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Abstract In this paper a relation between the generalized Hankel-Clifford transformation and the
generalized Laplace transformation in the distributional sense is obtained and the theory thus developed
is used to solve a distributional integral equation in certain spaces of generalized functions.
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1. INTRODUCTION

After Schwartz’s [11] extension of the Fourier transform to generalized functions,the extension of
classical integral tranformations to generalized functions have comprised an active and interesting area of
research (see,for example,Dube and Pandey [3], Koh and Zemanian [4],Zemanian [12] and Mendez [9 and
10]).

Generally there are three approches to extend any classical transform to generalized functions.The
first approach is called the method of adjoint in which the transformation can be extended to certain
generalized functions through a generalization of a suitable Parseval’s equation or through a generalization
of a suitable mixed Parseval’s equation. This approach has been followed by Schwartz [11], Zemanian [14]
and Mendez [9 and 10],amongst others.

The second approach is called the kernel method in which a suitable testing function space is
constructed over the range of the integral defining the transformation in such a way that the kernel function
be a member of this space. This approach has been followed by Zemanian [14], Koh and Zemanian [4],
Dube and Pandey [3] ,and others. The third approach called the method of convolution has been followed
by Zemanian [13] and others.

Recently the generalized Hankel-Clifford transformation defined by

© © —(a+B)/2
E,, {0)0) = F 0) =y [()“P,_, @) f (k) = j@ e

where (0-B)= - %2 and J, . p(z) is a Bessel function of the first kind of order (a-B), has been extended to
certain classes of generalized functions by the method of adjoint [6],by the kernel method [7] and by the
convolution method [8].The aim of the present paper is to use the theory of distributional generalized
Hankel-Clifford transformation recently developed by [7] with the help of one sided distributional
generalized Laplace transformation [5] to solve distributional integral equation.

The notations and terminology used are those of [14]. Throughout this work I denotes the open
interval (0,00).D(I) the space of smooth functions whose supports are compact subsets of . We assign to
D(I) the topology that makes its dual D'(T) the space of Schwartz distribution on I [11].E(I) and E'(T) are
respectively the space of smooth functions on I and the space of distributions having compact support with
respect to I. These spaces have their customary topologies [14]. .

Following Malgonde [5 and 7] and Zemanian [14] we define the testing function spaces and their
duals which we need in solving the distributional integral equations.

2. The testing function spaces G , ; G+(w) and G°; , and G”; (w) and their duals

The conventional one —sided Laplace transformation [14] defined by
F()=(L.f)s)= _ff (1) e"at (URY]
[}

is extended to generalized functions as follows:
Let I be the open interval (0,00) and restrict t to I .Let a be any fixed real number.Then , for each a,
G, a denotes the space of all smooth functions ¢(t) on I such that
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20.(#) = suple” D' (1)< 0 22)

for k =0,1,2,...and its topology is generated by { A, }:’=0 . G4, is a complete countably multi-normed

space . G+(w) =OG+ a, 1s countable-union space where{a }‘”_l is a monotonic squence of real numbers
v=l
such that a,—w +, where w is a real number or - .
A generalized function f is L.-transformable if feG'.(w) for some w, where G'.(w) is the dual of
G.(w). If o¢ be the infimum of all such w then we define the distributional Laplace transform of f by

F6)=(L.S X8 = (f®),e™ ) ,Res >0, @3)

In [5],a simple generalization of the two-sided Laplace transformation defined by
G(s) = (L'g)s) = [(sty'e™"g(r)at

for a suitably restricted function g(t) , where A is any real number , is extended to a certain class of
generalized function space by establishing an isomorphism between the constructed space and the space
of two-sided Laplace transformable generalized functions [14].

So following [5] the conventional one-sided generalized Laplace transformation
(generalization of (2.1) ) defined by

Fy(9) = (L. f)s) = [ £(0) (st)"e "at : 24

is extended to generalized functions as follows:
For any real numbers a and & , G%:, denotes the space of all smooth functions ¢(t) on I such that

1" D} (1)< = 2.5)

) = sup

O<t<eo

for k=0,1,2,.... and its topology is generated by { P:.a }:_o. G% . is a complete countably

0

multinormed space. G*.(w) =| JG*.. is a countable-union space where {a, }

v=1

is a monotonic
v=1
sequence of real numbers such that a — w +, where w is a real number or - c.
A generalized function f is L*, -transformable if fe(G*(w))’ for some w,where (G*{w)) is the
dual of G*.(w).We define the distributional generalized Laplace transform of f by
Fy(8)=(L"+f X8) = (f@),(st)"e™ ) ,Res >0, (2.6)

where o is the infimum of all such w. Fa(s) is analytic for Res>os .

Let fbe a locally integrable function on Iand if ||/ (1)[t"e “dt <o for every a satisfying a>w,
then f generates a regular generalized function in (oG‘x +(w))' through the definition:

(£.9)=[ fopwa , $eG*.(w @7)
3.The Testing function spaces H,5(c) and their duals

Let a denote a positive real number and o and B are any real numbers. Then we define Hopa [7]
as the space of testing functions ¢(x) which are defined on 0<x<co and for which

A
7P ()= suple ™ x A, 49 (x)|< 0 G
fork=0,1,2,.... ,where
App=A,p, =x’Dx*?'Dx* =[xD} —~(@+p -1)D, +afx] (32)

is the generalized Kepinski operator. Hup . is a complete countably multinormed space.

H,,(0)= UH ap., denotes the countable-union space where {q, }*  is a monotonocally

v=1
increasing sequence of positive numbers tending to ¢ (¢ = is allowed ). I‘I/a,p 2 and H’.,,p(c) are
the duals of Hagp. and Hqp(o) respectively.
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We now list some ”(?I the propemes ot these spaces.
(0 Forany fixedy=0 - %{‘y Ix)y@®?y (2Jw) }e H,,(0) ,m=02, .. where o >0.

(ii) If a>b>0, then Hopp < Hop,a , and the topology of Hagp is stronger than that induced on it by Hog,a.
(iiii) For each feH o, , there exist a non-negative integer r and a positive constant ¢ such
that, for all peHqp.a |

|< /.4 >|< cmaxy{7(9) ‘ 33
(iv) Let f{x) be locally integrable on 0<x<co and such that ” f(x)e™x* Idx <o,
0

Then f(x) generates a regular generalized function in H’,,,p,. defined by
<f$>=[f(x) $(x)dx, $€H,,, G4
0

Let o, be real numbers restricted to —1/2<(at-B)<co.In view of note (ii) (see also [71,§ 3), to every feH o5,
there exists a unique real number o (possibly o= ) such that feH s if b<or and fesH’.,,p,b if

b>o. Therefore feH o p(or). We define the distributional generalized Hankel-Clifford transform

Flopfof fas the application of fto the kernel

k(x,y) =y ()P, ) = (v x) P (2m) G5

That is ,
F'(y) = (F'ap ))) =< f(x),k(x,y) > (3.6)
where y>0 and 6¢£>0.

THEOREM 1 Let F(y) be defined by (3.6).Then F(y) is bounded according to
]F' (y)ls cy”? as y—>0+
cy™ asy >

where c is a positive constant and r is some non-negative integer depending on f.
PROOF: Proof follows from [7,p.63,Theorem 8] .

4. APPLICATION
The classical problem is that of solving the integral equation

f@)+ kj(f)“"*”/w,_, @) f )y = g(x)

or f(x)+k(F,, f)x)=g(x),

where g(x) is a prescribed function and (a—B)>-1/2.In general problem, g(x) is a prescribed
distribution from certain space and we seek a distribution f{x) such that

S +k(Fap f)x)=g(x)
in the sense of equality in certain space.
In the end ,we shall use the preceding theory so far developed in solving the above distributional integral
equation.To formulate and solve this we require the following lemmas concerning the relation between
generalized Laplace transformation and generalized Hankel-Clifford transformation . Thus taking into
account [2,p.185(30)]

—(a+f)/2
L[ (2] ., @l ke 7 d=p s e Re)> 0 and Re(f) <1

and proceeding as in [1,pages 62-63], we obtain
LEMMA 1 If Rep > 0 and Re(a +b) <1, then

LAF, ,f)O))P) = p™*F, G) (4.1)

where

Fy(p) =L (0](p) = | (po)e ™ fx)e
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LEMMA 2 Let (a-B)>-1/2 and 0<w<1.Let feH o 3(c)( G*(w)) If Fiup( f) is as defined by (3.6), then
(FL, £)kw) = p*** £/ p) 42)

for w<Rep<1/w where Fz(p) is as defined by (2.6).

PROOF: In view of Theorem 1, and for w>0 I yie

(7, 1)) | <o

for every a satisfying a>w, which shows that (F/p f )(y) generates a regular generalized function in
(G*(w))’ and therefore ,if Rep>w, the generalized Laplace transform of (Flap £)(y) is given by

L., N)P) =< (FLy 1), (2y)" e ™ >= I Flof o) vy e dy
=7 < sk > () e dy
= < f(0), [k(x, ) (py)"e Py > 43)

=< f(x),p" x> =< f(x),p"* " (x/ p)* e " >
=p™Pi < f(X),(x/ p)* e P >
=p*?F,(1/p) ,if w<Rep<l/w
which proves the lemma if we justify the equation (4.3).It can justified as follows:
For any R>0,if (a-B)>-1/2
R
[k yXpy) e dy e H, ,(0)

0
and using the technique of Riemann sums it can be shown that

[< £ k(x,3) > (py) e Pdy =< f(x), [k(x, y)(py)" e Py > (44)

Again it can be shown that when (a-)>-1/2 and 6>0

R ©

[k ) pp) e Pdy > [k(x,yXpy) e Pdy in H, ,(0) as R—>.

0 0

Therefore equation (4.3) now follows by letting R—<o in (4.4).Thus the proof'is complete.

Now we use these facts to solve the following distributional integral equation given by
FO)+kFL, f0)0) = () 5)

in the space g et 4(©@)N(G? (w))’ where 6>0, 0<w<1 and a is an integer and g(y) is a known

distribution in H 4 (@) (G*(w)) with ke-1.
By applying the distributional generalized Laplace transform L.* , (4.5) can be rewritten as

o+, )= Liso
Using (4.2) , we get

(= f)(p)+kp"*’? () p =) e (46)
for w<Rep<1/w.Now teplacing p by 1/p in (4.6), we have
(L2 9)s py +k p? (L5 £ )p) = (L28) 1/ p) @7
for w<Rel/p<l/w.

Eliminating ((L*+ f)(1/p) from (4.6) and (4.7), we get
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—L_[=ekp)-kp=* (2g)s p)

—|eekp) - k[l g0 ) k)]

e =-—=

(lk)

(lk)

Therefore
Lf=——+1I% x
= = Sl -k, g0},
Taking i mverse distributional generalized Laplace transform we get

f0= ){g(y) K(F., g()»)}

the required formal solution of the distributional integral equation (4.5).
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