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ABSTRACT 

For an ideal of operators 1', we introduce a functor PA which associates 

to a Banach space X another Banach space P ,ix> and to a (continuous linear) 

operator T another operator P 
14

(T). Particular cases of the functor P i4 have 

been considered by several authors. By using a generalized measure of 

noncompactness we obtain an expression of the norm of an element of P ,iX). 

Moreover characterize the tauberian operators as those operators for P WCo (T) 

is one-one, WCo the ideal of weakly compact operators. 
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INTRODUCTION 

Independently, F. Quigley (see (RI, pp. 25- 27)) and S. Berberian (BE) 

esentially considered for a Banach space X the quotient of the space of all 

bounded sequences in X, l 
00 

(X), by the subspace of all sequences converging to 

Q(X) := l (X)/c (X) . 
(X) 0 

The norm of a coset (x )+c (X) in Q(X) has the expresion (HAiJ 
n o 

If T : X ----) Y is an operator, then T is induces another operator 

Q(T): Q(X) ----) Q(Y) . 

R.E . Harte [HAl) calls Q the Berberian-Quigley functor. For applications see 

[BE), (BHW), [HAI), (HA2), (RI]. 

B.N . Sadovskii [SA), unawer of the works of F. Quigley and S. Berberian, 

defines the functor P taking the subspace of l
00

(X) of all sequences with 

relatively compact range m(X). Then 

P(X) : = l (X)/m(X) . 
(I) 

The norm of a coset (xn)+m(X) in P(X) has the expression (HW) 

ll(xn)+m(X)ll = h({xn}) , 

where h({xn}) is the Hausdorff measure of noncompactness (BG) of {xn}' the 

range of (xn) . If T: X ----) Y is an operator, then T induces another operator 

P(T): P(X) ----) P(Y) . 

We call P the Sadovskii functor . Independently, it has been considered by 

J . J. Buoni, R. Harte and T . Wickstead (BHW). For applications see [AKPS), 

[BHW), (CW), [FA), [HW), (SA), [TY), {ZEI. 

J.J . Buoni and A. Klein [BK) define the functor Pw taking the subspace 

of l (X) of all sequences of relatively weakly compact range, m w(X ). Then 
(I) 

Analogously to Q and P, if T : X ~ Y is an operator, then we can define 

another operator 
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In this paper we show that the norm of a coset (x )+m w(X) in Pw(X) has 
n 

the expression 

where w is the measure weak of noncompactness, defined by F. S. De Blasi (DB]. 

We obtain this result as a particular case of a general construction in 

which, for every operator ideal A, we introduce a generalized Sadovskii 

functor. We study this functor by means of a set measure introduced by K. 

Astala. We also obtain a characterization of tauberian operators by means of 

the functor associated to the weakly compact operators. 

THE AST ALA MEASURE 

Recall that a class A of (linear and continuous) operators between 

Banach spaces (over the real or the complex field 110 is an ideal of operators 

if the following conditions hold (PI): 

(1) The identity operator of IK, IIK, belongs to A. 

(2) The class A(X, Y) of all operators in A between the Banach 

spaces X and Y is a subspace of !e(X, Y), the class of all 

operators between X and Y. 

(3) If there exists RST, where R and T are operators, and S is an 

operator in A, then RST belongs to A. 

An ideal A is called closed if each component A(X, Y) is closed in 

!e(X, Y) . A is called sur jective if for any sur jective operator Qe!e(Z,X), an 

operator TE!e(X, Y) belongs to A whenever TQEA(Z, Y) . We use the notation ,a~ for 

the smallest sur jective closed ideal containing A. 

In the following A will be an ideal of operators; X, Y, Z Banach spaces; 

IB the c lass of all Banach spaces; BX the closed unit ball of XEIB. 

By using an ideal of operators A, K. Astala has given the following 

def inition: 
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l DEFINITION (AS; 3.1) 

Let DcX bounded. Then h ,iD) is defined by 

h A(D) := lnf {c>O : 3Zel8, 3Ke.il1(Z,X), DcKB
2

+cBX} 

The set D is called A-compact if h A(D)=O. 

We list in the following proposition the properties of h A that we use in 

this paper. 

i PROPOSITION (AS; 3.3 (b), (c); 3.5; 3.11) 

Assume C, D are bounded subsets of X and AEIK is a scalar. Then: 

(1) hA(C+D) :S h A(C)+h A(D) 

(2) h,,f(AD) = IAl h,,f(D) 

(3) h.4 = h.4" 

(4)h A(D)=O <=> 3Ze18, 3KeA"(Z,X), DcKBZ 

THE GENERALIZED SADOVSKII FUNCTOR 

For a Banach space X we consider the space of all bounded sequences (xn) 

in X: 

attached with the norm 

We consider the subclass of the sequences (xn) with range {xn} .­

A-compact: 

]. PROPOSITION 

:= {(x )et (X) 
n ro 

mA(X) is a closed subspace of t
00

(X). 

{x 
n 

nelN} 

PROOF. By using Proposition 2 (1), (2), we obtain that mA(X) is a subspace of 

l (X). 
00 
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Now we show that m A(X) is closed. From the definition it follows clearly 

that h .. i<xn})~ll(xn)ll. Then h,a= l
00

(X) ---) R is continuous, where R is the real 

- 1 
field; hence m A(X)=h A (0) is closed. • 

The following proposition assures that any operator T: X ---) Y maps 

sequences of mA(X) into mA(Y). 

i PROPOSITION 

If Te.f(X, Y), then 

{xn)emA(X) ~ (Txn)emA(Y) . 

PROOF. As (xn)em A(X), there exist Zel8 and KeAA(Z,X) such that 

{xn} c KB
2 

(Proposition 2 (4)), and consequently (Txn}cTKB
2

. Since TKeAA(Z, Y), we 

• 

Now we can define a generalized Sadovskii functor. which also generalize 

the Buoni-Klein functor (see Introduction). 

.§. DEFINITION 

We define the generalized Sadovskii functor PA associated to an ideal of 

operators .4 in the following way 

{l) XeB---) P A(Xl := l
00

(X)lm
111

CX) • 

(2) Te.f(X. Yl ---) P A(T)((xn)+m A(X)) := (Txnl+m A(Y) • 

where 

By Proposition 3, P .sd(X) is a Banach space. Moreover, 

Te!i'.(X, Yl ~ P A(T)e!l'.(P A(X),P A(Y)) . 

In fact, let (x lei (X) be such that ll(x )11~1. Then 
n oo n 

llP A(T)((xnl+m.,iX))ll = ll(Txn)+mA(Y)fl :S ll(Txn)ll 
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= sup { llTxn II : nEIN} ::s llTll . 

Hence P A(T)ef(P A(X),P A(Y)) and llP A(T)ll ::s llTll. 

By using the definition of PA we obtain the following proposition. 

§. PROPOSITION 

Assume T,Se!e(X,Y), Re!e(Y,Z) and ;\.ellC. Then 

(1) P A(T+S) = P A(T)+P A(S) 

(2) P A(H) = ;\. P A(T) 

(3) P A(RT) = P A(R)P A(T) 

Now we give an expression for the norm of a coset (xn)+mA(X) in P A(X) by 

using the Astala measure h .,a· 

1 PROPOSITION 

If (x )et (X), then n oo 

hA({xn}) = ll(x
0

)+m,a(X)ll 

PROOF. If c>hA({x
0

}), then there exist ZeE and KeA(Z,X) such that 

{x
0

} c KB
2

+£BX , 

hence for every nE~ ther e are zne8
2 

and bneBX verifying 

and consequently llx
0 

- Kz
0

11::sc, being (Kzn)em,iX) . Then ll(x~)+mA(X)ll::sc, hence 

ll (x
0

)+mA(X)ll ::s hA({xn}) . 

If c >ll( x
0

)+ mg/Xlll, there exists (y
0

)emA(X) such that 

ll (x
0
-yn)ll < c , 

hence f or every nE~. x
0

- y n Ec8X, and consequently 

{xn } c {y
0

}+c BX c KB
2

+cBX , 

being ZE IB , KE llnZ,Xl, (yn k KB
2 

(Proposition 2 (4)) . Then hA({xn})::sc, hence 

h..d({ x
0

} )::sll (x
0

) + mA(X ) ll . • 
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!! REMARK 

If A=Co, the compact operators, we obtain that hCo is the Hausdorff 

measure of noncompactness (BG); mCo ls the class of all bounded sequences for 

which every subsequence has a convergent subsequence; P Co ls the Sadovskii 

functor (SA]. 

P Co (T) is one-one if and only if T is upper semi-Fredholm operator 

(finitedimensional kernel and closed range). Moreover, P Co(T)=O if and only 

if TeCo. The Proposition 7 for A=Co appears in (HW]. 

2. REMARK 

If s4.=WCo, the weakly compact operators, we obtain what hWCo is the 

measure of weak noncompactness, defined by De Blasi (DB); mWCo is the class 

of all bounded sequences for which every subsequence has a weakly convergent 

subsequence. The expression 

hWCo({xn}) = ll(xn)+mWCo(X)ll 

has not appeared in the literature. 

P WCo is the Buoni-Klein functor (BK]. Our proof of Proposition 3 is more 

simple than the proof of (BK] for mWCo' 

Moreover (BK; Theorem 6) affirms the following: 

Kernel of T reflexive and complemented, and range of T closed * 

* P WCo (T) one-one ~ 

~ T have reflexive kernel 

This result is weaker than Proposition 11 below. Also P WCo (T)=O if and only 

if TeWCo. 

C 11 AR A< I I:. K I /A I I 0 N 0 F T AU HI:. R I AN U I' 1-. RA ·1 0 R S 

Let T*el(Y*,X*) be the conjugate operator of Tel(X, Y) and J(X) the 

canonical image of X in the second dual xu. An operator Tel(X, Y) is said to 

be tauberlan if its second conjugate Tu verifies 
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T**-l J(Y) = J(X) . 

Tauberian operators were introduced by N. Kalton and A. Wilansky [KW). We use 

the following characterization of tauberian operators (GO]: Tef(X, Y) ls 

tauberian if and only if given a bounded sequence (xn)' (Txn) weakly 

convergent implies (xn) has a weakly convergent subsequence. We give a new 

characterization of tauberian operators by using the functor P WCo. 

12 PROPOSITION 

If Tef(X, Y), then 

T tauberian ~ P WCo (T) one-one 

PROOF. If T is tauberian and 

PWCo(T)((xn)+mWCo(X)) = mWCo(Y) ' 

then T(xn)emWCo(Y). Therefore, any subsequence of (xn) has a subsequence 

weakly convergent . Hence (xn)emWCo(X). Conversely, if (Txn) ls weakly 

convergent, then T(xn)emWCo(Y) and consequently (xn~EmWCo(X). Therefore there 

exists a subsequence of (xn) which is weakly convergent and then T is 

tauberian. • 
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