function ofthe first kind of order (a-p), has been extended to 
certain classes of generalized functions by the method of adjoint [ 6],by the kernel method [7] and by the 
convolution method [8].The aim ofthe present paper istb--use the theory of distributional generalized 
Hankel-Clifford transformation recently developed by [7] with the help of one sided distributional 
generalized Laplace transformation [5] to solve distributional integral equation. 

The notations and terminology used are those of[14].Throughout this work 1 denotes the open 
interval (O,ao).D(D the space ofsmooth functions whose supports are compact subsets ofl.We assign to 
D(I) the topology that makes its dual D1(1) the space ofSchwartz distribution on 1 [11].E(I) and E1(1) are 
respectively the space of smooth functions on 1 and the space of distributions having compact support with 
respect to l. These spaces have their customary topologies [14]. 

Following Malgonde [5 and 7] and Zemanian [14] we define the testing function spaces and their 
duals which we need in solving the distributional integral equations. 

2. The testing function spaces G+,!; G+(w) and Gª+,. and Gª+(w) and their duals 
The conventional one -sided Laplace transformation [14] defined by 

~ 

F,(s) = (LJ)(s) = f f(t) e-"dt 

is extended to generalized functions as follows: 

(2.1) 

Let 1 be the open interval (0,ao) and restrict t to 1 .Let a be any fixed real number. Then , for each a , 
G+ ,• denotes the space ofall smooth functions cfl(t) on I such that 
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A. •. .((b) = supleª'D'(b(t)I< oo 
O<t<GO 

(2.2) 

for k = 0,1,2, ... and its topology is generated by {A. };=0 . G+,• is a complete countably multi-normed 
ª·' 

space . G+(w) =(Ja+.ª• is countable-union space where{:i.t, is a monotonic squence ofreal numbers 
v=I 

such that a.-+w +, where w is a real number or - oo. 
A generalized function f is L+-transformable if fed +(w) for sorne w, where d +(w) is the dual of 

G+(w). If crr be the infimum of ali such w then we define the distributional Laplace transform off by 

F,(s)!(LJ )(s) ! (/(t),e-" ) , Res> a 1 (2.3) 

In [5],a simple generalization ofthe two-sided Laplace transformation defined by .. 
G(s) = (L' g)(s) = J (st)'e -" g(t)dt 

for a suitably restricted function g(t) , where A. is any real number , is extended to a certain class of 
generalized function space by establishing an isomorphism between the constructed space and the space 
oftwo-sided Laplace transformable generalized functions [14]. 

So following [5] the conventional one-sided generalized Laplace transformation 
(generalization of (2.1)) defined by .. 

F1 (s) = W +f)(s) = J f(t) (st)ªe -"dt (2.4) 
o 

is extended to generalized functions as follows: 
For any real numbers a anda., Gª+,a dénotes the space ofall smooth functions cP(t) on I such that 

P!,a((b)! supleª't'-a D,'(b(t)I< oo (2.5) 
O<t<C() 

for k = 0,1,2, ... and its topolo~ is generated by {P!"'. t 0 . Gª+.a is a complete countably 

multinormed space. Gª+(w) =LJGª+, a is a countable-union space where {a.}~=• is a monotonic 
v=I 

sequence of real numbers such that a ---+ w +, where w is a real number or - oo. 
A generalized function f is L ª + -transformable iffe(Gª +(w))1 for sorne w, where (Gª +(w))' is the 

dual ofGª+(w).We dejine the dist11,butional generalized Laplace transform offby 
F1 (s)=W+f)(s)=(f(t),(stte-'1 ) ,Res > a 1 (2.6) 

where crr is the infimum of ali such w. F2(s) is analyt1c for Res>crr . 

Let fbe a locally integrable function on I and if f JJ (t)J tª e-ª' dt < oo for every a satisfying a>w, 
o 

then fgenerates a regular generalized function in ( Gª +(w))' through the definition: 

u,;)= r f(t) (b(t)dt (2.7) 

3.The Testing function soaces JL.e....!!:a.efo) and their duals 
Let a denote a positive real number and a. and 13 are any real numbers. Then we define Ha.~.· [7] 

as the space oftesting functions cP(x) which are defined on O<x<oo and for which 

r:·P·ª((b)! sup/e-"" x-aA~.p(b(x)/<oo (3.1) 
(kr<«> 

for k = 0,1,2, .. .. ,where 

Aa,p = Aa,p,x = xP D,xa-P+•n,x-ª =[xD; -(a+ P-l)D, +a~-'] (3.2) 

is the generalized Kepinski operator. Ha.~. a is a complete countably multinormed space . .. 
H a,p(a) = LJH a,P.•. denotes the countable-union space where { ª• t, is a monotonocally 

v=I 

increasing sequence ofpositive numbers tending to cr (cr = oo is allowed ). H'a.~.a and Ha,~(cr) are 
the duals of Ha,p,a and Ha,p(cr) respectively. 
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we now ust sorne or me propenies ot mese spaces. 
(i) For any fixed y>O , ~ J,yl x)-<a+p¡12 J (2 C:xy) }EH (a) m=O 12 ... where a> O. aym l- a-p -.JA.Y a,/J ' ' ' ' 

(ii) If a>b>O, then Ha,~,b e Ha,p,a , and the topology ofHa,p,b is stronger than that induced on it by Ha,p,a. 
(iii) For each fEH' a.P.a, there exista non-negative integer randa positive constante such 

that, for ali cj>EHa,p,a , 

I< f,(J >Is crnaxr:·P·ª((J) 
o-Sk<r 

(3.3) ... 
(iv) Let f(x) be Jocally integrable on O<x<ao and such that J IJ (x)e""xª ldx < oo. 

o 

Then f(x) generates a regular generalized function in Ha,p,a defined by .. 
< f ,ÍJ >= J f(x) (J(x)dx, fJ EH a,p,a (3.4) 

o 

Let a,J3 be real nurnbers restricted to -l/2<(a-J3)<oo.In view ofnote (ii) (see also [7],f 3), to every fEH1a,p,a 
there exists a unique real nurnber crr(possibly crr- oo) such that fEHa,p,b ifb<crr and f¡¡:Ha,Jl,b if 
b>crr.Therefore fEHa,p(crr). We define the distributional generalized Hankel-Clifford transform 
F' a.P fof fas the application off to the kernel 

k(x,y) = y-a-/i (xy)<a+/1)12 Ja-¡¡ (2#) =(y/ xt<a+p¡12 J._, (2..jxY) (3.5) 

That is, 

F '(y)= (F' a,pf)(y) =< f(x),k(x,y) > 

where y>O and crr>O. 

THEOREM l Let F'(y) be defined by (3.6).Then F'(y) is bounded according to 

IF' (y)I !>J cy-P as y~ O+ 

l_cyT-P asy~oo 

where e is a positive constant and r is sorne non-negative integer depending on f. 
PROOF: Prooffollows frorn [7,p.63,Theorern 8] . 

4. APPLICA TION 
The classical problern is that of solving the integral equation 

f(x)+kf (~r<a+P>'2 Ja_p(2#)J(y)dy = g(x) 
o y 

or f (x) + k(Fa,p f)(x) = g(x), 

(3 .6) 

where g(x) is a prescribed function and (a- ¡3);::-1/2.ln general problem, g(x) is a prescribed 
distribution frorn certain space and we seek a distribution f(x) such that 

f(x)+k(F'a,p f)(x) = g(x) 
in the sense of equality in certain space. 
In the end , we shall use the preceding theory so far developed in solving the above distributional integral 
equation.To formulate and solve this we require the following lernrnas conceming the relation between 
generalized Laplace transformation and generalized Hankel-Clifford transforrnation .Thus taking into 
account [2,p.185(30)] 

L + ª[k(x,y)](p) = r (-;fª+li>'
2 Ja-P(2#~PYt e-"' dy =pP-'xª e-•'P ,Re(p) >O and Re(ft) <l 

and proceeding as in [l ,pages 62-63], we obtain 

LEMMA 1 If Rep > O and Re( a+ b) < 1, then 

L: ~Fa,pf(x))(y)kp) = p ª +p-i F2 (-;) (4.1) 

where .. 
F2(p) =L:[f(x)](p) = J (pxte_,.. f(x)dx 

o 
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LEMMA 2 Let (a.-13):<::-l/2 and O<w<l.Let feHa,p(cr)11( Gª+(w)i .IfF1a,p( f) is as defined by (3.6), then 

for w<Rep<l/w where F2(p) is as defined by (2.6). 

PROOF: In view of Theorem 1 , and for w>O, j yª e-"" /(F:.pf )(y)/~< oo 
o 

(4.2) 

for every a satisfying a>w, which shows that (F1a,p f)(y) generates a regular generalized function in 
(Gª +(w))1 and therefore ,ifRep>w, the generalized Laplace transform of (F1a,p f )(y) is given by 

L: {F:.P J,k.r)kP) =< (F:.P f)(y), (pyt e-PY >= j(F:.pf,ky)(pyt e-PY ~ 
o 

= r < f(x),k(x,y)>(py)ª e-py ~ 
., 

= < f (x), f k(x,y)(pyt e-py ~ > 

= < f(x),pP-l xªe-•' P > =< f(x),pª+P-1(xl pt e-•'P > 

= pª+p-1 < f(x),(xl Pt e_,, P > 

=pª+P-1F2 (1/p), if w<Rep<llw 

which proves the lemma ifwe justify the equation (4.3).It canjustified as follows: 
For any R>O,if(a.-13):<::-l/2 

R f k(x,y)(pyre-PY~ e Ha,p(a) 
o 

and using the technique ofRiemann sums it can be shown that 
R R f < f (x),k(x,y) > (pyt e-PY ~ =< f (x), f k(x,y)(pyt e-PY ~ > 
o 

Again it can be shown that when (a.-13):<::-l/2 and cr>O 
R "' J k(x,y)(py)ªe-PY~~ fk(x,y)(pyte-py~ in Ha,p(a) as R~oo. 
o o 

(4.3) 

(4.4) 

Therefore equation (4.3) now follows by letting R~ in (4.4).Thus the proofis complete. 
Now we use these facts to solve the following distributional integral equation given by 

f(y)+k{F:,pf(x)xY) = g(y) (4.5) 

in the space H~.p(a)íl(G:(w))' where cr>O, O<w<l and a. is an integer and g(y) is a known 

distribution in H~.p(a)l(G:(w)) 1 with k;é-1. 
By applying the distributional generalized Laplace transform L+ ª , ( 4. 5) can be rewritten as 

L:[J(y)]+kL: l{F:,pf xY)J= L:[g(y)]. 

Using (4.2), we get 

(L:J )(p) + k pª+P-1(L:f )(11 p) = (L:g)(p) (4.6) 
for w<Rep<l/w.Now teplacing p by l/p in (4.6), we have 

(L:J)(ll p) +k p -a-P+1(L:J )(p) = (L:g)(ll p) (4.7) 
for w<Rel/p<l/w. 

Eliminating((Lª+ /)(1/p) from (4.6)and(4.7),weget 
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(r:/ XP) = _ 1 -, [(r:úP )- kpª+P-1 (r:g x11 p)] 
(1 - k ) 

= (I - 1k ' ) [(r:úp)-kL: [{F:.pg(x)}y)Jp)] 
Therefore 

L:J = (1-lk ' ) L: w-kf':.P g(x)} . 
Taking inverse distributional generalized Laplace transform we get 

/(y) = (1 - lk') W(y)-k(F:.p g(x))(y)} 
the required formal solution ofthe distributional integral equation (4.5). 
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