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p-CLOSEDNESS IN TOPOLOGICAL SPACES
M. N. MUKHERJEE, ATASI DEBRAY AND P. SINHA

ABSTRACT The present paper deals with a kind of covering property for topological
spaces, called p-closedness, first initiated by Abu-Khadra [4], followed by a recent study of the
same by Dontchev ef al. [3]. We derive here a number of characterizations and certain relevant
properties of such a concept mainly via certain newly introduced notions like p(6)-continuity,

p(6)-subclosedness and strong p(B)-closedness of graphs of functions.

KEYWORDS Preopen set, preclosure, p-closed space, p(6)-continuity, p(6)-subclosed
graph, strongly p(0)-closed graph.
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§ 1. INTRODUCTION

Compactness and its different allied forms, specially quasi H-closedness, have so far
been studied in detail by many topologists. It is seen from literature that certain open-like sets,
e.g. semiopen sets [5], regular open sets, have been employed for the above investgations. The
notion of preopen sets was initiated by Mashhour ef a/. [7] and such sets along with some
other relevant concepts have been investigated by many. Recently, Dontchev et al. [3] have
taken up an investigation of a sort of covering property, called p-closedness for topological
spaces with the help of the notions of preopen sets and some associated ones, the originator of
the notion of p-closedness being Abo-Khadra [4] in 1989. We propose to undertake, in this

paper, a further study of the same.

In (3], certain characterizations of p-closedness for topological spaces and their subsets

have been found mainly in terms of filterbases. We shall add a few more to this list of

formulations, in section 2.

[n section 3, we define a type of functions called p(8)-continuous ones, and introduce
the notion of p(B)-subclosedness of graphs of functions. These ideas are exploited to

ultimately achieve a few characterizations of p-closed topological spaces.
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In section 4, we try to obtain formulations of p-closed spaces by means of strong p(8)-

closedness of graphs of functions, a concept suitably defined in the same section.

In what follows, by spaces X and Y we mean topological spaces. For any subset A of a
space X, we shall use the notations clA and intA to denote the closure and interior of A in X

respectively. The word ‘neighbourhood’ will be abbreviated as ‘nbd’.

§ 2. p-CLOSEDNESS, IN GENERAL

Let us, at the very outset, clarify certain key words and notations that are often taken
resort to throughout the paper. These known terminologies and other pertinent details can be

found in literature (e. g. see [2]).

DEFINITION 2.1 : A subset A of a topological space X is called preopen if A C intclA; the
complements of such sets in X are known as preclosed sets i.e., for a preclosed set A, clintA ¢ A.

The collection of all preopen sets in a space X will be denoted by PO(X).

DEFINITION 2.2 : For any space X and any A X, the union (intersection) of all preopen
(preclosed) sets in X, each contained in (containing) A is called the preinterior (resp.

preclosure) of A in'X, to be denoted by pintA (resp. pclA).

Since arbitrary union (intersection) of preopen (preclosed) sets in X is known to be preopen
(preclosed), the preinterior (preclosure) of a set A in a space X can equivalently be defined as
the largest (smallest) preopen (preclosed) set contained in A (containing A). The following

results are also well-known.

THEOREM 2.3 : Let A be a subset of a space X. Then,

(a) pclA consists precisely of those points x of X such that UNA # ¢, for every preopen set U

containing X ;

(b) pcl(X\ A) =X\ pintA.
We now append the definition of p-closedness, as introduced originally in [4].

DEFINITION 2.4 : A non-void subset A of a topological space X is said to be p-closed

relative to X if for every cover {U, : o € A} there and hereafter A denotes an indexing set) of
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A by preopen sets of X, there exists a finite subset Ay of A such that A c U{pclU, : a € A}.

If, in addition, A = X, then X is called a p-closed space.

THEOREM 2.5 : Suppose A and Y are subsets of a topological space X such that Ac Y
X and Y is open in X. Then A is p-closed relative to X if and only if A is p-closed relative to

the subspace Y.

PROOF : First suppose that A is p-closed relative to Y, and let {V, : o € A} be a cover of A
by preopen sets of X. As V, € PO(X) and Y is open in X, one can check that V, "Y€ PO(Y).
Hence, { V. Y - a € A} is a cover of A by preopen sets of Y. By p-closedness of A relative
to Y, there exists some finite subset Ay of A such that A ¢ U{pcly (Va NY): o € Ay} (here
and afterwards also, the usual notation pcly B stands for the preclosure of a subset B of Y in
the subspace Y of X). It is then easily seen that A  U{pclV, : a € Ao}, proving that A is p-
closed relative to X. '

Conversely, let A be p-closed relative to X and { V. : a € A} be a cover of A by preopen sets
of Y. As Y is open, and V, € PO(Y) for each a € A, we have V, € PO(X). Thus, {V,:a € A}
is a cover of A by preopen sets of X. By hypothesis, there is a finite subset Ay of A such that
Acu{pclVa:a € Ao}, ie, AnY=Ac U{(pclVa) " Y: a € Ag}. It can be verified that
pclVa NY C pelyVa. Thus, A < U{pcly (Vo) : o € Ao}, and A becomes p-closed relative to Y.

COROLLARY 2.6 : An open subset A of a space X is p-closed iff it is p-closed relative to X.

THEOREM 2.7 : (a) Union of finite number of sets in a space X, each of which is p-closed

relative to X, is p-closed relative to X.

(b) A subset A in a p-closed space X is a p-closed relative to X if A is preopen as well as

preclosed.
PROOF : The straightforward proofs are omitted.

It is well-known that barring paracompactness the best known weaker form of
compactness is quasi H-closedness, a few other widely studied compact-like covering
properties being S-closedness [9], s-closedness [6] and near compactness [8]. A topological
space X is called quasi H-closed [1] if every open cover % of X has a finite subfamily %, the

wnion of the closures of whose members is X. As to the relation of p-closedness of a space
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with the above standard covering properties, it has been shown by Dontchev ef al. [3] that p-
closedness of a space X is independent of each of compactness, near compactness, s-
closedness and S-closedness of X. Now, since every open set is preopen and for any open set A

in X, pclA =clA, it immediately follows that
THEOREM 2.8 : Every p-closed space is quasi H-closed.

The above result and also the fact that the converse of it is false, have also been
observed in [3]. We give here another and a rather simple example of a compact space which

is not p-closed.

EXAMPLE 2.9 : Let X denote the set of real numbers endowed with the cofinite topology.
The space is clearly compact. Now, for any subset A of X, there are three possibilities as
follows : (i) A is finite, (i) A is infinite with finite complement, (iii) A is infinite with X \ A

infinite.

For case (i), intclA = intA = ¢, so that A is not preopen. In case (ii), A is open and hence preopen.
For case (iii), we have A ¢ X = intclA and in this case A is preopen. Let U; = (X \ N) u {i}, for
any i € N (the set of natural numbers). Thus = {U;:i € N} U {(X\N)} is a cover of X by
preopen sets of X. We observe that X \ N and X \ Ui (i € N) are also preopen (being sets of
type (iii)). Hence there cannot exist any finite subfamily of %, the preclosure of whose

members may cover X. Thus, X is not p-closed.

Similar to the definition of 6-adherence and 6-convergence of filterbases, the ideas of
pre-6-adherence and pre-8-convergence of filterbases were introduced in [2]. We shall recall

them below, and include with them the corresponding definitions fornets.

DEFINITION 2.10 : Let X be a topological space, Ac X and x € X.

(a) [3] A filterbase % on A is said to

(i) pre-B-adhere at x (to be written as x € p(6)-ad¥), if for each preopen set U containing x
and each F € & F npclU = ¢,

(ii) pre-B-converge to x ( to be denoted by F—EC— x) if for each preopen set U containing
x, there exists F € Fsuch that F ¢ pclU.

(b) A net {Xq : & €(D,>)}(where (D,2) is directed set) in A is said to
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(i) pre-G-adhere at x (written as x € p(6)-ad(x.)), if for each preopen set U containing x and
each a € D, there exists a 3 € D with 8 > o such that xg € pclU;

(ii) pre-B-converge to x ( in notation, x, —221— x) if the net is eventually in pclU, for each
preopen set U containing x. If a net {x,} pre-6-adheres at some x € X (pre-B-converges to
some x € X), we shall sometimes write that x is a pre-@-adherent point of the net (resp. the

net is pre-6-convergent to x). Similar terminologies apply to filterbases also.

DEFINITION 2.11 : For a subset A of a space X and a point x of X, we say that x is in the pre-&

closure of A and write x € p(6)-clA, if for every preopen set U containing x, pclU N A # ¢.

The rest of this section is forwarded to the characterizations of p-closedness in terms of
the concepts detailed so far. The first theorem in this endeavour follows next, giving a long list
of formulations of p-closedness of subsets relative to a space, the first three being already

known from Dontchev ef al. [3].

THEOREM 2.12 : For any non-void subset A of a space X, the following statements are

equivalent :

(a) A is p-closed relative to X.
(b) Every maximal filterbase on X which meets A, pre-8-converges to some points of A.

(c) Every filterbase on X which meets A, pre-8-adheres at some point of A.

(d) For every family {U, : a € A} of non-void preclosed sets with (n UuJ NA = ¢, there is

aeA

a finite subset A, of A such that [np int Uu] NA=¢.

ach,

(¢) Every maximal filterbase on A is pre-6-convergent to some point of A.

(f) Every filterbase on A is pre-8-adheres to some point of A.

aeA

(g) For every family {B, : @ € A} of non-empty sets in X with [n(p(e) -clB, )] NA=¢,

there exists a finite subset Ao of A such that [ﬂBu] NA=¢.

a€hg

(h) Every net in A pre-8-adheres at some point of A
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(i) Every ultranet in A pre-6-converges to some point of A.

(j) Every net in A has a pre-6-convergent subnet.

PROOF : The equivalence of (a), (b), (c), (d) has been established in [3], and ‘(c) = (f)’ is

obvious. We prove the other implications as follows.

(b) & (e) : If Fis a maximal filterbase on X such that Fmeets A, then F* = (FNA: F € ¥ }is

a maximal filterbase on A. Hence ‘(b) = (e)’ is clear. The converse is obvious.

()= (g): Let B={B,: o € A} be a family of non-void sets in X such that for every finite

subset Ao of A, [ﬂBa] NA#¢. Then F= {[nB“J NA: A, is a finite subset of A} isa
aed, a€h,

filterbase on A. By (f), let a € A N (p(8)-ad%). Then for each a € A and each preopen set U
containing a, AnB,"(pclU) # ¢, i.e., BanpclU # ¢. Hence a € p(0)-cIB, for each oo € A and

consequently, (ﬂ p(6) - clBu) NA=¢d.
aeA

aeA

(g) = (a) : Let {U, : a € A}be a cover of A by preopen sets of X. Then An|iﬂ(X\UJ}= ¢.

If for some a. € A, X\ pclU, = ¢, then we are through. If (X\ pclU,) (=B, say) = ¢ foralla. € A,
then B = {B, : a € A} is a family of nonempty sets such that

[Q(p(e)-cmm)}m\g An[ﬂ(X\UJj’:d) )

aeA

In fact, let x € p(0)-cIB, = p(8)-cl(X \ pclUs).Then for every preopen set V, containing x,
(X \ pclUs) M pelVy # ¢. Since Ua € PO(X), if x € U, then (X \ pclUs) N (pelUs) # ¢ which is
not possible. Thus x & U, so that x € X\ U,. Hence p(6)-cIB, < X\ U, and (i) follows. By (g),

there is a finite subset Ao of A such that [nBﬂ] NA=¢ie, Ac X\ ﬂ(X\ pelU, )= UPCIUu

ach,y ael, ael,

which proves (a).
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() < (h) : Suppose (f) holds. Let {x, : n €(D, 2)}be a net in A. Consider the filterbase
F = {T, : ne D}generated by the net, where T, = {Xm : m € D and m 2 n}. By (f), there exists
a € A n (p(6)-ad%). Then for each preopen set U containing a and eachF € & pclUNF# ¢ ie,
pclU n T, # ¢, for all n € D. Hence a € A n [p(6)-ad(x,)], and (h) follows. The proof of

‘(h) = (f)’ is quite similar.

(h) = (i) : Let {x, : n €(D, > )}be an ultranet in A. By (h), there exists a € [p(0)-ad(x,)] N A.
Let U be a preopen set containing a. Since the given net is an ultranet in A, it is eventually in either
(A n pelU) or A\ (A n pclU). But since the net is frequently in (A m pclU) (as a € p(0)-ad(x,)),

we conclude that the net is eventually in pclU. Hence x, —22— a.

(i) = (i) : We know that every net in A has a subnet which is an ultranet. Thus any given net

in A has a subnet which pre-6-converges to some point of A (by (1)), and (j) follows.

()= (h): Let T : E > A be a pre-8-convergent subnet of a given net S : D — A, and
suppose T—2-5 a € A. Then T = Sog, where g : E — D is a function such that for eachn € D
there exists p € E with the property that g(m) > n in D whenever m € E with m > p. Let U be a preopen
set containing a and n € D. There is m; € E such that T(m) € pclU, for all m > my(m € E). For the
given n € D, let p € E with the above stated property and let m; € E such that m; > p, m,.
Then g(m;) > n in D, and we have T(m;) = Sog(my) € pclU(since m; > m,;). Hence a €

(p(©)-adS) N A. This completes the proof of the theorem.

Putting A = X in the above theorem, we obtain the following characterizations of p-
closed spaces (we note here that direct proofs of the equivalence of the statements in (a) - (d)

of the following theorem have been given by Dontchev et al. [3]).
THEOREM 2.13 : For a space X, the following are equivalent :

(a) Xis a p-closed space.
(b) Every maximal filterbase on X pre-6-converges.

(c) Every filterbase on A is pre-8-adheres to some point of A.
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(d) For every family {U, : o € A} of non-void preclosed sets in X with ﬂUu =¢, there is a

aeA

finite subset A, of A such that ﬂ pintU, =¢.

aeh,

(e) For every family {B, : & € A} of non-empty sets in X withﬂp(e) —-clB, = ¢, there

aelA

exists a finite subset Ao of A such that nB“ =¢.

aeh,
(f) Every net in X pre-68-adheres at some point of X.
(g) Every ultranet in X, pre-8-converges.

(h) Every net in X has a pre-6-convergent subnet.

THEOREM 2.14 : A space X is p-closed if and only if every filterbase on X with at most one

pre-6-adherent point pre-8-converges.

PROOF : Let X be p-closed and ¥ be a filterbase on X with at most one pre-8-adherent
point. By theorem 2.13, & has then a unique pre-8-adherent point X, (say) in X. Let % do not
pre-B-converge to xo. Then for some preopen set U containing xo, and for each F € &
F X\ pelU) # ¢. So, §= {F n(X\pclU) : F € F}is a filterbase on X and hence has a pre-
©-adherent point x in X. Since U is a preopen set containing X, such that (pclU) n G = ¢, for
all G € %, we have x # xo. Now, for each preopen set V containing x and each F € & F n
(pclV) 2 F npelV n (X \ pclU) # ¢ i.e., F n (pelV) # ¢. Thus, x is a pre-8-adherent point of
& where x # Xo. This contradicts that x, is the only pre-8-adherent point of % The converse is
clear in view of Theorem 2.13 ((c) = (a)) and the fact that a point x is necessarily a pre-0-

adherent point of a filterbase # if F —2®»x.

DEFINITION 2.15 : A family 4/ of preclosed subsets of a space X will be called a precover
of X if for each x € X, there is some U € % such that U is a prenbd of x (i.e., x € V c U), for

some preopen set V).

THEOREM 2.16 : A space X is p-closed iff every precover of X has a finite subcover.
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PROOF : Let X be p-closed and % be any precover of X. Then, for each each x € X, there
are U, € % and a preopen set V, such that x € V, < U,. It then follows that {V,:x € X }isa

cover of X by preopen sets of X. By p-closedness of X, X = Upclel , for a finite subset

1=1

{x1,..., Xa} of X. Thus, X = U U, . Conversely, if U is any preopen cover of X, then {pclU :

U € % }is precover of X and hence the rest follows trivially.

§ 3. p(6)-CONTINUITY, p(6)-SUBCLOSED GRAPH AND STRONG p(6)-CLOSEDNESS

According to our proposed scheme, we introduce in this section a sort of functions,
termed p(B8)-continuous ones, and the concept of p(6)-subclosedness of the graphs of
functions, with the tacit aim of characterizing p-closedness of topological spaces. We start
with the definition of p(6)-continuity followed by some of its equivalent formulations and

certain relevant properties.

DEFINITION 3.1 : A function f: X — Y is called p(@)-continuous if for each filterbase ¥ on
X, (ad%) < p(0)-adf{F), where as usual, ad% denotes the adherence of &, i.e., ad¥ = N{cIF :
F € #}.

THEOREM 3.2 : A function f: X — Y is called p(6)-continuous iff for each x € X and each
preopen set W containing f{x), there is an open nbd U of x such that f{U)  pcIW.

PROOF : Let the given condition hold and let % be a filterbase on X. If ad% and W is a
preopen set containing f{x), there is an open nbd U of x such that f{U) ¢ pcIW and U n F= ¢,
for all F € & So, pclW m f{F) # ¢, for every F € & This shows that f(x) € p(6)-adf{¥) and f

becomes p(6)-continuous.

Conversely, let for some x € X and some preopen set V containing f{x), {Uy) @ pclV, for
every open nbd Uy of x. Then, = { Uy [X\ f '(pcIV)] : Uy is an open nbd of x} is a filter-
base on X with x as an adherent point. But f{(x) ¢ p(6)-adfi%) so that f{ad%) & p(6)-adf(%).

THEOREM 3.3 : For a function f : X — Y the following are equivalent :

(a) fis p(B)-continuous.
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(b) For each x € X and each filterbase & on X with F— x, the filterbase f(%) —22 f{x).
(c) For each x € X and each filterbase ¥ on X with ¥ — x, f(x) € p(6)-adf(F).

(d) For each x € X and every net (Xq) in X with X, = X, f{xe) —22— f{x).

PROOF : (a) = (b) : For any preopen set V containing f{x), there exists, by Theorem 3.2, an

open nbd U of x such that {U) c pclV, and then F c U, for some F € # Hence, f{F) < pclV.

(b) = (c) : Obvious.

() = (a) : If f is not p(B)-continuous at some point x of X, there exists some preopen set V
containing f{x) such that [X \ f'(pclV)] ~ U # ¢, for each open nbd U of x. Then & = {[X\
f'(pcIV)] " U : U is an open nbd of x} is a filterbase on X such that ¥ — x, but f{x) & p(6)-adf{%).

(a) © (d) : First suppose that f is p(8)-continuous, and x, is a net such that x, — x. Consider
any preopen set V containing f{(x). Then by Theorem 3.2, there exists some open nbd V of x
such that {U)  pclV. Now, U being an open nbd of x, there exists some 8 such that x, € U,
for all o > B. Consequently, for all o > B, fix,) € pelV, ie., fix,) —22— f{x).

Conversely, let f be not p(6)-continuous at some x € X. Then for any preopen set V containing
f{x) and any open nbd U of x, {U) & pclV. Now, we define ‘<’ on X as follows :

U< Vifand only if U c V, for any two open sets U, Vin X.

Choose xy € U such that fixy) & pclV. Then {xy}u is a net in X, which converges to x, but

{f{xu) }u does not pre-B-convergences to f{x).

THEOREM 3.4 : Iff: X — Y is a p(6)-continuous function and Y is Hausdorff, then the graph
G(f) of fis closed in X x Y.

PROOF : Let (x, y) € X x Y \ G(f), then y # f{x). By Hausdorffness of Y, there exist open nbds
U, V of y and f{x) respectively in Y such that U » V = ¢ and hence U n pclV = ¢. By p(6)-
continuity of f, there exists an open set W in X containing x such that {W) < pclV. Then W x U is
an open nbd of (x, y) in X x Y such that (W x U) " G(f) , and hence G(f) is closed X x Y.

THEOREM 3.5 : Suppose f: X — Y isa functionand g : X — X x Y is the graph fnction of f,
given by g(x) = (x, f(x)), for x € X. If g is p(6)-continuous, then so is f.
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PROOF : Let x € X and V be any preopen set in Y containing f(x). It is easy to see that
whenever U € PO(X) and V € PO(Y), then U x V € PO(X xY). Thus X x V is a preopen set
in X x Y containing g(x). By p(6)-continuity of g, there is an open nbd U of x such that g(U) c
pcl(X x V). We can show that pcl(X x V) < X x pclV, and thus we have f{U) < pclV, proving
the p(6)-continuity of f.

It is the turn of the notion of p(6)-subclosedness of graphs of arbitrary functions

between topological spaces, which will now be introduced and characterized.

DEFINITION 3.6 : A function f: X — Y is said to have p(6)-subclosed graph if for each x € X
and each filterbase on X \ {x}with F— x, p(6)-adfi¥) c{f(x)}.

The proof of the following theorem, giving an equivalent description of p(0)-

subclosedness of graphs in terms of nets, is quite clear.

THEOREM 3.7 : A function f: X — Y has a p(8)-subclosed graph iff for each x € X and each
net (Xq) in X\ {x}with x, — x, p(6)-adfix,) c{f(x)}.

THEOREM 3.8 : A function f: X — Y has a p(6)-subclosed graph iff for each (x, y) € X x Y \
G(f), there exists an open nbd U of x in X and some preopen set V containing y such that

[(U \{x}) x pclV] n G(f) = ¢, where G(f), as usual, denotes the graph of f.

PROOF : First, suppose that f: X — Y has a p(0)-subclosed graph, and (x, y) € X x Y \ G(f).
Then, y # f(x). Consider n* = {U\ {x} : U is an open nbd of x}. If it is a filterbase, then n,* — x
and hence y ¢ p(0)-adfin.*). So, there are U € n* and a preopen set V containing y such that
pclV ~ fU) = ¢. Then Up = U U{x} is a nbd of x and V is a preopen set containing y such that
[(Uo \{x}) x pcIV] N G(f) = ¢. If n* is not a filterbase, then U = {x} for some open nbd U of x,
and the rest is obvious.

Conversely, suppose Fis a filterbase in X \{x} converging to x € X and the given condition
holds. Suppose y # f(x), i.e., (x, y) € X x Y \ G(f). Hence by the given condition, there are an
open nbd U of x in X and a preopen set V containing y such that [(U \{x}) x pclV] n G(f) = ¢, or
equivalently, f{lU \{x}) m pclV = ¢. Since, ¥ — x, it follows that F — U\ {x} for some F € &
Hence, f(F) n pclV = ¢. Then, y ¢ p(6)-adf{%). Consequently, f has a p(6)-subclosed graph.
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The concepts which we are pondering upon so far in this section, will now be used to

obtain a few characterizing conditions for p-closedness.

THEOREM 3.9 : A space (Y, 1) is p-closed iff for any space X, every function f: X —> Y
with p(6)-subclosed graph is p(6)-continuous.

PROOF : First, we suppose that Y is p(8)-closed and suppose f : X — Y is a function with p(8)-
subclosed graph, X being an arbitrary topological space. Let ¥ be a filterbase on X and y € flad%). Then
there is an x € ad¥ such thaty = f{x). Let 4= {UNF\{x} : F € $and U € n(x)}, where n(x)
denotes the system of all open nbds of x in X.

First, suppose that ¢ is not a filterbase. Then for some U, € n(x) and some F, € #, U; " F, = {x}.
We assert that x € F, for each F € & If not, then for some F, € & x ¢ F,, Choose F; € & such
that F; c Fin F,. Then, (U, nF3)\ {x} c (UinF)\ {x}=¢die, U nF={x} (as U N F;z¢),
ie, x € F;c Fin F, and hence x € F;, a contradiction. Thus, f{x) € f{F), for every F € & Hence,
y € p(B)-adf(%).

Next, let & be a filterbase on X \ {x}. Clearly ¢ converges to x in X. Since f has a p(6)-sub-closed
graph, {%) has at most one pre-6-adherent point, viz. f{x) . Since Y is p-closed, it then follows by
virtue of Theorem 2.13, that p(0)-adf{%) = {f(x)}. Thus, {y} = p(6)-adf{%) < p(0)-adf(F).
Hence, in any case, f{ad%) c p(6)-adf{%) and consequently f is p(6)-continuous.

Conversely, to prove (Y, t) to be p-closed under the stated condition, it is to be shown, in
view of Theorem 2.13, that every filterbase on Y has a pre-6-adherent point. If possible, let there
exist a filterbase ¥ on Y such that p(0)-adfi#) =¢ . Let us choose and fix some y, € Y. Consider the
collectiont*={AC Y :yo € YNA}U{ AC Y :yo € AandFc A for some F € &}. Clearly, t* isa
topology on Y. Now, we consider the identity function f: (Y, t) — (Y, t). We show that f has a p(6)-
subclosed graph. For thislety € Yand & be a filterbase on Y \ {y} such that  — y in (Y, t*). Then,
by definition of T*, y = yo. For otherwise, {y} is a * -open nbd of y and hence the filterbase & on Y \{y}
cannot converge to y. Also, we have ¥  &. In fact, foragivenF € & {yo} U F is a t* -open of y, and
hence contains some member B € & (as B — yo) and then B < F. Now, in (Y, 1), p(6)-adf{®) =
p(0)-adB c p(0)-adF (as ¥ < &) = ¢. Thus f has a p(B)-subclosed graph, and consequently by
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hypothesis, fis p(6)-continuous. But yo € ad%in (Y, t*) whereas f{y,) = yo ¢ p(6)-adfi%) (= ¢) in (Y,
7). This contradicts the p(6)-continuity of f. The contradiction proves that (Y, t) is p-closed.

THEOREM 3.10 : Let X be p-closed. Then for all spaces Y and Z, and all functions f : Y — X and
g : Z — X with p(0)-subclosed graphs, the set A(f, g) = {(y, z) € Y x Z : f(y) = g(2)} is closed
inYxZ

PROOF : Let (a, b) be a limit of A(f, g). Then there is a filterbase % on A(f, g) \{(a, b)}
converging to (a, b). If p;, p2 denote the projection maps from Y x Z to Y and Z respectively,
we have f(pi(F)) = g(p(F)), for all F € &%

First, suppose that there is some F, € #'such that p,(F,)= {a}. We obtain a filterbase #* on A(f, g) \
{(a, b)} by replacing only those elements F of & which contain b as the second co-ordinate of at
least one element, by an F* € $where F* c Fi F. Clearly, % converges to (a, b). Then pa(%*)is
a filterbase on Z \ {b} converging to b (since projection maps are continuous). Since g has a
p(6)-subclosed graph, p(0)-ad(g(p2(¥#*) < {g(b)}. In this case a € p\(F) for all F € & so that f{a)
€ p(6)-adf(p:(#) = p(6)-ad(g(p(¥) < p(B)-ad(g(p2(#*) (since #* < F) c {g(b)}. Thus, (a, b) €
A(f, g). In case po(F) = {b} for some F € &, we proceed similarly as above.

Finally, suppose that p\(F) #{a} and px(F) #{b} for all F € & We replace each F € & by the
subset F* obtained by deleting from F all those elements with first coordinate a, and thereby obtain
a filterbase #* on A(f, g) \ {(a, b)} for every F € %*, and p,(%#*) is a filterbase on Y \ {a}
converging to a. In view of the above, we can suppose without loss of generality that {b}=
p2(F) for all F € $*. Now for each F* € 9*, we consider the subset F** of F* by deleting
from F* the elements with second coordinate b. Then #** = { F** ¢ F* : F* € $#*}is a
filterbase on A(f, g) \ {(a, b)} converging to (a, b). Clearly, f{pi(F)) = g(px(F)) for every F €
F** and py($**) and py(#*¥) are filterbases on Y \ {a} and Z \ {b} respectively converging to
a and b respectively. Since f has p(6)-subclosed graphs, we have, p(0)-adf(p\(%#**)) c {fa)}.
By Theorem 3.9, g is p(6)-continuous and hence by Theorem 3.3 we have, g(b) € p(6)-
adg(p2(F**)) = p(8)-adfip,(#**) c {f(a)} so that (a, b) € A(f, g) .

COROLLARY 3.11 : Let a space Y be p-closed. Then for any space X and any function f : X —

Y having p(8)-subclosed graphs, the set A(f) = {( xi, x2) € Xx X : f{x;) = f{x)} is closed in X x X.
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THEOREM 3.12 : A space Y is p-closed if for any space X and any function f: X — Y with
p(B)-subclosed graph, the set A(f) = {( x), x2) € X x X : f{x;) = f{xz)} is closed in X x X.

PROOF : Let the space Y be not p-closed so that there is a net S = {S, : a € (D, )} in Y
((D, 2) being a directed set), which has no pre-6-adherent point. We choose two distinct
points y; and y in Y and assume without any loss of generality that S is a net in Y \ {y,, y,}.
Consider a space (X, T), where X =Y, and T= {Ac X : A n {y,, y2}= 0} U{AcC X An
{y1, y2} # ¢ and T, A for some o € D}, where T,={Sp: B € D and B > a}.

Consider the map f: (X, T) = Y given by f{x) =x, ifx#y, y2
=Y ifx = Yi
el 4 P ifx= ¥a2:

In order to prove that f has a p(6)-subclosed graph, let R = {Rg : B € D,}be a net in X \ {x}
converging to x (€ X). Then x =y, or y, (otherwise {x} is a T-nbd of x and hence R cannot
converge to x). For definiteness, let x = y,. Suppose, if possible f{R) pre-6-adheres at some
point y € Y. Since the net f{S) = S has no pre-6-adherent point in Y, there exists a preopen set
Uin Y containing y and an oy € D such that for all > oy (ot € D), Sq ¢ pclU, ie., Toc Y\
pclU. Now, {y;} U Tqis a T-open nbd of y; in X. Then {Rg : B € Dyand B 2o} < {yi} U T«
(since R — y; in X), for some By € D,. Since, Tg = X\ {y,, y2} no Rg can be y, for B > B,.
Thus, {f{Rg) : B2 Po} = {Rp: B 2Po} < Tac Y \ pclU so that f{R) cannot pre-6-adhere at y,
a contradiction. Thus, f has a p(6)-subclosed graph. Now, clearly (y,, y2) ¢ A(f). To arrive at a
contradiction it suffices to show that (y,, y2) € clA(f). In fact, let U be an open nbd of (yi, y,)
in X x X. By definition of T, there exist o, B € D such that (Ta U {y1}) x (Tg U {y2}) c U. If
y € D such that y > a, B, then (S,, Sy) € U n A(f) proving that (yi, y2) € clA(f).

Combining Corollary 3.11 and Theorem 3.12 we get,

THEOREM 3.13 : A topological space Y is p-closed iff for any space X and any function
f: X — Y with p(8)-subclosed graph, the set A(f) = {( xi, xz) € X x X : f(x)) = f{x2)} is closed
inXxX

Again, from Theorems 3.10 and 3.12, it follows that
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THEOREM 3.14 : A topological space Y is p-closed iff for any topological spaces X and Z
and all functions f: X — Y and g : Z — Y with p(6)-subclosed graphs, the set {(x, z) € X x Z
- f{x) =g(z)} is closed in X x Z.

THEOREM 3.15 : A space X is p-closed iff for any space Y and any functions f, g : Y — X with

p(8)-subclosed graphs, the set A*(f, g) = {y € Y : fy) = g(y)} is a closed subset of Y.

PROOF : Let X be p-closed. Putting Y = Z in Theorem 3.10, we see that for any given space Y
and any functions f, g : Y — X with p(6)-subclosed graphs, the set A(f, g) = {(y1, y2)e Y x Y : f{y;)
=g(y2)} is closed in Y x Y. Now, clearly A*(f, g) = pi[A(f, g) " Ay], where Ay is the diagonal in
Y xYandp,: Y x Y=Y is the first projection map Since, p; |ay is @ homeomorphism, A*(f, g) is
closedin Y.

Conversely, suppose X is not p-closed. Then for some filterbase % on X, p(8)-ad% = ¢. Select
any two distinct points a, b € Xand put Y =X. Let, i ={AcX:be Y\ AorF c A for
some F € #}. Then (Y, T)) is a topological space.
Consider the maps f, g : (Y, T\) — X given by f{x) =x, forx € Y and
g(x) =x, forx € Y\ {b}

=a, forx =b.
We show that each f and g has a p(6)-subclosed graph. Lety € Y and % be any filterbase on Y \
{y}such that § - yin Y. If y # b, then {y} being a T;-open nbd of y, & cannot converge to y.
Hence, y =b. Now, foreach F € & F U {b} € T, so that p(6)-ad(¥%) = p(6)-ad¥% < p(0)-adF=
¢ < {fly)}. Hence, f has a p(B)-subclosed graph. Similarly, g has a p(0)-subclosed graph. Now,
A*(f, g) =Y \ {b}, and we see that for any open nbd V of b in Y, there isan F € & such that F ¢
Vand VA A*(f, g) 2 F n A*(f, g) # ¢ (as F # {b}, for each F € %). Hence A*(f, g) is not closed

inY.

§ 4. STRONGLY p(6)-CLOSED GRAPH AND p-CLOSEDNESS

DEFINITION 4.1 : A function f 1 X — Y is said to have strongly p(6)-closed graph G(f) if

whenever a net x, — x in X and fix,) —2%— y in Y, it follows that y = f{x).
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THEOREM 4.2 : A function f : X — Y has a strongly p(8)-closed graph G(f) iff whenever a
filterbase #— x in X and (%) —22 yin Y, it follows that y = f{x).

PROOF : Straightforward and left.

LEMMA 4.3 : A function f : X — Y has a strongly p(6)-closed graph G(f) iff for each point
(%, y) € G(f), there exist an open nbd U of x in X and a preopen set V in Y containing y such that

(UxpelV) N G(f) = ¢.

PROOF : Let the given condition hold for a function f : X — Y, and let x, be a net in X such
that x, — x anll f{x,) —2% >y in Y. It then follows that for each open nbd V of x and each
preopen set W in Y containing y, (V x pcIlW) n G(f) # ¢. Hence, (%, y) € G(f) and so, y = f{x).
Hence, f has a strongly p(8)-closed graph.

Conversely, suppose that a function f : X — Y does not satisfy the stated condition of the
theorem. Then for some (a, b) € X x Y \ G(f), we have (U x pclV) n G(f) # ¢, for every open

nbd U of a and each preopen set V containing b. Suppose, % = {U, : a € I, and U, is an open
nbd of a} and % = {pclV; : B € I, and Vy is a preopen set containing b}, and put & = {V.__ 4,
= (Uq x pclVp) N G(f) : (o, B) € Lix Ir}. Then F= {Fq, p): (o, B) € I, x I} where Fq p)=
{x € Uy : (x, fix)) € W(o p}, is a filterbase on X such that ¥ converges to the point a in X,
f{#) —22 b and f{a) # b. Thus in view of Theorem 4.2, f does not have a strongly p(6)-

closed graph.

In view of Theorems 3.8 and 3.9 and Lemma 4.3, it now follows that

THEOREM 4.4 : If Y is a p-closed space, then every function f from any space X to Y with a
strongly p(6)-closed graph is p(6)-continuous.

DEFINITION 4.5 : A space X is called pre-Hausdorff if corresponding to any two distinct

points x, y of X, there exist disjoint preopen sets U, V suchthatx € U,y € V.

THEOREM 4.6 : A pre-Hausdorff space Y is p-closed if each function f from any topological
space X to Y with a strongly p(8)-closed graph is p(6)-continuous.
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PROOF : Let, xo € Y and let (Xo)aecp be a net in Y \ {Xo} with no pre-6-adherent point in Y \
{xo}. Let X = {x,: a € D}U{xo}, and let T be the topology on X generated by {{x.}: o € D}
U {T,. U {xo}: p € D} as basic open sets, where T, = {xa: 2 p,a € D}. Let f: X > Y be
the identity map and let (x, y) € X x Y \ G(f). If x # xo, then {x} is open in X. Choose, by pre-
Hausdorfiness of Y, a preopen set V in Y, containing y with x ¢ pclV. Then clearly ({x} x pclV)
N G(f) = ¢. If x = xo, then y # xo, so there is a preopen set V containing y satisfying xo ¢ pclV,
as Y is pre-Hausdorff. Again y # xo, so y is not a pré-B-adherent point of (x,) in Y. Hence,
there is a p € D such that T, n pclV = ¢. Thus, T, U {xo} is an open nbd of x in X and V a
preopen set in Y containing y such that [(T, U {xo}) x pcIV] n G(f) = ¢. Hence, the graph of f
is strongly p(6)-closed and by hypothesis, f is p(8)-continuous. So for any preopen set V
containing xoin Y, there exists u € D satisfying T,  pclV. Thus, x, —22— x, in Y. Hence, Y

is p-closed.

That the assumption of pre-Hausdorffness on Y is essential can be observed from the

following result :

THEOREM 4.7 : If a surjection f : X — Y has strongly p(6)-closed graph, then Y is pre-
Hausdorff.

PROOF : Let y and z be any two distinct points of Y. Then since fis onto, there is x € X
such that f{x) = y. Hence, (x, z) ¢ G(f). Since f has a strongly p(0)-closed graph, there exist an
open nbd U of x and a preopen set V containing z such that {U) n pclV =¢. Put W =Y \

pclV, then W is a preopen set containing y and W N V = ¢. Hence Y is pre-Hausdorff.
Combining Theorems 4.4 and 4.6 we obtain :

THEOREM 4.8 : A pre-Hausdorff space Y is p-closed iff each function from any space X
into Y with strongly p(6)-closed graph is p(6)-continuous.
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