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Abstact
Extremal properties of the Chebychev polynomials are stablished. Also
extremal properties of general orthogonal polynomials are proved.
1. Introduction .
let f be a continuous function, f :[a,b] ——R. We denote by Pn the space
of all polynomials of degree n at most. Let P be the best approximation of f
in the uniform norm Il Ilm,

If 1= max [f(x)]

The minimax of f is

En(f) = llf—pnllm= inf IIf—pIIm
pePn

Consider now the infinite sum of all the errors E (f), such series can be
n
seen as a "measure" of "how good" the function f is approximated by

polynomials. By this reason, the study of the called minimax series

[+ 4]
S(f) = z M) ,
k=0

turns into important. As a consequence of the Weierstrass Approximation
Theorem, one has

lim E(f) =0.
n—-> 6 n
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Some aspects concerning with this series can be seen in [4]. There exist
continuous functions f on [a,b] such that S(f)=w, for example in the case

(see [5] pp.148).

1
[-1,1]=[a,b], we have S(|x|)=w, because En(|x|) = oo D)

We also we consider the operator T, defined by

T(f)=S[ r f(t)dt] R (xoe [a,b] fixed)

X
0
on the space of all continuous functions on [a,b] such that S(f)<w.
The Chebychev polynomials of first kind Tn(x)=cosm‘} , Cosv=x , xe€[-1,1]

have a minimal property related to S. Furthermore, the Chebychev polynomials

sen(n+1)9

of the sencond kind U (x)=
n send

have a minimal property respect to T.

Analogously we costruct other operator in connection with Lp—nor‘ms,

e = Uh |f|”]"p :

a

If p denotes a best approximation of a function f on P with respect to
n n

the Lp—norm, and we can to consider the series
)
s (f) = If-p I .
P o k p

Special treatment requires the case p=2, when a function weight w on [a,b]

is taken, so that we have:

b
e = U |f|2w]1/2
2w

a

(o]
The series S_(f) = ZIIf—B I where p is the best approximation of
2w =0 k 2w n

n
f on Pn, '1.e. P =kZo<f‘,pk>pk where (pk) is the sequence of orthogonal

polynomials with respect to w and

b
<f,pk>=j FGop, (Iwlx)dx

In this cases the orthogonal polynomials respect to w have extremal

properties related to the series S2 .
w
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2. Extremal properties of the Chebychev polynomials related to S and T
2.1 Extremal property of the Chebychev polynomial of the first kind
The nth Chebychev polynomial of first kind is T (x) = cos n®, where cosd=x,
n

x€[-1,1]. As it is well known such polynomial has extremal properties (see

e.g. [4]).
Next, we stablish an extremal property for T (x) related to S.
n
N T (x)
In this case [a,bl=[-1,1], and define Tn(x) = Tnl_ which is monic.
o

We denote by P the set of all monic polynomials of degree n.
n
We have the next extremal property
Theorem 1

(@) S(T Jv= 2~ and
n 2n-l

(L)S(p) = S(T ), Vpe P
n n
Proof
This result can be found in [3], in a different context. The best
approximating polynomial P, for "T"n in Pk is pkEO for O=k=n-1 and :l:n for k=n.

1

Then E(T)=1Tn = (k¢n) and E (T )=0 (k=n) ,
k n n © 2n—l k n
- n-1 ~ n
hence, S(T ) = E(T) = .
n k n n—1
k=0 2

Let p € P be. If k<n,and P, denotes the best approximating polynomial on
n

P, since p(x)-p (x) € P , results
k k n

1

E(p) = lp-p il = IT Il = =
As a consequence,
n-1 n
S(p) = l(_oEk(p) 2 — =

2.2 Extremal property of the Chebychev polynomial of the second kind

The nth Chebychev polynomial of second kind is given by
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. sen(n+1)9

Un(x) , cos 9 =x, x € [-1,1],

sen 9
The relation
Tr’lﬂ(x)
Un(X) = (n+1) !
is well known.
On the other hand, Un(x) = 2"%"+... and lNJn(x)=2_n U (x) is monic. We can
n
stablish the next result.
Theorem 2
~ 1
(a) TU ) = —
n 2n

1 ~
(b) T(p) = —, VpeP

2n n
Proof

Tn+1(X) Tn+1(0)
(a) Tw) = s[J’x Un(t)dt] =S [ M < & ] =
X
0
Tn+l(X) 1
= S[ T] = n+l S(Tn+1) =

Then

TUO) =T "U)=2"TWU) =2"
n n n

(b) Let p(x) = x" + ...€ 75n be, then

n+l
q(x) = r p(t)dt = % +

X
0

n+l

and T(p) = Slq) = S(x"... 1 = [

m=2 [ ]

n+l 1 -n
n+l

21’1
2.3. Functions with equioscilations around a constant

We say that the function f presents m+l equioscilations on [a,b] around a

constant c if there is a set of m+2 points A = (xo,xl,...,xmﬂ) < [a,b] such
that
[f(x)-c| = If-cl_, x €A
oo
f(x)-c=-(f(x )-c) (k=0,1,...,m).
k k+1
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Proposition 1
If f present m+l equioscilations around a contant on [a,b] and f e Cla,bl,
then
S(f+p) = S(f), ¥V p € P_
Proof
From the Equioscilation Chebychev Theorem which characterizes the best
approximating polynomial of a function on P in terms of equioscilations, (see
n
for example [2]) we can assure that c is the best approximation of f on
P ,P ,..P_. Then
m  m-1 0
E(f) =E(f) =...=E (f) =E (f) .
0 1 m-1 m
Let p € Pm be, then
E (f+p) = E (f) if k =2 m and E (f+p) =2 E (f) (k<m) .
k k k m
Hence

m-1 o] o]
S(f+p) = z E,(f+p) + Z E(f) = mE_(f) + z E(f) =
k=0 k =

=m k=m
2]
= E (f)+E (f)+....+E  (f)+ z E (f) = S(f) m
0 1 m-1 K=m k

Remark. If f=T , then T presents n equioscilations and we can assure by the
n n
above proposition that

S(Tn+p) = S(Tn), Vpe Pn_1

note that,

(T+p/ peP )=P
n n=

1 n
Then we obtain

S(p) =S(T), VpeP
n n
In this sense, Proposition 1, is a generalization of Theorem 1.
2.4 Other extremal property of the Chebychev polynomial of the second kind

If we consider the L1 nom in Cla,b],
b
el =I |f(t)]dt
1 a

and p denote a best approximation of f on P relative to this norm, we can
n n
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consider the series

[+ ]
s,(f) = z If-p il
k=0

U are extremal with Slz
n
3. Extremal properties of Orthogonal Polynomials
3.1 Other extremal property of the Chebychev polynomial of the second kind

Proposition 2

n

(a) s(U) =
1 n n-1

2

(b) S(p)=2sS(U),VYpeP
1 1 n n

Proof

(a) The best approximation of U on Po’Pl""’P . related to the 1 norm is O.
n n-

This result follows from Theorem 2 in [1] pp. 22. Then

n
n-1

~ 1 ~
s() = nj 1T (0)]dt =
1 n -1 n

(see for example [3] pp.32-33).
(b) Let p € I~’n be. If k<n,and P, denote the best approximating polynomial

on If’k in the 1 norm, p(x)—pk(x) - Pn , hence

~ 1
- > =
Ip pkll1 z IIUnII1 >

2

and for k=n, the best approximating polynomial of p orn Pk in the L1 norm is p,

Then
n-1
Sl(p) = Z Ilp—pkll1 S ]
k=0

Analogously in the L norm
P

b
_ p|1l/p
IIfIIp—[J-a]f(t)| ] :

if p denotes a best approximation of f on P in the L norm, we can consider
n n P

the series

[
S(f) =) lIf-p Il .
() kZO P
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A special t.eatment require the case of the normed weighted
b 12
e =U If] w] :
2w
a
w(x) being a function weight.

We introducing the series

[
5,(f) = Z ne-p i,
k=0
where Sn is the best approximation of f on P in the 2 w-norm. We have the
n
next extremal properties of orthogonal polinomials.
3.2 Extremal maximal property
Let w(x) be a weigh function on [a,b]. (p ) the sequence of orthonormal
n
polynpmials respect to w:
{0 (m#n)

b
¢ p> I p (xP (x)w(x)dx =
m  n 2w m n
a 1 (m=n)

The nth orthonormal polynomial has the next extremal property.
Theorem 3

(@)s, (p)=n

2
E
5

]
2
=
a
9]
<)
4
3
5

8

2
£
8

(b)S. (p) =S_(p)=n,VpeP suchthat lipll_ =1
2w . 2w ' n n 2w
Proof
(a) Let f € C[a,b] be, then we know that the best approximating polynomial on

P is

m
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m
fm= z <f’pk>pk ’
k=0
for f=1:>n , then the best approximating polynomial on Pm is q_=p_ for m=n and
m
q_ = kZ()(pn,pk>pk = 0 for m<n,

[ n-1
then s, (p) =mz=:oupn—qmnZw = mzo lp i, =n.
(b) Let p € P be,
n
p= kZOAk P, » A=Pp>,

179



iph? =A% +A%.. A% =1,
2w 0o -1 n

then
n-1
SZw(p) = Z "p-quZW '
r=0
where
r
9. = Z Akpk ’
k=0
then
n-1
s, =) 1 A pl, =
r=0 k=r+1
s 2 , 172
= (AT+AT+....+A7) 4+
1 2 n
5 5 172
+ (AT+AT+....+A7) +
23
2 2 172
+ (AC+AT+....+AT)  +
3 4
, 12
+ (A7) =
n
2,172 2 ,2,1/2 2 .2 2 V2
= (1-A7) + (1-AT-AT)""+..+ (1-A"-A"-...-A" ) =l+..+41=n =m
0 01 01 n-1
Example
For w(x)= we obtain the maximal property of the orthonormal Chebychev
v 1-x%
polynomial
2T (0=T (x) ,
T n n
= 2 ! pz(x)
s, (T)2S_(p), ¥ peP /lpl = I B C. 3 I
-1 2
vV 1-x

3.3 Extremal (minimal) property
Let (S ) be the sequence of monic orthogonal polynomials respect to w.
n
p is extremal in the space (C_ ,S_ ).
n 2w 2w

Theorem 4

(a) SZw(pn) = n"pn"2w
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(b) SZW(p) ES nIIpnIIZW, Vpe Pn

Proof
pn
(a) = p nth orthonormal polynomial. Then by Theorem 4 (a), we have
oy n
Ilpnllzw
P, 1
S ] =——S (p)=n,
2L g ipn n
pn w n 2w
hence
s,(p) = nip I
(b) Let p € 1~’n be. Consider
b , o, , o, b
J(p —p)w=Jp W+Ip w—ZJ-ppw (3.1)
n n n
a a a a
by the other hand
n
p(x) = Akpk(x) s
k=0
A = <p,p >, (k=0,1,2,...,n-1) A = — :
. . " il
pn 2w
Then Ap = p and
n n n
b n . b o b -
zj [ Z Akpk] pW =2AJ pP w=| P.w (3.2)
a k=0 a a
From (3.1) and (3.2) result
° . 2 ° 2 2
J(p-p)w=fp w-|p w=z20, (3.3)
a # a a n
That is
~ 2 2 ~ 2
Ip-pll>, = llpl> —lp 1> =0, (3.4)
Thus
~ 2 2
IIpnIIZW = IIpIIZW . (3.5)
n-1 .
S2w(p) =kZ° Ilp—kuIZW, where q is the best polynomial approximation to p on
P in the norm Il II_ . Note that r = p-q € P , hence by (3.5) we have
k 2w k k n

IIr‘kllzw = IIpnII2w (k=1,2,...,n-1) .
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Thus
SZW(p)) = nIIpnII2W n
Corollary
nIIpnII2W = SZW(p) s nllpllZW ,VpeP
Proof

The first inequality holds by Theorem 4b. For the second inequality note

that
p
= is such that liqll =1,
Ipll i
2w
hence by Theorem 3b,
S (p)
2w
S (@ =—— =n =
2w
pll
2w
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