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Abstract 

We give a brief survey to sorne basic elements of the theory of orthogonal rational functions. 
Two main cases are treated separately: I. Ali the poles are outside the closed unit disk, and the 
orthogonality measures have support in the unit circle. II. Ali the poles are on the extended real 
line, and the orthogonality measures have support in the real line. These situations generalize 
the theory of orthogonal polynomials on the unit circle (Szegéí polynomials) and the theory of 
orthognal polynomials on the real line. 

En este trabajo, exponemos brevemente, los elementos básicos de la teoría de funciones 
racionales ortogonales. Nos centraremos en dos casos fundamentales: I. Todos los polos se 
encuentran fuera del disco unidad cerrado, estando las medidas de ortogonalidad soportadas 
sobre la circunferencia unidad. II. Todos los polos se hallan sobre la recta real extendida, y 
las medidas de ortogonalidad con soporte en el eje real. Tales situaciones generalizan la teoría 
de polinomios ortogonales sobre la circunferencia unidad (Polinomios de Szegéí) y la teoría de 
polinomios ortogonales sobre la recta real. 
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1 INTRODUCTION. 

A sequence { \Pn};:"=0 of polynomials is said to be an orthogonal polynomial sequence if \Pn is a 
polynomial of degree n and it is orthogonal to ali polynomials of lower degree. The orthogonality 
may be with respect to a linear functional Mor a measure µ (with support in C). In particular, 
the most widely studied cases of such general orthogonal polynomials arise when the support 
µ is contained in the real line or the complex unit circle. For general treatises on orthogonal 
polynomials we refer to [1], [33], [43], [44, 45], [47], [51], [59], [74], [75], [76]. 

Polynomials may be viewed as rational functions whose poles are ali fixed at infinity. By 
fixing a sequence of poles {In} in the extended complex plane (i.e., on the Riemann sphere), we 
obtain a theory of orthogonal rational functions. The poles can in principie be taken anywhere 
in the extended plane. Sorne of the /k can be repeated, possibly an infinite number of times. 
The sequence is fixed once and for ali, and the order in which the /k occur (possible repetitions 
included) is also given. 

We consider generalizations of the two special cases indicated above: orthogonality on the 
unit circle and on the real line. Polynomials orthogonal on the unit circle are generalized to 
orthogonal rational functions with poles outside the closed unit disk. Polynomials orthogonal 
on the real line are generalized to orthogonal rational functions with poles on the extended real 
line. There is a substantial difference between the two cases, since in the former case the poles 
lie outside the "support curve" of the orthogonality measures, while in the latter case the poles 
belong to the "support curve". (We do not by this mean that the support of the orthogonality 
measure need consist of the whole unit circle on the whole real line.) The orthogonal rational 
functions will behave differently. The main reason for this is that in the former case reflection 
of the poles with respect to the unit circle produce different points, while in the latter case 
reflection of the poles, with respect to the real line produce the same points, doubling the poles 
in a sense. 

The cause of the difference between the two cases is then not any differenc~ between the unit 
circle and the (extended) real line, but between the ways the poles are placed in relation to the 
"support curve", whether circle on line. By the Cayley transform z -+ w = :+: the extended 
real line is mapped to the unit circle and the extended upper half plane to the unit disk. This 
transformation maps ali rational functions to ali rational functions. Thus we may consider 
rational functions orthogonal on the real line with poles in the lower half plane as analogs 
to rational functions orthogonal on the unit circle with poles outside the unit disk. Similarly 
we may consider rational functions orthogonal on the unit circle with poles on the unit circle 
as analogs to rational functions orthogonal on the real line with poles on the extended real 
line. Orthogonal polynomials on the unit circle correspond to orthogonal rational functions on 
the real line with their only pole (infinitely repeated) at the point -i. Similarly orthogonal 
polynomials on the real line correspond to orthogonal rational functions on the unit circle with 
their only pole (infinitely repeated) at the point -l. 

The case of the real line and the unit circle which are linked by the Cayley transform are 
essentially the same, and can be treated within a common framework. A unified and rather 
extensive treatment is given in the monograph "Orthogonal Rational Functions" [34] by the 
present authors. In this paper we give a very brief introduction to sorne basic elements of this 
theory. We here treat the situation with poles outside the "support curve" specified to the unit 
circle case, and the situation with poles in the "support curve" specified to the real line case. 
The generalizations of the classical polynomial situations are thus clearly seen. 

From a purely mathematical point of view the theory of orthogonal rational functions was as 
far as we know initiated by Djrbashian about 1960. See [37, 38, 39, 40, 41, 42]. lndependently, 
partly from an applied point of view, the same constructions were used by Bultheel, Bultheel 

128 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



and Dewilde, Dewilde and Dym about 1980. See [2, 3, 4], [36]. A general theory has been 
worked out in a series of papers by the present authors. See [6]-[35], and the monograph [34]. 
A number of contributions have also been given by Li, Pan and by Li and Pan. See [52]-[53], 
[68]-[73] . The periodic case, where the 'Yk consist of a finite number of points cyclically repeated, 
was studied by González-Vera, Hendriksen and Njastad. See [46], [48]-[49], [60]-[65]. When the 
poles of the orthogonal rational functions consist of the origin and the point at infinity, infinitely 
repeated, the rational functions are Laurent polynomials. For a presentation of the basic theory 
of orthogonal Laurent polynomials and related topics we refer to the survey article [50] by Jones 
and Njastad, and the references given there. 

The whole theory of orthogonal rational functions is related to the theory of polynomials 
orthogonal with respect to varying measures, first extensively studied by Lopez. We refer to 
[54]-[58]. 

We shall make use of the following notation. C denotes the complex plane, D the open unit 
disk, U the open upper half plane, 11' the unit circle, R the real line. Furthermore C denotes the 
extended complex plane (the point at infinity added), lR the closure of R in C, Ü the closure 
of u in C. We also write JE = e \ {D u 11'} and V = e\ {U u R}. 

, The substar transform f. of a function J is defined as follows. 
In the unit circle situation: 

f.(z) = f(l/z). 

In the real line situation: 
f.(z) = f(z). 

The Riesz-Herglotz-Nevanlinna transform O(·,µ) of a finite measure µis defined as follows. 
In the unit circle situation: 

In the real line situation: 

1 t +z 
O(z, µ) = -dµ(t). 

T t - z 

· 11 + t z O(z ,µ) = -i --dµ(t). 
IR t - Z 

(1.1) 

(1.2) 

The function (1.1 ) maps D into the right half plane, the function (1.2) maps U into the right 
half plane. 

2 FUNCTION SPACES 1 

Let { an}:;"=1 be an arbitrary sequence of points in D. We introduce the Blaschke factors (k 
defined by 

k = 1,2, ... . 

We set by convention ~ = -1 when ak =O, so that (k(z) = z when ak = O. The Blaschke 
products Bn are defined by 

Bo = 1, Bn(z) = IT (k( z ), n = 1, 2, .. . . 
k= I 

We note that Bn(z ) = zn for ali n if ak =O for ali k. 
We shall use the notation 7r n for the dertominator polynomial in the rational function Bn, 

i.e., 
n 

7ro=l, 7rn(z) = IT(l-akz), n=l,2, . . .. 
k=I 
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We shall also use the notation 

wo=l, wn(z)= IT(z-ok), n=l,2, . . .. 
k=I 

We observe that we may write 
Wn(z) = 7r!(z), 

where 7r! denotes the superstar transform of the polynomial 7rn (see e.g. [45],[47]). Hence 

wn(z) 7r!(z) 
Bn(z) = 1/n_(_) = 1/n_(_), 

1ínZ 1ínZ 

n 

1/n = rr Zk. 
k=I 

We shall study spaces Ln and [, of rational functions. The space Ln is given by 

Ln = Span{Bo, B1, ... , Bn}, n =O, 1, 2, ... 

and we set 
00 

n=O 

(In [34) is used í,00 for this union, and [, for the closure of this space in an Lrspace. We 
shall here not have occasion to consider this closure, and use for convenience [, for the space 
of rational functions itself.) A function f belongs to Ln if and only if it is of the form 

J(z) = p(z) ' 
7r,.(z) 

where p is a polynomial of degree at most n. 
We shall write 

Ln• = {!. : f E Ln} , c. = {/. : f E C}. 

We then have 
00 

Ln• = Span{Bo., Bi., ... , Bn.}, C. = U CM 
n=l 

and we observe that 
Bk.(z) = [Bk( z)t1. 

We shall in this paper work with the standard basis { B0 , B¡, .. . , Bn, . .. } for C. Severa! other 
basis {Ca, C¡, .. . , Cn, .. . } for L with the property Ln = Span{ Ca, C1, ... , Cn} for every n have 
been studied and may be useful. One such basis is 

1 1 1 
{l, -1 _ ,-1 _ Bi(z), ... ,-1 _ Bn-1(z), ... }. 

- Q¡Z - 02Z - OnZ 

When ali the points °'k are distinct, 

1 1 
{1,1 - , . . . ,~, ... } 

-a¡,Z 1-0nZ 

is such a basis, and when °'k =J O for ali k, 

1 1 
{1, - (-)'ººº'-(-)' º º'} 7r¡ Z 7r n Z 
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is such a basis . 
The superstar transform f" of a function in Ln \ Ln.: 1 is defined as 

f*(z) = Bn(z)f.(z). 

We note that f" is a function in Ln . We find that 

(when an f- O). In particular B~(z) =l. 
We call an the /eading coefficient of the function f ( z) = ¿~=O akBk( z) ( with respect to the 

basis {Bo, B1, . . . , Bn, . . . } ). We observe that an = f*(o:n)· If the leading coefficient is 1, the 
function f is said to be monic. 

General reference: Sections 2.1-2.2 of [34]. 

3 ORTHOGONAL FUN CTIONS 1 

Let M be a linear functional defined on the linear space [, + C.. Sin ce ali the points O:k are 
contained in D, ali the factors (z - o:k) are different from ali the factors (z - ( o:k)-1 ). Thus we 
find by partial fraction decomposition that C + C. is the same as the product space [, · C.. 

We shall assume that 
M[f.J = M[f] for f E C + C. (3.1) 

and 
M[f ·f.] > O for f E C, f t U. (3.2) 

(We recall that here f.(z) = f(l/z).) For convenience we normalize M such that M[l) =l. 
Typical examples are functionals represented by positive measures as follows: Let µ be a 

finite positive measure on 'll', and define 

M[f] = i f(t)dµ(t) for f E C +C •. 

We easily verify that M satisfies (3.1)-(3.2). 
The functional M gives rise to an inner product (-, ·) on the space [, through the formula 

(f,g) = M[f · g.), f,g E C. 

We denote by {cpn}~=O the orthonormal basis for [, associated with the sequence {Cn}, with 
leading coefficient cp~ ( o:n) real and positive. Thus we ha ve 

Ln = Span {<;?o, <;?1, ... , <;?n} 

and 
(cpj, <;?k) = Ój,k· 

When o:k = O for ali k, the functions <;?n are simply the (normalized) Szego polynomials deter
mined by M . 

We may write <;?n in the form 
Pn(z) 

<;?n(z) = -(-), 
11'n z 
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where Pn is a polynomial of exact degree n. We then have 

(3.4) 

Sin ce 'Pn is orthogonal to ali the functions zm [7r n-1 ( z )t1 for m = O, 1, . . . , n - 1, we may write 

Mn[pn(z) · (zm).] =O, m =O, 1, ... , n - 1, 

where 

Mn[f] = M [ J(z) 1 · 
(1 - anz) YÚ1 - akz)(l - akz). 

k=I 
Thus the sequence {Pn}::"=o of polynomials is orthogonal with respect to the sequence of varying 
complex inner products (-,·)non 'f given by 

In particular, if M[f] is given by M[f] = frf(t)dµ(t), then the sequence {Pn}::"=o is orthogonal 
with respect to the sequence of varying complex measures µn given by 

dµ(t) 
dµn(t) = n-I 

(1 - ant) rr 11 - aktl2 

k=I 

The functions of the second kind 1/;n associated with { <t'n} are defined as follows: 

1/;o = 1 

n = 1,2, ... 

(Here M operates on its argument as a function of t.) We may write 

.t. ( ) = qn(z) 
'f/n Z ( ) , 

7rn Z 
(3.5) 

where qn is a polynomial of degree at most n, and thus ¡/;n E .Cn. 
We may also write 

[t+ z {f(t) }] 1/;n(z) = M .t _ z J(z) 'Pn(t) - 'Pn(z) , n = 1,2, ... , 

where J is any function in .C(n-i) .. We find that the superstar transform ¡/;~ is given by 

where gis any function in .Cn• satisfying g(l/an) =O. 
General reference: Sections 2.2 and 4.2 of [34] . 

132 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



4 RECURSION 1 

The orthonormal function 'Pn satisfy a recurrence relation which has the same structure as the 
Szegéí recursion for polynomials, and which reduces to this Szegéí recursion in the polynomial 
case. 

Theorem 4.1 The functions t.pn, <p~ satis/y a recursion of the following form: 

[ t.p~ ( Z) ] = en 1 - ~ Z [ Un O ] [ 1 >.n ] [ (n-1 ( Z) O ] [ 'P~-1 ( Z) ] , n = 1, 2, ... , 
'Pn(z) 1 - CTnZ O Vn >.n 1 O 1 '-Pn-1(z) 

( 4.1) 
with initial conditions <po = 'Po = l. Here en is a positive constant, the constant un, where 
lunl = 1, is chosen such that t.p~(an) >O, and Vn = UnZn-1Zn. Final/y >.n is given by 

( 4.2) 

The coefficient >.n satisfies 1>.n1 < l. 

The expression ( 4.2) for the coefficient >.n is not very useful, since it uses function values of 
'-Pn and <p~ to compute these functions. More practica! expressions for >.n are given by 

__ \ '-Pk(z), zl-=-~: 'Pn-1(z)) 
>.n = -Zn-1 \ l _ ) , 

- On-lZ * 
'Pk(z), l _ Q,;"z 'Pn-i(z) 

k=0,1, .. . ,n-1." 

The consta.nt en can be obtained as the square root of 

2 1 - lanl2 1 
en= 1 - lan-112. 1 - l>.n12· (4.3) 

In the polynomial situation, i.e. when an =O for ali n, the formula (4.1) takes the form 

or 

[ <p~(z) ] = [ enUnZ enun>.n ] [ 'P~-1(z) ] , 
'Pn(z) enun>.nz enUn 'Pn-l(z) 

which has the form of the Szegéí recursion for Szegéí polynomials. 
The functions of the second kind satisfy a recurrence relation very similar to that satisfied 

by the orthogonal functions. 

Theorem 4.2 The functions 1/Jn, 'lj;~ satis/y the recurrence relation 

n = 1, 2, . . . , where the recurrence coefficients are the same as those in Theorem 4 .1. The initial 
conditions are 1/Jo = 1/;0 = 1. 
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We have seen that orthonormal rational functions satisfy a recurrence relation as given 
in Theorem 4.1. A converse of this is also true. The following Favard type theorem follows 
immediately from results in Section 8.1 in [34] formulated in terms of measures, but can also 
be proved directly without recourse to representation theory for functionals. 

Theorem 4.3 Let {>.n}:;"=1 be a sequence of complex numbers such that i>.nl < 1, and /et 
positive numbers en be determined through the formula (4.3). Define the functions 'Pn recursively 
by <po = 1, 

n = 1, 2, ... , where Un is chosen such that lunl = 1, <p~(an) >O. Then the functions <p~ satisfy 
the recursion <p~ = 1, 

n = 1, 2, ... , with Vn = UnZn-1Zn. Furthermore there exists a linear functional M on [, + [.. 
such that { 'Pn} are the correspo11ding orthonormal functions. 

General reference: Section 4.1-4.2 and 8.1 of [34]. 

5 QUADRATURE 1 

It can be shown that ali the zeros of 'Pn are contained in lDl. They may be multiple zeros of 
any order. Thus these zeros are not suitable as nodes in a quadrature on T. To obtain such 
quadrature formulas, we introduce para-orthogonal functions of order n. These are functions of 
the form 

They satisfy 

Qn(z, r) = 'Pn(z) + T<p~(z), TE C, T =/= 0. 

(Qn(z, r), Bk(z)) =O, k = 1, 2, ... , n - 1, 

(Qn(z, r), 1) =/=O, (Qn(z, r), Bn(z)) =/=O. 

(5.1) 

(5.2) 

It can be shown that a function that satisfies (5.1)-(5.2) is para-orthogonal as defined above. 
With the para-orthogonal functions Qn(z,r) we associate function of the second kind 

Pn(z, r) given by 
Pn(z,r) = 1/Jn(z)- r¡/;~(z). 

Thes(:! functions may also be produced by the formula 

[t+z{f(t) }] Pn(z,r)=M t-z J( z )Qn(t,r)-Qn(z,r) , 

where f is any function in L(n-l)• satisfying J(l/ an) = O. 
In the following we assume that lrl = l. 

We may write 

n = 2,3, . . . , (5.3) 

Since ali the zeros of Pn are contained in lDl and Ir 1 = IT/n 1 = 1, we find that Pn ( z) + TT/nZnPn• ( z) 
is a polynomial of exact degree n for ali r . 
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Theorem 5.1 The para-orthogonal function Qn(z,r) has exactly n zeros, ali of which are 
simple and lie on 'll'. 

Note that since an ri '][' for ali n, the zeros of Qn(z, r) are the same as the zeros of the 
polynomial Pn(z) + TTJnZnPn•(z). 

The zeros of a para-orthogonal rational functions are nodes in a rational Szego quadrature 
formula. 

( Pn((nk,r) 
Theorem 5.2 Let (nk(r), k = 1, ... , n, be the zeros ofQn(z, r), and set Ank r) = 21" Q' (t" ) 

i..,nk n i..,nk, T 
Then the rational Szeg/J quadrature formula 

n 

M(~J = L Ank(r)R((nk(r)) (5.4) 
k=I 

is exact for every R E Ln-1 +Len-!)• = .Ln-1 ·Len-!)•· 

An alternative expression for the weight Ank(r) is 

We point out that the degree of exactness o_f this formula is one less than maximal in the sense 
that the formula has 2n parameters (ni ( T) , ... , (nn ( T), An1 ( T), ... , Ann ( T), while the dimension 
of the space Ln-I + Lcn-i)* is only 2n - l. The formula is thus not analogous to a Gaus
sian quadrature formula, but it is a direct generalization of Szego quadrature formulas in the 
polynomial case. In the polynomial situation the space Ln-1 + L(n-1)• reduces to the space 
A-(n-I),n-I of Laurent polynomials of the form L(z) = I;~;;;~en- I) akzk. Note that there is one 
Szego quadrature formula for every r, while Gaussian quadrature formulas are unique. 

The following result follows from Theorem 5.2 and the fact that the argument in formula 
(5.3) belon~ to Ln-1 + L(n-1) .. 

Theorem 5.3 Let (nk(r), Ank(r), k = 1, .. . , n, be as in Theorem 5.2. Then we have 

(5.5) 

J or n = 1, 2 ... . 

General reference: Sections 5.1-5.4 of [34]. 

6 INTERPOLATION AND CONVERGENCE 1 

We shall in this section for convenience assume that the functional M is derived from a positive 
measure on 'll' as described in Section 2. We recall the definition (1.1) of the Riesz-Herglotz
Nevanlinna transform !1(z,µ). We shall discuss how the rational functions -¡/;n/'Pn, ¡/;~ /c.p~ and 
-Pn(z,r)/Qn(z,r) (for lrl = 1) interpolate and converge to !1(z,µ). . 
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Theorem 6.1 For lrl = 1 the quotients -Pn(z,r)/Qn(z,r) interpolate n(z,µ) at the table 
{O,oo,a¡, l/a1, ... ,an-1il/an-d in thefollowing sense: 

n(z,µ) + ~n~Z,T~ = g(z)zBn-1(z) 
n z,r 

(6.1) 

( ) Pn(z, r) ( ) -l[ ( )]-1 !1 z, µ + Q ( ) = h z z Bn-1 z 
n Z,T 

(6.2) 

for n = 1, 2, ... , where g is holomorphic in D and h is holomorphic in K 

Since ak E][)) and 1/ak tf. ][))U'][' for ali k we may also write (6.1)-(6.2) in the form 

Pn(z,r) ( ) ( ) n(z,µ) + Q ( ) = zG z Wn-1 z 
n z,r 

( ) Pn ( Z, T) -1 ( ) ( ) n z,µ + Q ( ) = z Hz ?rn-1 z, 
n Z,T 

with G holomorphic in D, H holomorphic in E. 
For the orthonormal functions and the functions of the second kind an extra interpolation 

condition is satisfied. On the other hand, at a part of the interpolation table only linearized 
interpolation is obtained. 

Theorem 6.2 The quotients _'fu and 4 interpolate !1(z,µ) at the tables {O,oo,ai,l/a1, .. . , 
'Pn 'Pn 

ªn-1,l/an-1il/an} and {O,oo,a1,l/a¡, ... ,an-1,l/an-l,an}, respective/y, in the fol/owing 
sense: 

!1(z,µ)<pn(z) + 1/Jn(z) = zG(z)Bn-1(z) 

n(z,µ) + 1/Jn((z)) = z-1h(z)[Bn(z)¡-1 
4'n Z 

1/J~(z) 
!1(z,µ) - -(-) = zg(z)Bn(z) 

<p~ z 

n(z, µ)<pn.(z) - 1/Jn.(z) = z- 1 H(z)[Bn-1 (z)t 1, 

where g and G are holomorphic in D, h and H are holomorphic in K 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

Recall the formulas (3.3)-(3.4) and (3.5) . Ali the zeros of 4'n líe in D, ali the zeros of 4'n• 
and <p~ líe in E. We may therefore write (6.3)-(6.6) in the following form: 

!1(z,µ)pn(z) + qn(z) = zr(z)wn-1(z) 

n(z,µ) + qn((z)) = z-1o(z)7rn(z) 
Pn z 

!1(z,µ) - qn.((z)) = z1(z)wn(z) 
Pn• z 

n(z,µ)pno(z) - qn.(z) = z- 1 ~(z)7rn-1(z), 

where 'Y and r are holomorphic in D, o and ~ are holomorphic in E. 
In the polynomial situation ( an = O for ali n) the expressions zBn_1(z), zBn(z), [zBn_1(z)¡-1, 

[zBn(z)J-1 reduce to zn,zn+1, z -n,z-(n+1l. Cf. formulas in [51]. 
Since 1/Jn/4'n and 1/J~/<p~ are rational functions of type [n/n], the content of Theorem 6.2 

may be expressed as follows: -1/Jn/4'n is the [n/n] multipoint Padé approximant to !1(z,µ) 
at the table {O, oo, a1, l/a1, . .. , ªn-li 1/ an-1, l/an}, and 1/J~/<p~ is the [n/n] multipoint Padé 
approximant to !1(z,µ) at the table {O,oo,a1,l/a1, ... ,an-1,l/an-1,an}· 

We close this section with a theorem concerning convergence of the interpolating functions. 
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Theorem 6.3 Assume that the condition L.::::°:1 (1 - lanl) = oo is satisfied. Then the following 
hold: 
A. {1/>~(z)/cp~(z)} converges to D(z, µ) locally uniformly in lD>. 
B. {-1/>n(z)/'Pn(z)} converges to D(z, µ) local/y uniformly in JE. 
C. {-Pn(z,r)/Qn(z,r)} converges to D(z,µ) locally uniformly in lD>UlE. 

General reference: Section 6.1-6.2 and 9.2 in [34]. 

7 LINEAR FRACTIONAL TRANSFORMATIONS 1 

We shall in this section discuss a system of nested disks associated with the functional M. The 
results can be proved by applying a Liouville-Ostrogradskii type formula 

*( )·'· ( ) + ( )·'·*( ) = 2 (1 - lanl2)zBn(z) 'Pn Z 'l'n Z 'Pn Z 'l'n Z ( )( _ ) Z - an 1 - anZ 

and Christoffel-Darboux type formulas 

cp~(z)~ - 'Pn(z)~ ~ ( )-( -) 
= L_¿ 'Pk z 'Pk w ' 

1 - (n(z)(n(w) k=O 

cp~(z)~ +cpn(z)~ + ~ = - ~'Pk(z)i/>k(w), 
1 - (n(z)(n(w) 1 - zw k=O 

1/;~(z)~ -1/;n(z)~ = ~ 1/>k(z)i/>k(w). 
1 - (n(z)(n(w) k=O 

We set 
lDb = { z E lD> : z # ak for k = 1, 2, ... } 

~={zElE:z#l/ak for k=l,2, ... }. 

For a fixed point z E lDb U~ the values of s = -Pn(z, r)/Qn(z, r) describe a circle Kn(z ) when 
r take ali values in 'll'. The closed disk b.n(z ) bounded by Kn( z ) is described by 

n-1 ( ) 
"""""' 2 2s+.S s E b.n(z) {o} L_¿ l,,Pk(z) - S<pk(z)I :S I ¡2' 1 - z k=O 

and its radius rn(z) is given by 

2lzl [ n-l 2]-l 
rn(z) = l - lzl2 IBn-1(z)l {; l'Pk(z)I 

The system of disks {t.n(z)} is nested, i.e. b.n+i(z) e b.n(z ). The intersection 

00 

b.oo(z) = n b.n(z) 
n=l 

(7.1) 

is therefore either a proper closed disk or a single point. It follows from (7.1) that t.00(z) 
is a single point if and only if the sequence {[IBn(z)I ¿;~;;;¿ fcpk(z)i2J-1} tends to zero. When 
L.::::"=1 ( 1 - lan 1) < oo this condition is equivalent to divergen ce of the series L:~o l'Pk( z )12. 

137 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



Theorem 7.1 Let zo E lilb U lEo and assume that l:.00 (z) is a proper disk. Then l:.00 (z) is a 
proper disk for every z E lilb U E,¡_, and the series L~o l<t'k(z)l2 and L~o l1f>k(z)l2 converge 
loca/ly uniformly in lilb U lEo U 1l'. 

(In [34) only locally uniform convergence in lilb UlEo is stated, but the proof gives the stronger 
result.) 

As a consequence of this theorem we get a dichotomy: 
Either l:.00 (z) is a proper disk for every z E lilb U lEo, the limit circle case, or l:.00 (z) is a single 
point for every z E lilb U lEo, the limit point case. 

Finally we mention that if ¿:;~= 1 (1 - lanl) = oo, then l:.00 (z) reduces to a point for every 
z E lilb U lEo and we have the limit point case. 

General reference: Section 10.2 of [34). 

8 MOMENT PROBLEMS 1 

As before we suppose that we are given a linear functional M on .[,+C., satisfying (3.1)-(3.2). 
By the moment problem for M we mean: Find measures µ on 1l' with infinite support such that 

M[f] = ¡ f(t)dµ(t) (8.1) 

for al! f E L. A measure with this property is called a solution of the moment problem. The 
problem is determinate if there is exactly one solution, indeterminate if there is more than one 
solution. Note that because of (3.1) we also have M[g] = fyg(t)dµ(t) foral! g E.[,. when µ is 
a solution. 

For µ to be a solution, it is of course sufficient that (8.1) is satisfied for every element of 
sorne basis for .C,. For example, (8.1) is equivalent to 

M[Bn] = ¡ Bn(t)dµ(t), n =O, 1, 2, .... 

The constants M[Bn], or M[Cn] for any basis { Cn}, may be considered as moments of M, and 
this moti vates the expression moment problem for (8.1 ). 

We recall the quadrature formulas (5.4) of Section 5. We define the measures µn(·,T) as 
the discrete measure with support { (n1 ( T), ... , (nn( T)} and mass Ank( T) at (nk( T), k = 1, . . . , n. 
From the quadrature formulas (5.4) we find that 

when m < n. Similarly we may write (5.5) as 

Pn(z,T) 1 t + z Q ( ) = - -dµn(t,T) = -S1(z,µn(·,T). 
n z, T T t - Z 

(8.2) 

It follows from (8.2) that S1(z,µn(,T)) E Kn(z) when z E lIJb UJEo. 
From Helly's selection and convergence theorems it can be deduced that for every z on the 

boundary K00 (z) of l:.00 (z) there is a subsequence of a sequence {µn(·,Tn)} which converges 
to a solution v and such that the corresponding subsequence of {S1( z, µn(·,Tn))} converges to 
S1(z, v). Thus for every boundary point s of l:.00 (z) there is a solution v of the moment problem 
such that S1(z, v) =s. The set of solutions of the moment problem is easily seen to be convex, 
from which it follows that for every s E l:.00 (z) there is a solution µ such that S1( z, µ) =s. On 
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the other hand, by the aid of Bessel's inequaÜty it can be shown that !1(z,µ) C iloo(z) for any 
solution µ of the moment problem. 

Summing up this discussion, we get: 

Theorem 8.1 Let z E lDb U lli-0. Then il00(z) consists of exactly ali values !1(z,µ), where µis 
a solution of the moment problem. 

Since a measure is uniquely determined by its transform, this implies: 

Corollary 8.2 The moment problem is indeterminate in the limit circle case, determinate in 
the limit point case. In particular the problem is always determinate when I::'.°=1 (1- lanl) = oo. 

We note that if the sequence { an} consists of a finite number of points repeated in sorne 
way, then I::'.°=1 ( 1 - lan 1) = oo and hence the moment problem is determínate. In particular 
this is the case in the polynomial situation, when an = O for ali n. 

General reference: Section 10.1, 10.3 of [34]. 

9 FUNCTION SPACES 11 

Let { an}~=l be a sequence of points in the extended real line IR. For technical reasons we 
assume there is a point in i which is different from ali the ªn· There is no restriction in 
assuming this point to be at the origin, i.e., that an i= O for ali n. 

We shall make use of the factors Zk defined by 

z 
Zk(z) = _1 , k= 1,2, ... 

1 - ªk z 

and the products bn defined by 

bo = 1, bn(z) = IJ Zk(z), n = 1, 2, .... 
k=I 

We shall here use the notation Wn as follows: 

Thus we may write 

n 

wo = 1, wn(z) = IJ(l - a¡;- 1z), n = 1,2,. .. . 
k=I 

zn 
bn(z)=-(-)' n=0,1,2, .... 

w,.. z 

In particular, bn(z) = zn for ali n when ak = oo for ali k. We note that Zko(z) 
bn.(z) = bn(z ), Wn.(z) = wn(z). (Recall that here f.(z) = f( z).) 

We shall again study spaces Ln and L of rational functions. These are given by 

Ln = Span{bo, b1, ... , bn}, n =O, 1, 2, ... 

and 
00 

139 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



A function f belongs to Ln if and only if it can be written in the form 

J(z) = p(z) , 
wn(z) 

where p is a polynomial of degree at most n. In particular Ln equals the space of polynomials 
of degree at most n if ak = oo for al! k. 

As in Section 2 we could work with other simple bases { Co, c1, ... , en, .. . } for [, such that 
Ln = Span { eo, e¡, .. . , en}· For example, if al! the points Ctk are finite and distinct, 

1 1 
{l, -1 , ..• , -1 , ... } 

1 - et1 Z 1 - Ctn Z 

is such a base, and when al! ak are finite, 

1 1 
{l, -(-)' ... ' -(-)' ... } 

W¡ Z Wn Z 

is such a base. 
A function f in Ln has the representation J ( z) = L::~=O akbk ( z). We cal! an the leading 

coefficient off ( with respect to the basis {bn} ). When an = 1, the function is said to be monic. 
General reference: Section 11.1 of [34]. 

10 ORTHOGONAL FUNCTIONS 11 

Let M be a linear functional defined on the linear space [, · L, satisfying 

M[f.] = M[f], f E [, · [, (10.l) 

and 
M[f · J.] > O, f E L, f °t O. (10.2) 

Without loss of generality we assume that M[l] = l. 
Note that in the present situation we have L. = L . In the previous situation we had 

[,·L. = [,+L., and it was sufficient for M to be defined on [,+L •. In the present situation 
we have in general [, · [, # [, + L. = L, and we need to require M to be defined on [, · L . The 
equality [, · [, = [, holds when the sequence {ak} consists of points which are al! repeated an 
infinite number of times in sorne order. In particular this is the case when ak = oo for al! k 
(the polynomial case). 

Examples of functionals M satisfying (10.1 )-(10.2) can be obtained as follows: 
Let µ be a positive measure on R with the property that al! functions in[,·[, are integrable. 

Define M by 

M[F] = l F(t)dµ(t), FE[,· L. (10.3) 

Then clearly M satisfies (10.1)-(10.2). 
The functional M gives rise to an inner product (-, ·) on the space [, through the formula 

(J,g)=M[f·g.], f,gEL . (10.4) 

Let {y:in}::"=o be an orthonormal basis associated with the sequence {Ln}· Le., 
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and 
(cpj, 'Pk) = Ójk· 

The leading coefficient of 'Pn shall be chosen to be real and p<Jsit.ivc. 
The function 'Pn may be represented in thc form 

where Pn is a polynomial of exact degree n. Since 'Pn is orthogonal to ali functions (JÍ the form 
zm /wn-I (z), m =O, 1, ... , n - 1, we may write 

Mn(pn(z)·zm]=O, m=O,l, ... ,n -1 , 

where 

M [!] - M [ J( z ) ] 
n - (1 - a;;- 1z)wn-1(z)2 · 

This means that the sequence {Pn} of polynomials is orthogonal with respect to the sequence 
of varying (not necessarily positive) inner products (., -)n given by 

Thus if M[f] is given by (10.3), then the sequence {Pn} is orthogonal with res'pect to the 
sequence of varying measures µn given by 

The functions of the second kind are defined as follows: 

1f;0(z)=iz 

[ .1 + tz ] 1/Jn(z) = M -i--{cpn(t) - 'Pn(z)} , 
t-z 

These functions have the form 

qn(z) 
1/Jn(z) = -(-)'n = 1,2, . .. , 

Wn Z 

n = 1,2, .... 

where qn is a polynomial of degree at most n. Thus 1/Jn E .Cn for n = 1, 2, .... 
General reference: Sections 11.1-11.2 of [34]. 

11 RECURSION 11 

The function 'Pn = Pn is called regular if Pn ( °'n-1) # O, singular otherwise. \Vhen the sequen ce 
Wn 

{'Pn} is regular, i.e., when all cpn are regular, it satisfies a three-term recurrence relation which 
generalizes the recursion for orthonormal pol;ynomials. 

Theorem 11.1 Assume that the orthonormal sequence { 'Pn} is regular. Thrn tht Junctions 
{ 'Pn, 1/Jn} satisfy a recurrence relation of t~e form 

. -1 

e 1 - ªn-2z + n 1 1 - a;;- z 
[ 0n-2(z) ] . 

'fn-2(z) 
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with n = 2,3, .. . and ao = oo . . The constants An,En,Cn satisfy 

1 - a;;-~2ªn-l 
An +En ~ Ü 

CXn 
(11.1) 

(11.2) 

In the polynomial case (i.e., an = oo for all n) ali the polynomials 'Pn are regular. Hence we 
obtain 

[ i:~;j] = (Anz +En) [ i~~(~)) ] + Cn [ i:=~~;j ] , n = 2, 3, ... 

which has the form of the classical recursion for orthonormal functions. 
As in the classical situation, a converse of Theorem 11.1 is true. The argument is, however, 

rather more complicated. This is so partly because from a given recursion for functions in C 
we need to define a functional M on C · C with respect to which the functions are orthogonal. 

Theorem 11.2 Let {cpn} be a sequence of functions such that cp0 = 1, cp1(z) = 1ul:_>. with 
-a 1 z 

K ~ O, 'Pn E .Cn \ .Cn-l for n = 1, 2, .... Assume that there exist constants An, En, Cn, n = 
2,3, . . . satisfying {11.1)-(11.2} such that 

( z 1 - a;;-~ 2 z) 1 - a;;-~2 z 
'Pn(z) = An 1 _ a-lz +En l _ a-lz 'Pn-1(z) + Cn l _ a-lz 'Pn-2(z) 

n n n 

for n = 2, 3,.. .. Then there exists a linear functional M on C · C such that { 'Pn} forms a 
regular orthonormal sequence with respect to the inner product {10.4). 

General reference: Sections 11.1, 11.9 of [34]. 

12 QUADRATURE 11 

A quasi-orthogonal rational function of order n is a function of the form 

1 - a;;-~ 1 z 
Qn(z, r) = 'Pn(z) + T _ 1 'Pn-1(z), TE C. 

1- Qn Z 

(Qn(z,oo) means cp,¡_ 1(z).) These functions satisfy 

(Qn(z, r), bk(z)) =O, k =O, 1, ... , n - 2, 

and ali functions satisfying this conditions is of form (12.1). 

(12.1) 

With the quasi-orthogonal functions we associate functions of the second kind given by 

. 1-a;;-~ 1 z 
Pn(z, r) = tPn(z) + T 1 tPn-1(z). 

1 - a~ z 

These functions may also be described by the formula 

Pn(z,r) = M [-i 1 +tz { l -a~11 t Qn(t,z)-Qn(z,r)}], n = 2,3, .... 
t - Z 1 - Qn_ 1 t 

(12.2) 

We inay write 

Q ( ) _ Pn(z,r} 
n z, T - ( ) , 

Wn Z 

P ( ) = qn ( Z, T) 
nZ,T ()' 

Wn Z 

where Pn and qn are polynomials of degree at most n . 
In the following we shall assume that T E R. 
A value of T for which none of the points {O, a¡, ... , an} are zeros of Pn(z, r ) is called a 

regular value for 'Pn · There can be at most n non-regular values. 
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Theorem 12 .1 A ssume that 'Pn is regular and that r is a regular value for 'fin. Titen Q r. ( z, r) 
has n simple zeros, all lying in r E R \{O, a 1 , .•. , an}. 

Note that the zeros are the same as the zeros of the numerator polynomial Pn ( z, r ). 

Theorem 12.2 Assume that 'Pn is regular and that T is a regular value for 'fin. Let enk( T ), k = 
l , ... ,n, be the zeros ofQn(z,r), and set 

A (r) _ i Pn(enk(r),r) 
nk - 1 + 'nk(r) 2 Q' (> ( ) ) . ' n 'nk T ' T 

Then the quadrature formula 

n 

M[R] = L Ank(r)R(enk(r) ) 
k=I 

is exact for every RE Ln-1 · Ln-1 · 

An alternative expression for the weight Ank(r) is 

The degree of exactness of this formula is one less than maximal in the sense that the formula has 
2n parameters An1 ( T ), . . . , Ann( r), ~ni ( r), ... , ~nn( T ), while the dimension of the space Ln-1 ·Ln-1 
is only 2n - l. When r = O, the degree of exactness is increased by one, and it is therefore 
natural to call this formula a rational Gaussian quadrature formula. 

Theorem 12.3 Assume that 'Pn is regular and that r = O is a regular va/u.e for 'Pn . Then the 
quadrature formula 

n 

M[R] = L Ank(O)R(~nk (O)) 
k=O 

is exact for every R E Ln · Ln-1 . 

The following result follows from Theorem.12.2 and the fact that the a~gument in formula 
(12.2) belongs to Ln- 1 · Ln- 1 · 

Theorem 12.4 Let ~nk(r), Ank(r), k = 1, ... , n, be as in Theorem 12.2. Then we have 

General reference: Sections 11.5-11.6, 11.10 of [34). 
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13 INTERPOLATION AND CONVERGENCE 11 

As in Section 6 we shall here only consider the situation when the functional M is given as 
an integral. This means that there exists a positive measure µ on R such that all functions 
in .C · .C are integrable, with M given by formula (10.3). We recall the definition (1.2) of the 
Riesz-Herglotz-Nevanlinna transform n(z,µ) of µ. 

Theorem 13.1 Let 'Pn be regular and /et T be a regular value for 'Pn. Then the quotient - QPn((z,T)) 
n z,r 

interpolates n(z, µ) at the table { i, -i, a1, a¡, .. . ) ªn-1) ªn-d in the following sense: 

_Pn(i,r) =n(· ) 
Q ( . ) i, µ ) 

n z, T 

Pn(-i,r) _ ,...( . ) 
- - " -i µ 

Qn(-i,r) ' 

lim { Pn(z,r) }(k) + n<kl(z ,µ) =O 
z-+crm Qn(z, r) 

(subscript means differentiation} for k = O, 1, . . . , a! - 1, m = 1, 2, ... , n - 1, where a! 
denotes the multiplicity of am in the sequence {a¡, a1, ... , am, am, ... , O'n-li ªn-d. The limit 
is to be understood as angular limtt in arbitrary regions E < larg(z - am)I < 71' - E, E > O, 
k=l, ... , n-1. 

For the püre quotients t/Jn /'Pn we have a somewhat stronger result. 

Theorem 13.2 Assume that 'Pn is regular and that T = O is a regular value for 'Pn· Then 
the quotient -t/Jn/'Pn interpolates n(z, µ) at the table { i, -i, a¡, a1) ... ) ªn-!, ªn-1) an} in the 
f ollowing sense: 

tPn((z)) + n(z,µ) = (z - i)(z + i)fn(z)wn(z.)wn-1(z), 
'Pn Z 

where r n is holomorphic in e\ R and bounded in any region € < iarg(z - ak)I < 71' - E, € > o, 
k=l, ... ,n. 

Since Y!n. is a rational function of type [n/n] the meaning of Theorem 13.2 is: The function 
'Pn 

-t/Jn/'Pn is the (n/n] multipoint Padé approximant to n(z, µ) at the table { i, -i, a¡, a 1, ... , ªn-i, 
On-1,on}· 

Let µn( ·, r) denote the discrete measure with support ffn1 ( T ), . .. ) enk( T)} and mass Ank( T) 
at enk(r), k = 1, ... ) n. 

Theorem 13.3 Assume that the sequence { 'Pn} is regular, and for each n /et Tn be a regular 
value of 'Pn. lf the sequence {µn. ( ·, Tn•)} converges to µ, then 

local/y uniformly in U. 

For the sequence { tPn/'Pn} the following result holds. 

Theorem 13.4 Assume that {'Pn} is a regular sequence. Let {'Pn.} be a subsequence of {'Pn} 
such that T = O is a regular value for each 'Pn• and such that {µn.(-, O)} converges toµ. Then 

l. [ tPn.(z)] ,...( ) lill --- - H Zµ 
k-+oo 'Pnk ( Z) - ' 

local/y uniformly in U. 

General reference: Section 11.10-11.11 of (34]. 

144 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



14 LINEAR FRACTIONAL TRANSFORMATIONS 11 

Again we shall make use of Liouville-Ostrogradskii type formulas and Christoffel-Darboux type 
formulas. These have the form 

and 

n-1 

= En(w - z) L<f'k(z)rpk(w) 
k=O 

1/!n( w)1/Jn-l (z)(l - a;;-1w )(1 - a;;-~ 1 z) -1/!n(z)1/!n-l ( w )(1 - a;;-1 z )(1 - a;;-~ 1 w) 

=En(w-z) [~1/!k(z)¡/Jk(w)-1]. 
Here En is a constant, En -=J O if <f'n is regular, En = O if <f'n is singular. 

We shall for simplicity assume that the sequence { <,c>n} is regular. The concluding results of 
this and the next section are, however, true without this assumption. 

The results of this section rely on the formulas above. 
For a fixed z E e\ R the mapping T-+ _QPn((z,r)) transforms R to a circle Kn(z). We denote 

n Z 1'T 

by ~n(z) the closed disk bounded by Kn(z). This disk is described by 

n-1 lz - i¡2 
s E ~n(z) ~ ll - sl2 + """'11/Jk(z) + S<f'k(z)l2 ~ (s + s)--_-, 

L., z-z 
k=O 

and its radius rn(z) is given by 

(14.1) 

We have 1/Jn(i) = -<,c>n(i), thus ~n(i) reduces to a point. 
The sequence {~n(z)} is nested i.e., ~n+1 (z) C ~n(z), andas in Section 7 the intersection 

00 

~oo(z) = n ~n(z) 
n=l 

is either a proper closed disk ora single point. It follows from (14.1) that for z -=J i,~00 (z) is a 
single point if and only if the series 2:::~1 l<f'k(z)l2 diverges. · 

We set ICo = C \ {R U { i} U { -i}}. The following invariance result holds. 
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Theorem 14.1 Let z0 E Ci and assume that ó 00 (zo) is a proper disk. Then ó 00 (z) is-a proper 
disk for every z E Ci and the series l:~o l'Pk( z) 12 and l:~o l'Pk( z )12 converge local/y uniformly 
in Ci. 

Thus again we get a dichotomy: 
Either ó 00 (z) is a proper disk for every z E Ci, the limit circle case, or ó 00 (z) is single 

point for every z E Ci, the limit point case. 
General reference: Sections 11.3-11.4, 11.7 of [34]. 

15 MOMENT PROBLEMS 11 

We assume that we are given a linear functional M on .C · .C satisfying (10.1)-(10.2) . A positive 
measure µ on R with infinite support is said to solve the moment problem on .C if 

M[/] = L J(t)dµ(t),f E .e, (15.1) 

and to solve the moment problem on .C · .C if 

M[F] = L F(t)dµ(t), FE .e . .e, (15.2) 

·A measure which solves the moment problem on .C · .C also solves the problem orí .C, since 
.e e .e . .c. 

Clearly it is sufficient for µ to solve the moment problem on .C or on .C · .C that (15.1) or 
(15.2) is satisfied for the functions in sorne generating system for .C or .C · .C. For example, 
(15.1) is equivalent to 

M[bm] = L bm(t)dµ(t), m =O, 1, 2, ... , 

and (15.2) is equivalent to 

M[bm. bn] = L bm(t)bn(t)dµ(t), m, n =o, 1, 2, .... 

The constants M[bm] or M[bmbn] may be termed moments, from which the expression moment 
problems arise. 

We sha/I a/so in this section assume that the sequence { 'Pn} is regular. 
We recall the measures µn(-, r) introduced in Section 13. Let z E Ci. As in Section 8 we 

find that for every s on the boundary of ó 00 (z) there is a subsequence of a sequence {µn(-, Tn)} 
which converges to a solution v of the moment problem on .C and such that !1(z, v) = s. It 
should be noted that in order to carry out the proof, we need to know that M is defined on 
.C ·.C. From the convexity of the set of solutions, it follows that for every s E ó 00 (z) there is a 
solution µ of the moment problem on .C such that n(z, µ) =s. By the aid of Bessel's inequality 
it can be shown that n(z,µ) E ó 00 (z ) for every solution of the moment problem on .C..C. Thus 
we have: 

Theorem 15.1 Let z E Ci. Then 

{!1( z, µ): µ solution on .C · .e} C ó 00 (z) e {n(z,µ): µ solution on .C}. 

Again since a measure is determined by its transform, we conclude: 
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Corollary 15.2 The moment problem on .C · .C {if salvable) is determinate in the limit poinl 
case. The moment problem on C is indeterminate in the limit circle case. 

We note that if the sequence { an} consists of points which are all repeated an infinite 
number of times, i.e., if .C = .C · .C, then the moment problem is determinate exactly in the limit 
point case. 

General reference: Section 11.8 of (34] . 

16 CONCLUSION 

We have presented sorne of the basic features of the theory oforthogonal rational functions. We 
refer to the reference list for detailed treatments both of the topics we have discussed here and 
of problem areas that we have not considered. There is much room left for studies of the case 
when the poles can be partly on the "support curve", partly outside it. Dewilde and Dym (36] 
considered a situation of this kind, anda few remarks can be found in (34]. Sorne applications 
of orthogonal rational functions in the area of signa! processing and system theory are discussed 
in Chapter 12 of (34], in (28] and in (66]-(67]. . 
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