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Abstract

Szeg6 quadrature formulas are used for the computation of integrals over the unit
circle. They share some properties with the classical Gauss quadrature formulas
for integrals on the real line. Indeed, Szegd quadrature formulas have maximum
domain of validity. Furthermore, as Gauss quadrature formulas, they have positive
coefficients, and nodes located in the region of integration. Nevertheless, unlike
classical Gauss quadrature formulas, Szeg6 quadrature formulas are para-orthogonal
rather than orthogonal.

There are only a few known examples of Szeg6 quadrature formulas. In this note
a new Szegd quadrature formula for a trigonometric polynomial modification of the
Lebesgue measure on the unit circle is constructed.
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1 Introduction

We write 7 = {z € C: |z| = 1} for the unit circle.

Jones, Njastad and Thron studied in [8] the so-called Szegd quadrature formulas for
the computation of integrals over the unit circle 7', that is, integrals of the form

W 16)= [ () avee)
where 9 is a distribution function (real valued, bounded and non-decreasing ) on (—, ).
The construction of Szeg6 formulas is described below.

Let (p,q) be a pair of integers where p < q. We denote by A, , the linear space of all
: g

functions of the form z ¢;z’, ¢; € C. The functions of A, , are called Laurent polynomials

Jj=p
or briefly L-polynomials. We write A for the linear space of all L-polynomials. Consider
the inner product on A x A given by

n
@ (ho)= [ 1) T@abo)

-
Let {gn}5° be the sequence of polynomials obtained by orthogonalization of {2"}$° with
respect to the inner product (2). The sequence {g,}$° is the sequence of Szegd polynomials
with respect to the distribution function . As it is well known, see, e.g., [9], g, has its
zeros in the region |z| < 1. Thus they are not adequate as nodes for a general purpose
quadrature formula to approximate integrals over the unit circle. Quadrature formulas
with nodes not in 7 are of interest for functions with poles near but not in 7. Taking the
poles as nodes is the underlying idea in the method of subtract out singularities [13].

Theorem 1 [8] Let {0.}§° be the sequence of Szegd polynomials with respect to the distri-
bution function . Let {k,}3° be a sequence of complex numbers satisfying |k,| = 1, n > 0.
Let By, (z, kn) = 0n(2) + Kkno(2) where gX(z) = 2"8,(1/z). Then By(z,k,) has n distinct
zeros () (k) located on T. Let

4 B,(z,kn)
A (k) = dy(0), 1 <m <n.
m ( ) /_ﬂ (z B '(:)(Kn)) B; (C,(:)(K,n),fgn> 'lp( ) m n
Then
@ 1= [ £ a®) = 3 AV (¢w)

m=1

for all f € A_(n—1)n—1. It holds )\S,',')(n,,) >0,1<m<mn, n>1, and the quadrature
formula (3) gives the largest domain of validity, that is, there cannot exist an m-point
n

quadrature formula p(f) = Z Amf(am), am € T which correctly integrates any function

m=1
f € A_(n_1)n o7 any function f € A_p ;.
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The polynomials B, (z,k,), n > 0 are the para-orthogonal polynomials with respect
to the distribution function .

Thus Szegod quadrature formulas share some properties with the classical Gauss quadra-
ture formulas for integrals on the real line. Indeed, Szegd quadrature formulas have max-
imum domain of validity, now in the sapce of the Laurent polynomials. Furthermore, as
Gauss quadrature formulas, they have positive coefficients, and nodes located in the region
of integration. Nevertheless, unlike classical Gauss quadrature formulas, Szegd quadrature
formulas are para-orthogonal rather than orthogonal. One should take into account that
Gauss quadrature formulas (maximum domain of exactness) for certain rational spaces of
functions are not orthogonal [5] with respect to a fixed distribution function.

Due to the difficulties in the construction of Szego quadrature formulas, interpolatory
quadrature formulas on the unit circle arise as alternative. They were introduced in
[2] for integrals on the unit circle. The interpolatory quadrature formulas with uniformly
distributed nodes on the unit circle become the most popular. Numerical experiments and
results [7, 11, 12] show that these interpolatory quadrature formulas are competitive with
Szego formulas. In addition, the nodes for this quadrature formula are easily computable,
uniformly distributed on 7', and the coefficients can be efficiently computable by means of
the Fast Fourier Transform algorithm, [11]. This facts make this interpolatory quadrature
formulas suitable for practical computations.

At the beginning (8], Szegé quadrature formulas were constructed as a tool for the
solution of the trigonometric moment problem. In [13], both interpolatory and Szegd
quadrature formulas were used as part of efficient quadrature formulas for the computa-
tion of integrals with Poisson type kernel that appear in the solution of boundary value
problems for a circle.

Szegd quadrature formulas have been included in the more general topic of rational
Szeg quadrature formulas [1].

There are only a few known examples of Szeg6 quadrature formulas. Among them, for
the Lebesgue measure (3], for the Poisson integral [14], for rational modifications of the
Lebesgue measure on the unit circle [7], for a certain measure connected with g—starlike
functions [10], and for Jacobi type weight function on the unit circle [4]. Next we construct
a one parametric family of Szegé quadrature formulas for the trigonometric polynomial
modification of the Lebesgue measure on the unit circle given by

dy(6) = |e — 6|’ d9, BeC, -r <6 <.

The corresponding orthogonal polynomials were constructed in [6]. The associated mo-
ments

me =1 (z5) = / e e — 8" db, keZ
are given by

(4) mo=2r (1+|B8]%), mi = —2nB, m_; = —21f8, mx =0, |k| > 2, k € Z.
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2 Construction of the quadrature formula

First we deal with the case that 3 lies on the unit circle, that is, § € C, || = 1. Without
loss of generality, and for simplicity, we will take # = 1. Indeed, if # € C, || = 1 and
B # 1 then we can make an angle rotation on the complex unit circle.

The corresponding orthogonal polynomials g,(z) are given by [6],

n

k+1
Qn(z)zzn_i_lzka n > 0.
k=0

Hence the para-orthogonal polynomials B,(z,%n) = 0n(2) + kn05(2), n > 1 where as
usual, k, € C, |k,| =1, and g} (z) = 2"p,(1/%) are given, for fixed K, =1 by

2 21 — zntl
(5 "z 1= LLER p DTS 7
k=0

n+1 n+l 1—=2

The nodes C,(.? )(1), 1 <m < n, n>1of the n point Szegd quadrature formula (k, =
1, n > 1) are the n roots of B,(z,1), and its coefficients )\5,’:)(1), 1<m<mn, n>1are
given hy
™
(1) =/ LY (¢°) ¢ —1[*dp
-
where

B, (2,1)
(- 0) B, (1) Aon-1.

From (4), and since § = 1, we get that my = 4m, m_; = m; = —27 and my =0, |k| > 2.
Thus

L) =

A1) = LEP(0)me + (L) (0)m,

B 2B,(0,1) B.(0,1)¢3(1) + Ba(0,1)
@B, (W.1) (&) B (Pw.1)

Since
+2
B,(0,1) = B'(0,1) = 22
©01)=By0,1) = 212
it holds
o (n + 2) (1— ,(,?)(1))
AW(1) =

(n+1) (¢01)) By (¢).1)
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+1
From (5) and taking into account that 1 — ( (")(1)) = 0 we get

42 (W)’
B, (G(1,1) = ———— ((n) 0 )

and hence

m(1— ¢ ’ (1 —Gm ’
6) AP(1)=- (-G8 (1))”2:_2 . C((:)(l)).
(n+1) (c(">(1)) (n+1)¢m (1)

One has that B, ((,(,? )-(1), 1) = 0, or equivalently

14+ ¢ + (CRO)* + -+ ()" =

Since ¢ (1) # 0, and ¢{(1) # 1 we get

1

D =

B 1 (")(1)
— (14RO + (@) -+ (@) = —1_<—<n>(1))~

ntl
From (6), (7), and taking into account that (C (n)(l)) = 1 we deduce

AW = 2 (1 @)") (- )
= 2 (2~ (0 + €@a)"))

- 5 (- FW))

For the last equality take into account that (( (")(1))n = C(n)l( 1) (n)(l) since }C ™) 1). =
1. Then "
A1) = —= (1-Re (G (1))

Thus we have obtained that the n point Szegd quadrature formula for the distribution
function

d(8) = |e? —1[d8, -7 <8<,
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and k, = 1 has nodes (,(,?)(1) and coefficients /\5,',')(1) given by

¢Ma) = e2mmi/(n + 1)

AP = n4:1 <l—cos (jiﬁ))

This n point Szegd quadrature formula satisfies

/_ ()| =1 8 = 3N (k) () , S € Apurya

m=1
Next we consider the remain case
dy(6) = ¢ — B db, B C, | # 1.

Without loss of generality, and for simplicity, we will take § € R, f# > 0, and 3 # 1.
Otherwise we can make an angle rotation on the complex unit circle. The corresponding
orthogonal polynomials are given by [6],

- 1 - k ( 32(n—k+1) n—k
gﬂ(z) - ﬂ2("+1) _ 1 kz—oﬂ (,3 - 1) V4 .
After several elementary calculations is deduced that the para-orthogonal polynomials,

for fixed k, = 1, n > 1 are given by

gr?—1 (1- (™! gt —
Bn(zv1)=ﬂ2(n+1)—1< 1-p62 M B—z >

The nodes (,(,I‘ )(1), 1 <m < n, n>1of the n point Szegé quadrature formula (x, =
1, n > 1) are the n roots of B,(z,1), and its coefficients A$,',’)(1), 1<m<n, n>1are
given by

AP = [ 19 (&) | - o' a0
where
By(z,1)

LP(2) = (Z_ '(:)(1)) B! ((,‘,?)(1),1

) € Aojn—1.
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Thus
AD() = LY (O0)mo + (L) (0)my
_ 2r(1+ 6% Ba(0,1) 2B (B’ (0,1)62(1) + Bn (0,1))
" (1)B, ( (1), 1) (c,‘;"(l)) ( &),1)
2r (66 (1B;(0,1) + Ba(0,1) (8~ (1 + 4601 )

(3‘)(1))23 ( ™), 1 )

(B™? -1)(1 + 8™

One encounter that

G G )

Bn(0,1) = B2n+1) — 1 ’ B:'(O’ 1)= B2n+1) — 1 ’
and
’ n - 1 C
B (G(1,1) = prer—y o
where
G = (+2)(E +8) ((P)™
—(n+1)(B"? +1) ()" - (B2 +1),
Cy = (1-B¢P() (B-¢™().
Thus
A1) = M_
(@) e
where

Cs=(PWBB+B")+1+8" (8- (1+8%)¢().

Taking into account that B, ( ¢™(1),1 ) =0, and
deduce that

C'(:)(l)‘ ((")(1)C(")(1) =1 one can

A1) = 2 (=1-+ 2Re (V1)) - ) (- (ﬁ"+‘+ﬂ)+(ﬂ"+2+1)m .

(n +2)(871 + B) — (n + 1)(8™2 + 1)¢T (1) — (B2 + 1) (C(T(l))
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Multiply numerator and denominator by —(8™+! + ) + (2 + 1)¢\(1). After some
elementary calculations is deduced that the coefficients /\5,’.') (1), 1<m<mn, n>1are
given by

® =Tt
6
where
Cis = —1+2BRe(¢M(1)) - 4%

Cs = (B™'+B)"— (B +B) (B2 +1) 2Re (V1)) + (B2 +1),
Co = —(n+2) (B +0)" —n(*?+1)"
+(n+1) (B + B8) (B2 + 1) 2Re (((1)) .

Thus the n point Szegdé quadrature formula for the distribution function
dip(6) = e —Bd8, BER, B>0, B#1,

and for k, = 1, n > 1 is given as follows. Its nodes C,(,?)(l), 1<m<mn, n>1are the
roots of the polynomial '

B +B) 2"+ (B +BY) 2"+ + (B2 +B) 2+ (B+ ™) =0,

and the coefficients /\5,':)(1), 1< m < n, n>1 are given by (8). This quadrature formula
satisfies

/_ () [~ B8 = 3 XD () (D)) € Auoys

m=1
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