ON THE EXTENSION OF A BILATERAL GENERATING FUNCTION OF JACOBI POLYNOMIALS

Arabinda Das
Salt Lake School (Eng. Medium.) CA - 221, Salt Lake City
Kolkata - 700064
A. K. Chongdar
Department of Mathematics. Bengal Engineering and Science University Shibpur Howrah - 711103. India

Abstract

In this note, we have obtained a more general generating function of Jacobi polynomial from the existence of quasi - bilinear generating function involving the special function under consideration from the Lie group view - point.

Key Words and phrases : Generating functions, Jacobi polynomials, group theoretic method.

1. Introduction :

In their paper [1], Chatterjea and Chakraborty defined the quasi - bilinear generating functions as follows :

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} p_{n}^{(\alpha)}(x) p_{m}^{(n)}(u) w^{n}, \tag{1.1}
\end{equation*}
$$

where $p_{n}^{(\alpha)}(x)$ is a polynomial of degree (n) and of parameter (α).
In [2], Das has proved the following theorem on bilateral generating function involving Jacobi polynomials :

Theorem 1.
If there exists a generating function of the form

$$
\begin{equation*}
G(x, w)=\sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta)}(x) w^{n} \tag{1.2}
\end{equation*}
$$

then

$$
\begin{align*}
& \left(1+\frac{1+x}{2} t\right)^{\alpha}\left(1-\frac{1-x}{2} t\right)^{\beta} G\left(x-\frac{1-x^{2}}{2} t, w t\right) \tag{1.3}\\
& =\sum_{n=0}^{\alpha} \sigma_{n}(x, w) t^{n},
\end{align*}
$$

where

$$
\begin{equation*}
\sigma_{n}(x, w)=\sum_{k=0}^{n} a_{k} \frac{(k+1)_{n-k}}{(n-k)!} P_{n}^{(\alpha+k-n, \beta+k-n)}(x) w^{k} . \tag{1.4}
\end{equation*}
$$

In this note we have obtained a more general generating relation of Jacobi polynomials from the existence of quasi - bilinear generating relation by using
group - theoretic method. The main result is stated in the form of the following theorem :

Theorem 2.
If there exists a generating relation of the form :

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(n, \beta)}(u) w^{n} \tag{1.5}
\end{equation*}
$$

then

$$
\begin{align*}
& (1-w \zeta)^{(-1+\beta+m)}\left[\frac{y z-w(1+x)}{z}\right]^{\alpha}\left[\frac{y z+w t(1-x)}{y}\right]^{\beta} \tag{1.6}\\
& \times G\left(\frac{x y z+w t\left(1-x^{2}\right)}{y z}, \frac{u+w \zeta}{1-w \zeta}, \frac{w z \zeta v}{1-w \zeta}\right) \\
& =\sum_{n, p, q=0}^{\infty} a_{n} \cdot \frac{w^{n+p+q}}{p!q!} v^{n}(-2)^{q}(n+1)_{q} \\
& \times(1+n+\beta+m)_{p} y^{\alpha-q} z^{\beta-q} t^{n+q} P_{n+q}^{(\alpha-q, \beta-q)}(x) P_{m}^{(n+p, \beta)}(u) \zeta^{n+p} .
\end{align*}
$$

2. Proof of the theorem :

Let

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{m} P_{n}^{(a, \beta)}(x) P_{m}^{(n . \beta)}(u) w^{n} . \tag{2.1}
\end{equation*}
$$

We first consider the operators R_{1} and $R_{2}[3,4]$, where

$$
R_{1}=\left(1-x^{2}\right) y^{-1} z^{-1} t \frac{\partial}{\partial x}-(1+x) z^{-1} t \frac{\partial}{\partial y}+(1-x) y^{-1} t \frac{\partial}{\partial z}
$$

and

$$
R_{2}=(1+u) \zeta \frac{\partial}{\partial u}+\zeta^{2} \frac{\partial}{\partial \zeta}+(1+\beta+m) \zeta
$$

such that

$$
\begin{equation*}
R_{1}\left(P_{n}^{(\alpha, \beta)}(x) y^{\alpha} z^{\beta} t^{n}\right)=-2(n+1) P_{n+1}^{(\alpha-1, \beta-1)}(x) y^{\alpha-1} z^{\beta-1} t^{n+1} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}\left(P_{m}^{(n, \beta)}(u) \zeta^{n}\right)=(1+n+\beta+m) P_{m}^{(n+1, \beta)}(u) \zeta^{n+1} . \tag{2.3}
\end{equation*}
$$

Also, the extended form of the groups generated by R_{1} and R_{2} are as follows :

$$
\begin{align*}
& e^{w R_{1}} f(x, y, z, t) \tag{2.4}\\
& =f\left(\frac{x y z+w t\left(1-x^{2}\right)}{y z}, \frac{y z-w t(1+x)}{z}, \frac{y z+w t(1-x)}{y}, t\right)
\end{align*}
$$

and

$$
\begin{equation*}
e^{w R_{1}} f(u, \zeta)=(1-w \zeta)^{-1-\beta-m} f\left(\frac{u+w \zeta}{1-w \zeta}, \frac{\zeta}{1-w \zeta}\right) . \tag{2.5}
\end{equation*}
$$

Replacing w by wt ζv in (2.1) and then multiplying both sides by $y^{\alpha} \cdot z^{\beta}$ we get

$$
\begin{align*}
& y^{\alpha} z^{\beta} G(x, u, w t \zeta v) \tag{2.6}\\
= & \sum_{n=0}^{\infty} a_{n}\left(P_{n}^{(\alpha, \beta)}(x) y^{\alpha} z^{\beta} t^{n}\right) \times\left(P_{m}^{(n, \beta)}(u) \zeta^{n}\right)(w v)^{n} .
\end{align*}
$$

Operating $e^{w R_{R}} e^{w R_{2}}$ on both sides of (2.6) we get

$$
\begin{align*}
& e^{w R_{1}} e^{w R_{2}}\left[y^{\alpha} z^{\beta} G(x, u, w t \zeta v)\right] \tag{2.7}\\
& =e^{w R_{1}} e^{w R_{2}}\left[\sum_{n=0}^{\infty} a_{n}\left(P_{n}^{(\alpha, \beta)}(x) y^{\alpha} z^{\beta} t^{n}\right)\left(P_{m}^{(n, \beta)}(u) \zeta^{n}\right)(w v)^{n}\right]
\end{align*}
$$

Now left member of (2.7), with the help of (2.4) and (2.5) becomes

$$
\begin{align*}
& e^{w R_{1}} e^{w R_{2}}\left[y^{\alpha} z^{\beta} G(x, u, w t \zeta v)\right] \tag{2.8}\\
& =(1-w \zeta)^{-(1+\beta+m)}\left[\frac{y z-w t(1+x)}{z}\right]^{\alpha}\left[\frac{y z+w t(1-x)}{y}\right]^{\beta} \\
& \times G\left(\frac{x y z+w t\left(1-x^{2}\right)}{y z}, \frac{u+w \zeta}{1-w \zeta}, \frac{w z \zeta v}{1-w \zeta}\right)
\end{align*}
$$

The right hand member of (2.7), with the help of (2.2) and (2.3); becomes

$$
\begin{align*}
& e^{w R_{1}} e^{w R_{2}}\left[\sum_{n=0}^{\infty} a_{n}\left(P_{n}^{(\alpha, \beta)}(x) y^{\alpha} z^{\beta} t^{n}\right)\left(P_{m}^{(n, \beta)}(u) \zeta^{n}\right)(w v)^{n}\right] \tag{2.9}\\
& =\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{n} \frac{w^{n+p+q}}{p!q!} v^{n}(-2)^{q}(n+1)_{q} P_{n+q}^{(n-q \cdot \beta-q)}(x) y^{\alpha-q} z^{\beta-q} t^{n+q} \\
& \times(1+n+\beta+m)_{p} P_{m}^{(n+p \cdot \beta)}(u) \zeta^{n+p} .
\end{align*}
$$

Equating (2.8) and (2.9), we get
(2.10)

$$
\begin{aligned}
& (1-w \zeta)^{-(1+\beta+m)}\left[\frac{y z-w(1+x)}{z}\right]^{\alpha}\left[\frac{y z+w t(1-x)}{y}\right]^{\beta} \\
& \times G\left(\frac{x y z+w t\left(1-x^{2}\right)}{y z}, \frac{u+w \zeta}{1-w \zeta}, \frac{w z \zeta v}{1-w \zeta}\right) \\
& =\sum_{n, p, q=o}^{\infty} a_{n} \cdot \frac{w^{n+p+q}}{p!q!} V^{n}(-2)^{q}(n+1)_{q} \\
& \times(1+n+\beta+m)_{p} y^{\alpha-q} z^{\beta-q} t^{n+q} P_{n+q}^{(\alpha-q, \beta-q)}(x) P_{m}^{(n+p, \beta)}(u) \zeta^{n+p},
\end{aligned}
$$

which is our desired result.

3. Particular Case :

Putting $m=0, y=z=t=\zeta=1$ in (2.10) and then simplifying, we get
(3.1)

$$
\begin{aligned}
& (1-w)^{-1-\beta}[1-w(1+x)]^{\alpha}[1+w(1-x)]^{\beta} \\
& \times G\left(x+w\left(1-x^{2}\right), \frac{w \nu}{1-w}\right) \\
& =\sum_{n \cdot p, q=0}^{\infty} a_{n} \frac{w^{n+p+q}}{p!q!} v^{n}(-2)^{q}(n+1)_{q} \times(1+n+\beta)_{p} P_{n+q}^{(\alpha-q, \beta-q)}(x) \\
& =(1-w)^{-\beta-1} \sum_{n=0}^{\infty}(-2 w)^{n} \sum_{q=0}^{n} a_{q} \frac{(1+q)_{n-q}}{(n-q)!} P_{n}^{(\alpha-n-q, \beta-n+q)}(x) \\
& \times\left(\frac{v}{-2(1-w)}\right)^{q} .
\end{aligned}
$$

Now first replacing $-\frac{v}{2(1-w)}$ by v on both sides of (3.1) and finally replacing $-2 w$ by w, we get

$$
\begin{align*}
& \left\{1-\frac{w}{2}(1+x)\right\}^{\alpha}\left\{1-\frac{w}{2}(1-x)\right\}^{\beta} G\left(x-\frac{w}{2}\left(1-x^{2}\right), w v\right) \tag{3.2}\\
= & \sum_{n=0}^{\infty} w^{n} f_{n}(x, v)
\end{align*}
$$

where

$$
f_{n}(x, v)=\sum_{q=0}^{n} a_{q} \frac{(1+q)_{n-q}}{(n-q)!} p_{n}^{(\alpha-n+q, \beta-n+q)}(x) \nu^{q},
$$

which is Theorem 1 .

REFERENCES:

[1] S. K. Chatterjea : A unified group-theoretic method of obtaining a and more general class of generating relations from a S. P. Chakraborty given class of quasi-bilateral (or quasi-bilinear) generating relations involving some special functions, Pure Math. Manuscript, 8(1989), 153162.
[2] Sarama Das : On partial differential for Jacobi polynomials, Pure Math. Manuscript, 3(1984), 95 - 104.
[3] B. Ghosh : Group-theoretic study of certain generating functions of Jacobi polynomials - II, communicated.
[4] B. Ghosh : Group-theoretic origin of certain generating function of Jacobi polynomials - I, Pure Math. Manuscript, 3(1984), 139 - 149.

