ON THE GENERALIZED SADOVSKII FUNCTOR 1

Manuel González

Departamento de Matemáticas, Universidad de Cantabria

39005 Santander (Spain)

and

Antonio Martinón

Departamento de Análisis Matemático, Universidad de La Laguna 38071 La Laguna, Tenerife (Spain)

ABSTRACT

For an ideal of operators d, we introduce a functor P_d which associates to a Banach space X another Banach space $P_d(X)$ and to a (continuous linear) operator T another operator $P_d(T)$. Particular cases of the functor P_d have been considered by several authors. By using a generalized measure of noncompactness we obtain an expression of the norm of an element of $P_d(X)$. Moreover characterize the tauberian operators as those operators for $P_{WCo}(T)$ is one-one, WCo the ideal of weakly compact operators.

CLASSIFICATION AMS (1980): 47D30

KEY WORDS: operator ideal, measure of noncompactness, tauberian operator

¹ Supported in part by DGICYT grant PB88-0417. 109

INTRODUCTION

Independently, F. Quigley (see [RI, pp. 25-27]) and S. Berberian [BE] esentially considered for a Banach space X the quotient of the space of all bounded sequences in X, $\ell_{\infty}(X)$, by the subspace of all sequences converging to 0, $c_{\alpha}(X)$:

$$Q(X) := \ell_{m}(X)/c_{n}(X)$$
.

The norm of a coset $(x_{n})+c_{n}(X)$ in Q(X) has the expression [HA1]

 $\|(x_{n})+c_{0}(X)\| = \lim \sup \|x_{n}\|$.

If T: $X \rightarrow Y$ is an operator, then T is induces another operator

 $Q(T): Q(X) \rightarrow Q(Y)$.

R.E. Harte [HA1] calls Q the Berberian-Quigley functor. For applications see [BE], [BHW], [HA1], [HA2], [R1].

B.N. Sadovskii [SA], unawer of the works of F. Quigley and S. Berberian, defines the functor P taking the subspace of $\ell_{\infty}(X)$ of all sequences with relatively compact range m(X). Then

$$P(X) := \ell_{(X)}/m(X)$$

The norm of a coset $(x_n)+m(X)$ in P(X) has the expression [HW]

 $\|(x_{n})+m(X)\| = h(\{x_{n}\})$,

where $h({x_n})$ is the Hausdorff measure of noncompactness [BG] of ${x_n}$, the range of (x_n) . If T: X \rightarrow Y is an operator, then T induces another operator

$$P(T): P(X) \rightarrow P(Y)$$
.

We call P the Sadovskii functor. Independently, it has been considered by J.J. Buoni, R. Harte and T. Wickstead [BHW]. For applications see [AKPS], [BHW], [CW], [FA], [HW], [SA], [TY], [ZE].

J.J. Buoni and A. Klein [BK] define the functor P^{W} taking the subspace of $\ell_{m}(X)$ of all sequences of relatively weakly compact range, $m^{W}(X)$. Then

$$P^{W}(X) := \ell_{m}(X)/m^{W}(X) .$$

Analogously to Q and P, if T: $X \to Y$ is an operator, then we can define another operator

$$P^{W}(T): P^{W}(X) \longrightarrow P^{W}(Y) . \qquad 110$$

In this paper we show that the norm of a coset $(x_n)+m^w(X)$ in $P^w(X)$ has the expression

$$\|(x_{n})+m^{W}(X)\| = w(\{x_{n}\}),$$

where w is the measure weak of noncompactness, defined by F.S. De Blasi [DB]. We obtain this result as a particular case of a general construction in which, for every operator ideal *A*, we introduce a generalized Sadovskii functor. We study this functor by means of a set measure introduced by K. Astala. We also obtain a characterization of tauberian operators by means of the functor associated to the weakly compact operators.

THE ASTALA MEASURE

Recall that a class \mathcal{A} of (linear and continuous) operators between Banach spaces (over the real or the complex field K) is an ideal of operators if the following conditions hold [PI]:

- (1) The identity operator of K, $I_{\rm K}$, belongs to A.
- (2) The class $\mathcal{A}(X,Y)$ of all operators in \mathcal{A} between the Banach spaces X and Y is a subspace of $\mathcal{L}(X,Y)$, the class of all operators between X and Y.
- (3) If there exists RST, where R and T are operators, and S is an operator in A, then RST belongs to A.

An ideal \mathscr{A} is called closed if each component $\mathscr{A}(X,Y)$ is closed in $\mathscr{L}(X,Y)$. \mathscr{A} is called surjective if for any surjective operator $Q \in \mathscr{L}(Z,X)$, an operator $T \in \mathscr{L}(X,Y)$ belongs to \mathscr{A} whenever $TQ \in \mathscr{A}(Z,Y)$. We use the notation \mathscr{A}^{\wedge} for the smallest surjective closed ideal containing \mathscr{A} .

In the following \mathcal{A} will be an ideal of operators; X, Y, Z Banach spaces; B the class of all Banach spaces; B_{χ} the closed unit ball of X \in B.

By using an ideal of operators \mathcal{A} , K. Astala has given the following definition:

1 DEFINITION [AS; 3.1]

Let DcX bounded. Then $h_d(D)$ is defined by

 $h_{\mathcal{A}}(D) := \inf \{ \epsilon > 0 : \exists Z \in \mathbb{B}, \exists K \in \mathcal{A}(Z, X), D \in \mathbb{KB}_{Z}^{+} \epsilon \mathbb{B}_{X} \}$

The set D is called \mathcal{A} -compact if $h_{\mathcal{A}}(D)=0$.

We list in the following proposition the properties of $\mathbf{h}_{\mathcal{A}}$ that we use in this paper.

2 PROPOSITION [AS; 3.3 (b), (c); 3.5; 3.11]

Assume C, D are bounded subsets of X and $\lambda \in \mathbb{K}$ is a scalar. Then:

(1) $h_{\mathcal{A}}(C+D) \leq h_{\mathcal{A}}(C)+h_{\mathcal{A}}(D)$ (2) $h_{\mathcal{A}}(\lambda D) = |\lambda| h_{\mathcal{A}}(D)$ (3) $h_{\mathcal{A}} = h_{\mathcal{A}}^{\wedge}$ (4) $h_{\mathcal{A}}(D)=0 \iff \exists Z \in \mathbb{B}, \exists K \in \mathcal{A}^{\wedge}(Z,X), D \in KB_{Z}$

THE GENERALIZED SADOVSKII FUNCTOR

For a Banach space X we consider the space of all bounded sequences (x_n) in X:

attached with the norm

$$\|(x_{n})\| := \sup \{\|x_{n}\| : n \in \mathbb{N}\}$$
.

We consider the subclass of the sequences (x_n) with range $\{x_n\}:=\{x_n:n\in\mathbb{N}\}$ A-compact:

$$m_{\mathcal{A}}(X) := \{(x_n) \in \ell_{\infty}(X) : h_{\mathcal{A}}(\{x_n\}) = 0\}$$

3 PROPOSITION

 $m_{\mathcal{A}}(X)$ is a closed subspace of $\ell_{\mathcal{A}}(X)$.

PROOF. By using Proposition 2 (1), (2), we obtain that $m_{a}(X)$ is a subspace of $\ell_{m}(X)$.

Now we show that $m_{\mathcal{A}}(X)$ is closed. From the definition it follows clearly that $h_{\mathcal{A}}(\{x_n\}) \leq \|(x_n)\|$. Then $h_{\mathcal{A}}: \ell_{\infty}(X) \longrightarrow \mathbb{R}$ is continuous, where \mathbb{R} is the real field; hence $m_{\mathcal{A}}(X) = h_{\mathcal{A}}^{-1}(0)$ is closed.

The following proposition assures that any operator T: $X \to Y$ maps sequences of $m_d(X)$ into $m_d(Y)$.

4 PROPOSITION

If $T \in \mathcal{L}(X, Y)$, then

 $(x_n) \in \mathfrak{m}_{\mathcal{A}}(X) \Rightarrow (Tx_n) \in \mathfrak{m}_{\mathcal{A}}(Y)$.

PROOF. As $(x_p) \in m_A(X)$, there exist $Z \in \mathbb{B}$ and $K \in A^{(Z,X)}$ such that

$$\{x_n\} \in KB_7$$

(Proposition 2 (4)), and consequently $\{Tx_n\} cTKB_Z$. Since $TK \in A^{(Z,Y)}$, we conclude $(Tx_n) \in m_A(Y)$.

Now we can define a generalized Sadovskii functor, which also generalize the Buoni-Klein functor (see Introduction).

5 DEFINITION

We define the generalized Sadovskii functor P_A associated to an ideal of operators A in the following way

(1)
$$X \in \mathbb{B} \longrightarrow P_{\mathcal{A}}(X) := \ell_{\infty}(X) / m_{\mathcal{A}}(X)$$
,
(2) $T \in \mathscr{L}(X, Y) \longrightarrow P_{\mathcal{A}}(T)((x_n) + m_{\mathcal{A}}(X)) := (Tx_n) + m_{\mathcal{A}}(Y)$,

where

$$P_{\mathcal{A}}(T)((x_n)+m_{\mathcal{A}}(X)) := (Tx_n)+m_{\mathcal{A}}(Y)$$

By Proposition 3, $P_d(X)$ is a Banach space. Moreover,

$$\mathsf{T} \in \mathscr{L}(\mathsf{X},\mathsf{Y}) \ \Rightarrow \ \mathsf{P}_{\mathcal{A}}(\mathsf{T}) \in \mathscr{L}(\mathsf{P}_{\mathcal{A}}(\mathsf{X}),\mathsf{P}_{\mathcal{A}}(\mathsf{Y}))$$

In fact, let $(x_n) \in \ell_m(X)$ be such that $\|(x_n)\| \le 1$. Then

$$\| \mathbb{P}_{\mathcal{A}}(\mathbf{T})((\mathbf{x}_{n}) + \mathbf{m}_{\mathcal{A}}(\mathbf{X})) \| = \| (\mathbf{T}\mathbf{x}_{n}) + \mathbf{m}_{\mathcal{A}}(\mathbf{Y}) \| \leq \| (\mathbf{T}\mathbf{x}_{n}) \| = 113$$

 $= \sup \{ \|T\mathbf{x}_{n}\| : n \in \mathbb{N} \} \leq \|T\| .$

Hence $P_{\mathcal{A}}(T) \in \mathcal{L}(P_{\mathcal{A}}(X), P_{\mathcal{A}}(Y))$ and $||P_{\mathcal{A}}(T)|| \leq ||T||$.

By using the definition of $\mathsf{P}_{\underline{\mathcal{A}}}$ we obtain the following proposition.

6 PROPOSITION

Assume T,Se $\mathscr{L}(X,Y)$, Re $\mathscr{L}(Y,Z)$ and $\lambda \in \mathbb{K}$. Then

(1)
$$P_{\mathcal{A}}(T+S) = P_{\mathcal{A}}(T)+P_{\mathcal{A}}(S)$$

(2) $P_{\mathcal{A}}(\lambda T) = \lambda P_{\mathcal{A}}(T)$
(3) $P_{\mathcal{A}}(RT) = P_{\mathcal{A}}(R)P_{\mathcal{A}}(T)$

Now we give an expression for the norm of a coset $(x_n)+m_{\mathcal{A}}(X)$ in $P_{\mathcal{A}}(X)$ by using the Astala measure $h_{\mathcal{A}}$.

7 PROPOSITION

If $(x_n) \in \ell_{\infty}(X)$, then

$$h_{\mathcal{A}}(\{x_n\}) = \|(x_n) + m_{\mathcal{A}}(X)\|$$

PROOF. If $\varepsilon h_{\mathcal{A}}(\{x_n\})$, then there exist Z $\in \mathbb{B}$ and K $\in \mathcal{A}(\mathbb{Z},\mathbb{X})$ such that $|||| \in \mathbb{R}^{n}$

$$\{x_n\} \in KB_7 + \varepsilon B_X$$

hence for every $n \in \mathbb{N}$ there are $z_n \in B_Z$ and $b_n \in B_X$ verifying

$$x_n = Kz_n + \varepsilon b_n$$
,

and consequently $\|x_n - Kz_n\| \le \varepsilon$, being $(Kz_n) \in m_A(X)$. Then $\|(x_n) + m_A(X)\| \le \varepsilon$, hence

$$\|(\mathbf{x}_{n}) + \mathbf{m}_{\mathcal{A}}(\mathbf{X})\| \leq \mathbf{h}_{\mathcal{A}}(\{\mathbf{x}_{n}\}) .$$

If $\varepsilon > ||(x_n) + m_A(X)||$, there exists $(y_n) \in m_A(X)$ such that

hence for every $n \in \mathbb{N}$, $x_n - y_n \in \varepsilon B_X$, and consequently

$$\{x_n\} \in \{y_n\} + \varepsilon B_X \in KB_Z + \varepsilon B_X$$

being $Z \in \mathbb{B}$, $K \in \mathscr{A}^{(Z,X)}$, $\{y_n\} \in KB_Z$ (Proposition 2 (4)). Then $h_{\mathscr{A}}(\{x_n\}) \le \varepsilon$, hence

$$h_{\mathcal{A}}(\{x_n\}) \leq \|(x_n) + m_{\mathcal{A}}(X)\|$$

8 REMARK

If $\mathcal{A}=Co$, the compact operators, we obtain that h_{Co} is the Hausdorff measure of noncompactness [BG]; m_{Co} is the class of all bounded sequences for which every subsequence has a convergent subsequence; P_{Co} is the Sadovskii functor [SA].

 $P_{CO}(T)$ is one-one if and only if T is upper semi-Fredholm operator (finitedimensional kernel and closed range). Moreover, $P_{CO}(T)=0$ if and only if T < Co. The Proposition 7 for A=Co appears in [HW].

9 REMARK

If $\mathcal{A}=WCo$, the weakly compact operators, we obtain what h_{WCo} is the measure of weak noncompactness, defined by De Blasi [DB]; m_{WCo} is the class of all bounded sequences for which every subsequence has a weakly convergent subsequence. The expression

$$h_{WCo}(\{x_n\}) = \|(x_n) + m_{WCo}(X)\|$$

has not appeared in the literature.

 $\rm P_{WCo}$ is the Buoni-Klein functor [BK]. Our proof of Proposition 3 is more simple than the proof of [BK] for $\rm m_{WCo}.$

Moreover [BK; Theorem 6] affirms the following:

Kernel of T reflexive and complemented, and range of T closed \Rightarrow

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

 $\Rightarrow P_{WCO}(T) \text{ one-one } \Rightarrow$

⇒ T have reflexive kernel

This result is weaker than Proposition 11 below. Also $\mathsf{P}_{\mathsf{WCo}}(T){=}0$ if and only if $T{\in}\mathsf{WCo}.$

CHARACIERIZATION OF TAUBERIAN OPERATORS

Let $T^* \in \mathcal{L}(Y^*, X^*)$ be the conjugate operator of $T \in \mathcal{L}(X, Y)$ and J(X) the canonical image of X in the second dual X^{**} . An operator $T \in \mathcal{L}(X, Y)$ is said to be tauberian if its second conjugate T^{**} verifies

$$T^{**}^{-1}J(Y) = J(X)$$
.

Tauberian operators were introduced by N. Kalton and A. Wilansky [KW]. We use the following characterization of tauberian operators [GO]: $T \in \mathcal{L}(X, Y)$ is tauberian if and only if given a bounded sequence (x_n) , (Tx_n) weakly convergent implies (x_n) has a weakly convergent subsequence. We give a new characterization of tauberian operators by using the functor P_{WCO} .

12 PROPOSITION

If $T \in \mathcal{L}(X, Y)$, then

T tauberian $\Leftrightarrow P_{WCO}(T)$ one-one

PROOF. If T is tauberian and

 $P_{WCo}(T)((x_n)+m_{WCo}(X)) = m_{WCo}(Y)$,

then $T(x_n) \in m_{WCo}(Y)$. Therefore, any subsequence of (x_n) has a subsequence weakly convergent. Hence $(x_n) \in m_{WCo}(X)$. Conversely, if (Tx_n) is weakly convergent, then $T(x_n) \in m_{WCo}(Y)$ and consequently $(x_n) \in m_{WCo}(X)$. Therefore there exists a subsequence of (x_n) which is weakly convergent and then T is tauberian.

REFERENCES

[AKPS] R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov and B.N. Sadovskii: Condensing operators. J. Soviet Math. 18 (1982), 551-592.

[AS] K. Astala: On measures of noncompactness and ideal variations in Banach spaces. Ann. Acad. ci. Fenn. Ser. A. I. Math. Diss. 29 (1980).

[BG] J. Banas and K. Goebel: Measures of noncompactness in Banach spaces. Marcel Dekker; New York, Basel; 1980.

[BE] S. K. Berberian: Approximate proper vectors. Proc. Amer. Math. Soc. 13 (1962), 111-114.

[BHW] J.J. Buoni, R. Harte and T. Wickstead: Upper and Lower Fredholm spectra Proc. Amer. Math. Soc. 66 (1977), 309-314.

[BK] J.J. Buoni and A. Klein: On the generalized Calkin algebra. Pacific J. Math. 80 (1979), 9-12.

[CW] J.J.M. Chadwick and A. W. Wickstead: A quotient of ultrapowers of Banach spaces and semi-fredholm operators. Bull. London Math. Soc. 9 (1977), 321-325

[DB] F.S. De Blasi: On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R. S. Roumanie 21 (60) (1977), 259-262.

[FA] A.S. Fajnshtejn: On measures of noncompactness of linear operators and and analogs of the minimal modulus for semi-Fredholm operators (In russian). Spektr. Teor. Oper. 6 (1985), 182-195.

[GO] M. González and V.M. Onieva: Semi-Fredholm operators and semigroups associated with some classical operator ideals. Proc. Royal Irish Acad. 88A (1988), 35-38.

[HA1] R. E. Harte: Berberian-Quigley and the ghost of a spectral mapping theorem. Proc. Royal Irish Acad. 78A (1978), 63-68.

[HA2] R. Harte: Almost open mappings between normed spaces. Proc. Amer. Math. Soc. 90 (1984), 243-249.

[HM] R. Harte and M. Mathieu: Enlargements of almost open mappings. Proc. Amer. Math. Soc. 96 (1986), 247-248.

[HW] R. Harte and A. Wickstead: Upper and lower Fredholm spectra II. Math. Z. 154 (1977), 253-256.

[KW] N.J. Kalton and A. Wilansky: Tauberian operators in Banach spaces. Proc. Amer Math. Soc. 57 (1976), 251-255.

[PI] A. Pietsch: Operator ideals. North-Holland; Amsterdam, New York, Oxford; 1980.

[RI] C. E. Rickart: General Theory of Banach Algebras. Robert E. Krieger Publishing; New York; 1974. Reprint.

[SA] B. N. Sadovskii: Limit-compact and condensing operators. Russian Math. Surveys 27 (1972), 85-155.

[TY] H.-O. Tylli: On the asymptotic behaviour of some quantities related to semi-Fredholm operators. J. London Math. Soc. (2) 31 (1985), 340-348.

[ZE] J. Zemanek: The Semi-Fredholm Radius of a Linear Operator. Bull. Pol. Acad. Sci., Math. 32 (1984), 67-76.