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Abstract 

A class of two-component,one-dimensional, reaction-diffusion systems 
of the type usually found in Ecology are analysed in order to establish the 
qualitative behaviour of solutions. It is shown that for diffusivities in the 
form Dj = dj + bjcos(wt + </>), relationships can be derived from which 
amplitude destabilisation can be assessed dep ending on the wavenumber k 
and the variable diffusion coefficients, specially the frequency w. Therefore 
t ime-dependent diffusivities can control the Turing instability mechanism. 
The analysis is performed using F loquet's Theory. Numerical simulations 
for various kinetics are presented, and bifurcation diagrams in the plane 
(k ,w) are obtained. 

AMS CLASSIFICATIONS: 35K57 

1 Introduction 

In many ecological and environmental problems it is common to find mathe
matical models involving reaction-diffusion systems: 

where X = (X1 ,X2 , .. .,Xn)t is a n-dimensional vector ofreal-valued functions 
depending on time and k spatial variables. Dj stands for the j-th diffusivity or 
diffusion coefficient. The state variables Xj are most currently interpreted as 
concentrations or (bio)masses. ~stands for t he k-dimensional spatia l laplacian 
operator, and the nonlinear reaction terms Fj (X ) model the interaction between 
the n species. On the other hand, diffusive terms can be considered as describing 
the ability of the various species Xj to occupy different zones in k-dimensional 
space either by sorne native transport device or t hrough the action of small-scale 
mechanisms not involving advection . There is no relationship between k and 
n. See [Okubo 1980] for extensive examples. 
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The simplest case corresponds to n = k = l. If a logistic reaction term is 
employed, the well known Fisher equation arises, see e.g. [Murray 1989] and 
references therein: 

ax a2x 
- = aX(l-X) +D-
&t éJx2 

For k = 1 and n = 2 there exists a broad class of problems ranging from 
predator-prey models to morphogenetic ones. Reduction to k = 1 is a way of 
simplifying complicated problems by taking avantage of say, symmetries. In the 
rest of the study only systems of t his type will be considered: 

In this paper it will be shown that for certain nonlinear reaction-diffusion sys
tems with t ime dependent diffusivities amplitude instabilities can appear in a 
way somehow different to the usual Turing instability. Let X1 (x, t) and X2(x, t) 
represent the concentrations ofthe two species, defined in the product set Oxffi.+ 
of an open real interval O and the positive time axis, excluding O. Moreover, ad
equate side conditions must be imposed at t he boundaries ofthe spatio-temporal 
domain. 

As a starting point for the theoretical analysis, spatially homogeneous dis
tribut ions of both species are supposed on the interval O, thus leaving only the 
reaction terms: 

(j = 1, 2) 

The presence of the diffusive terms describes both species varying their concen
trations along O , and the diffusion coefficients D j > O are allowed to depend on 
t ime Gourley et al. 1996]: 

8Xj = F(X) D· a2xj 
8t J + J éJx2 (j = 1, 2) 

(j = 1,2) 

where <jJ1 = O, and dj 2: bj . The dj represent the native diffusion properties of 
the species, whereas the bj reflect the impact of environmental conditions mod
ifying the basic pattern described by the dj. As a rule, interesting behaviours 
appear when dj ~ bj· It is rather natural to take w1 = w2 = w, where this 
common frequency reflects the presence of environmental cycles in the joint 
evolut ion of the species. The delay or phase <P is introduced in order to simu
late the mutual adaptive ability of the species, a more realist ic assumption than 
postulating an instantaneous response. Nevertheless, it plays little or no role in 
t he mathematical analyses to follow. 
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2 Stability analyses. 

According to the classical Turing t heory [Turing 1952] (see also [Satnoianu et al. 
2000]) t he reaction terms must describe a spatially homogeneous system with a 
stable singular point Xo = (Xo1 , Xo2) in the first orthant, such t hat t he system 
can be linearised about this point. This is equivalent to: 

a) Positivity ofthe components of X o. This depends on the particular choice 
of the reaction terms - also called t he kinetics- Fj. 

b) Stability conditions for X 0 . These conditions, under t he assumption of 
the system being linearisable at X o, amount to trJo < O and det J o > O, where 

(X o) 

is t he jacobian matrix of the Fj at Xo. For instance, the standard Lotka-Volterra 
reaction terms: 

will not give rise to a reaction-diffusion system of t his type beca use trJ o = O and 

t he singular point (~,~)is a center. Therefore t hese cases will be excluded 
b2 b1 

and only appropriate kinetics will be dealt with. Linearisation about t he singular 
point applies to t he spatially inhomogeneous system as well, yielding: 

r :~: 1 r 1 [ il l + [ 
X o 

where 

XJ(t,x) = X j (t,x)- Xoj, (j = 1,2) 

The classical ansatz x; (t, X) = aj (t) eikx is now int roduced , meaning t hat t he 

selected spatial shape of t he solut ions is eikx, where t he wavenumbers k are 
parameters to be ident ified later on. Plugging t hese'expressions in the linearised 
spatially inhomogeneous system , a differential system for the time evolution of 
the amplitudes aj(t) in the neighbourhood of X o is obtained: 

= A (k)a 

If the diffusion coefficients are t ime-dependent, just substitute Dj (t) = dj + 
bj cos(wt + </>j ) for Dj in the matrix A (k). If both bj =O, t hen Dj(t) = dj , 

91 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



implying that there are no cyclic enviromental inftuences modifying the native 
diffusive properties of the species. This case can be called a basic or reference 
state. Now the following steps are taken: 

a) A classical Turing analysis of the basic state. 
b) Time-dependent diffusion coefficients are allowed and the resulting system 

is studied.Turing Analysis 

Step a) A = A(k) is a numerical matrix depending on the wavenumber k. 
Therefore the origin is a stable singular point iftrA(k) < O and detA(k) > O. 
Now, remarl< that the stability hypotheses for the singular point Xo guarantee 
trJo < O, so 

always holds. Thus, the only way for the origin to become an unstable point of 
the basic state after the introduction of the diffusive terms is that det A(k) < O. 
This determinant is a quadratic polynomial in k2 : 

whose two roots - if they exist- determine an interval of wavenumbers for which 
detA(k) < O, corresponding to those "modes" aj(t)eikx that would become 
unstable. Nevertheless, not all these modes will be physically relevant, because 
in the usual case of bounded O the boundary conditions select only a denumer
able set of feasible wavenumbers, and only those whose squares belong to the 
interval around will develop unstable behaviour. The condition for the interval 
to exist is obviously 

and because detJ0 > O by hypothesis, for the inequality to hold d 1d2 must be 
small. As a rule, if one of the diffusivities is taken as fixed, the other one being 
much smaller than it will provide a sufficient condition. 

2.1 Floquet 's theory and time-dependent diffusivities: 

Enter step b). For time-dependent diffusivities of the chosen type, 

a12 

a22 - k2 (d2 + b2 cos(wt + efJ) 

and this is a periodic matrix because A(k, t) = A (k, T), where T = t + 2;. The 
amplitudes will be given by : 

da 
- = A(k,t)a 
dt 
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According to the Floquet theory, see e.g. [Jordan and Smith 1988], this system 
has solutions a(t) obeying the formula 

27f 
a(t)=µa(t+ - ) 

w 

where µis any eigenvalue of the constant matrix E transforming a fundamental 
matrix <I>(t) of the system into its translate <I>(t + 2;) - also a fundamental 
matrix: <I>(t)E = <I>(t + ::-). If µ = 1 happens to be an eigenvalue of E, a 
periodic solution is at hand, while for real µ > 1 there is instability and for real 
µ < 1 a stable behaviour appears. Moreover, it is known that the product of 
the eigenval ues is 

and this suggests considering this product as a new parameter, say b: 

b = µiµ2 = exp{1T [trJo - k2(d1 + d2 + bi cos wt + b2 cos(wt + <P))]dt} 

= exp{T[trJo - k2(d1 + d2)]} = exp[T trA(k)] < 1 

Thus, from Cardano's relationships, the eigenvalues of E are the solutions 
of the quadratic equation 

µ2 -hµ+b =o 

where h = h(k, w) is sorne unknown function of the wavenumber k and the 
frequency w, with b E (O, 1). The actual form of h(k , w) is not relevant , only its 
range of values is needed. Solving for µ = !(h ± Jh2 - 4b), yields an analysis 
which can be split into three parts: 

1.- If h2 - 4b > O, with lhl > l2Vbl then two positive different real roots 
exist. 

Case la) 

If h > 2Vb then µ 1 = h -~ < l. Indeed, if it were the case that 

h = a2Vb for sorne a> 1, then µ 1 = Vb(a- Ja2 - 1) = Vbg1 (a), and gi (a) < 1 
for any a > l. Therefore µ 1 < Jb < l. On the other hand, the second root µ2 
satisfies µ 2 > 1 if h > b + 1 . This yields an unstable solution. 

If h < b + 1, t hen µ2 < 1 as well, and there can exist stable solutions. If 
h = b + 1, then µ 2 = 1 and there is a periodic solution. To see this, simply 
recall that according to the Floquet theory the solutions of ~~ = A(k, t) can be 
written in t he form 
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where aj is the characteristic exponent defined through aj = ~ logµj, and 
Pj(t) are 2;-periodic functions (remember that T = 2;). It is clear that for 
µj > 1, aj > O and the result, as regards stability, follows immediately. 

Case lb) 
If h < -2v'b then h 2 -4b >O as well, and both roots are negative. Moreover, 

one of them, µ 1 = h±~ > -1, because µ 1µ2 < l. Indeed, if it were the 

case that h = -a2v'b with a > O, the root could be written as µ 1 = v'b(-a + 

Ja2 - 1) = v'bg2(a) > -1 and g2(a) <l. The second root is µ2 = h-vf3b < 
-1 whenever h < -b - 1, and there are unstable solutions. Symmetrically, for 
h > -b - 1 the second root µ2 > -1 as well, yielding stable solutions. To end 
up, if h = -b - 1, then µ2 = 1 and this yields a periodic solution. 

2.- At the bifurcation h2 - 4b =O we obtain h = ±2v'b. Two cases must be 
distinguished: 

Case 2a) 
If h = +2v'b, then there exists a unique double eigenvalue µ = µ 1 = µ2 = 

v'b, the characteristic exponent is 

w r, w 
a= -logvb = -logb <O 

27f 47f 

and a stable solution follows. 
Case 2b) 
For h = -2v'b the eigenvalue is -v'b anda = : log b+ ~i with negative real 

part, and a stable solution arises as well. Note that the oscillation frequency of 
this solution doubles that of the original problem, a fact also occurring in the 
case h < -2v'b studied above. 

3.- Finally, consider the case h E (-2v'b, 2v'b), where both eigenvalues are 
complex conjugates and the real part of the exponents aj = 2~ (!og v'b + ai) 
is negative , so there exist stable solutions with a complicated structure: In 
addition to the "natural oscillations" with frequency w, there appear new oscil

lations associated with tan - l ( v'4bh- h 2
). Therefore there exists locally unstable 

behaviour for lh(k,w)I > b+l, and the instability domain is [-2v'b, 2v'b]. Once 
b is fixed, there exist in the ( k, w )-plane curves described by the implicit equa
tion h(k,w) = const that separate zones where the amplitudes have different 
qualitative behaviours. Note that there exist two different types of solutions 
according to their oscillation frequencies. 

3 N umerical experiments 

3.1 Activator-Inhibitor kinetics 

First we consideran activator-inhibitor system [Murray 1989, p. 377]) given by 
the model equations where all parameters have positive values: 

94 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



8u u2 D'ff . 
n,_ = a - CU+ ( 2 ) + 1 USJOll 
ui v 1 + r¡u 

8v 
&t = u 2 - v + Diffusion 

The Jacobian of the spatially homogeneous system is: 

J = [ 

2u 
-e+---~~ 

v(l + r¡u2) 2 

2u 

u2 l 
v2(1 + r¡u2) 

-1 

And the matrix A(k,t) is: 

u2 

[ 
2u 2 

A (k, t) = - e+ v(l + r¡u2)2 - k (d1 + b1 cos(wt)) 

2u 
v2 (1 + r¡u2 ) 

-1- k2(d2 + b2 cos(wt + <P)) 

For any parameter choice t here exists a singular point in the first orthant, 
because the growing null cline v = u 2 always intersects the decreasing one 
V - u2 

- "'( l,-+-77-u°"'2 )'""'(-cu- _- a...,.) • 

For instance, for the choice a = 1, e = 1, and r¡ = .01, the singular point 

is X 0 = (1.353, 1.832), and its Jacobian is [ ~: ~~~ -~~68 ] , showing that 

X o is a stable spiral point. Adding t he diffusion coefficients - without time 
dependence- d1 = 0.5, d2 = 5, the relationship 

holds and the interval of excitable wavenumbers is [0.497 46, 1.3231]. Now !et us 
modulate the diffusivities using the parameter values b1 = 0.4, b2 = 4.5, a.5 well 
as w = 10 and <P = 1, and take sorne k in t he interval of feasible wavenumbers, 
say k = l. Figures 1 and 2 show the results: The introduction of time dependent 
diffusivities inhibits the Turing instabilisation mechanism. 

3.2 Schnackenberg kinetics 

As a second example we consider the Schnackenberg kinetics: 

au 2 D'ff . &t = a - u + u v + 1 us1on 

~~ = b - u2v + Diffusion 

95 

L 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



amptitude a1 

1.6 

1.2 

0.8 

0.4 

1.6 3.2 4.8 6 .4 

time 

Figure 1: lnhibition of Turing instability for k = 1 

3.2 ~---A_m~pl_ltu_de_s ~ph_as_e p~''"-•---~ 

amplilude a1 

Figure 2: Both amplitudes tending to O for k =l. 

4 w 

Here Turirg instability 

Wavenurrber 

0.25 0 .5 0 . 75 1.25 1.5 l. 75 

Figure 3: Bifurcation set for the Schnackenberg case. 
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Here the computations yield a singular point X o = (a+ b, (a:b)2 ) in the first 
orthant where the Jacobian is 

(a+b) 2 ] 

-(a+ b)2 

whose determinant is (a+b) 2 and t he trace is negative - therefore the stationary 
point is a stable one- if the inequality 

b 
2-- < l+ (a+b) 2 
a+b 

holds. With the parameter values a= 0.1, b = 0.9, the spatially homogeneous 
singular point is X 0 = (1, 0.9), where the Jacobian J0 equals 

and the matrix A(k,t) = A(k ,w,t) is: 

[ 0.8 - k2 (0.l + 0.2cos(wt) 
-1.8 

0.8 
-1.8 

1 
-1 - k2 (1.7 + 0.1cos(wt+1) 

There exists Turing instability for specific combinations ofthe solution wavenum
ber k and the frequency w of the forcing on the diffusion coefficient, giving rise 
to the bifurcation diagram on the (k, w) plane shown in Figure 3 where pairs 
(k , w) above the parabola-like curve yield Turing instabilities for this particular 
kinetics: 

For instance, setting w = 3, k = .5 - under the parabola- and the diffusion 
parameters d1 = 0.2, b1 = 0.2, d2 = 5 and b2 = 4.9, F igure 4 is obtained, 
showing no Turing instability. where modulation by the diffusion periodicity is 
easily seen: 

On the other hand, if we take w = 3, k = 1 - above the parabola- and the 
same diffusion parameters, Turing instability is observed in F igure 5, together 
with the modulation through the periodicity of the diffusive coefficients: 

1.6 

l192E-7 

t -1.6 

-3,2 

amplltude a1 

Figure 4: Both amplitudes tending to O: No Turing instability. 
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32 64 96 128 160 
amplltudea1 

Turing instability: Growing amplitudes 

4 Conclusions and Views 

In this work we have shown that the basic Turing istability mechanism for 
reaction-diffusion systems can inhibited -or enhanced- if the diffusion coeffi
cients are allowed to have periodic time dependences, a fact that is studied 
through application of Floquet theory. In order to deepen t his insight a bifur
cation study has been started whose systematic development will be the aim of 
a series of papers to come. 
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