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G ENERALIZED SEMIFREDHO LM 
TRANSFORMATIONS 

C. Masa and T. Alvarez 

Department of Mathematics, University of Oviedo, Spain 

Abstract. - The aim of this paper is to study normally solvable 
operators with superreflexive null space or superreflexive conull space. 
We use the super weakly compact operators to replace the compact 
operators of the classical theory in a natural way. 

Resumen. - Utilizando técnicas de análisis no estándar, obtenemos 
en estas notas resultados de dualidad, perturbación y composición de 
operadores normalmente solubles cuyo núcleo o rango es superreflex1vo. 

Key words: superreflexive space, super weakly compact op_erator. 
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The spaces considered here are always assumed to be Banach 

spaces. For a space X, X denotes the nonstandard hull of X considered 

in (6]. Recall that X is superreflexive ([7]) if any space finitely 

representable in X is reflexive, or, equivalently, if X is reflexive 

( [3; th. 8.5]). 

SR, R and F will denote the classes of all superreflexive, 

reflexive and finite dimensional Banach spaces respectively . 

All operators acting between Banach spaces are supposed to be 

linear and bounded. The class of all operators between arbitrary 

Banach s.paces is denoted by L. Given two Banach spaces, X and Y, 

L(X,Y) is the space of all operators from X into Y. For TeL(X,Y), N(T) 

and R(T) will denote the null space and the range of T respectively. 

The ascent and descent of Tare respectively denoted by a(T) and d(T). 

If TeL(X,Y), then the 

are def i ned. 

operators TeL(X,Yl 

by Tx=(Tx) ~, xeX, 

and 

and TeL(X' '/JxX, Y' '/JyYl 

T(x' '+JxXl=T' 'x' '+JyY, 

into X''. 

x' • eX' • . where Jx is the embedding map of X 

An operator TeL(X,Y) is called super weakly compact ([8]), 

TeSWCo(X,Y), if for every positive real number r there is a positive 

integer n such that there do not exist finite sequences {x1 , . . . ,xn} in 

X and {f1 , . •. ,fn} in Y' with //x1 //=/lf 1 //=1 (i=l, ... ,n), fJ(Tx 1 l>: 

( 1::sj::Si::Sn), f J (T:1 )=O O::si <j::sn).. This . condition is equi valent to T 

weakly compact, TeWCo(X,Y), by a result of Tacen ((8, th . l]J . 

We shall consider the following operator classes: 

tA+ {TeL: R(T) closed, N(T)eA} 

tA- {TeL: R(T) closed, Y/R(T)eA} 

tA = tA+ntA- • 

where A=SR or R; if A=F, we write t., t_ and t respectively . 

The terminology and notation from nonstandard analysis that we 

use is like those of [6] . 

In this note we study sol vable operators wi th superref lexi ve 
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nul 1 space or superref lexi ve conul 1 space. A theory similar to the 

classical FredhÓlm theory exists for the generalized Fredholm 

operators if we use the super weakly compact operators to replace the 

compact operators of the classical theory. 

Now, we present two examples illustrating that the classes 

4'sR+lAsR- and 4'sR are, in general, different. 

We take from [3] the notion of weakly-p-compact space (WP) and 

weakly-p-compact operator (WCoP). The operator TeL(X,Y) is said to be 

weakly-p-compact (p;e:1) if T sends bounded sequences into sequences 

which have a weakly-p-convergent subsequence. A Banach space 2 belongs 

to WP if I2 belongs to WCoP(Z). 

Let ~ be the Tsirelson's space. Then, if we combine the 

properties 

(il ~ has all the WP properties ([3]) 

(ii) if 2 is a superreflexive Banach space, then there are 

numbers p>q>l such that ZeWP but ziwq ([3]), 

we get that ~ is not superreflexive and that ~ <loes not contain . a 

superreflexive subspace (ora superreflexive quotient). 

So, if Misan infinite dimensional closed subspace of ~ and iH, 

qH denote the inclusion of M into ~ and the quotient map of ~ onto ~/M 

respectively, we have that iHe4>sR+ '-4'sR• qHE4>sR-'-4'sw Since ~ is a 

reflexive space, it is -clear that iHe4>R_'-4'sR-' qHe4>R+'-4'sR+• which 

shows tha t, in general, 4'sR+$i4'R+, 4'sR-$i4>R- · 

Theorem 1 

Let TeL. Then, T belongs to 4'sR+, 4'sR- or 4'sR if and only if T' 

belongs to 4'sR-• 4>sR+ or 4'sR respectively. 

Proof: 

It is sufficient to observe that N(Tl'~X'/R(T' ), N(T' )~(Y/R(T))' 

and that the superreflexivity is preserved under isomorphisms and 

duality ([7, th . 2]). 
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LellKlla 2 

Let TEL(X,Y) with closed range. Then, N(T) is isometric to 

N(T). 

Proof: 

Let rrx denote the canonical projection from fin *x to X. We 

consider the map B:rrNCT) (x)EN(T)A HB(rrNCT) (x) )=rrx(x)EN(T) . By using 

the Transfer Principle, we deduce that *N(T)=N(*T), and so, it is easy 

to see that B is well defined. Moreover, from the definitions it 

follows that B is a linear isometry . Finally, we show that B is 

surjective. 

Let rrx(x)EN(T), that is, x is finite and *rx .. o. Since R(T) is 

closed, there exists M>O such that 11*Txfl;;,:Mflxll for xE*x,*N(T). Thus, if 

xE*N(T), then rrx(x)=B(rrNCT) (x) l, and if xi!!*N(T), then x:,Q; so, 

rrx (x )=rrx (O l =B( rrNCT> (O l). 

Theorem 3 

Let TEL(X,Y) with closed range and KESWCo(X,Y) such that R(T+K) 

is closed. 

(i) lf N(T)ESR, then N(T+K)ESR. 

(ii) lf Y/R(T)ESR, then Y/R(T+K)ESR. 

Proof : 

If R(Tl is closed, then . R(T) is closed 
A 

( [8, th. 3] ),._ 

by virtue of previous lemma, 
A 

N(T) =N(T) • N(T+K) "=N((T+K) A). 
A 

( i) Assume that N(T) is superreflexive. Then, N(T) is 

Moreover, 

reflexive, 

and since KEWCo(X, Y), N(T+K) is reflexive ([10, th. 6.1 and6.2]). 

Hence, N(T+K) is superreflexive. 

(ii) Suppose that Y/R(T) is superreflexive. Then N(T') is 

superreflexive, and since K'ESWCo(Y',X') ((8, corollary 1]), from (i) 

we conclude that (Y/R(T+K))' ESR, and consequenÚy, Y/R(T+K) is 

superreflexive. 
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Theorem 4 

Let T,SEL. 

(i) If JE{4>sR+' 4>sR-• 4>5 R}, T,SEJ and TS is normally solvable, 

then TSEJ. 

( i i > 4>sR+ · 4> + c4>sR+ 

4> +. 4>sR+C4>sR+ 

4> - · 4>sR- · c4>sR~ 

4>sR-4> - C4>sR-. 

Proof: 

S ince TE{4>SR+• 4>sR-• 4>sR} if and only if TE{4>SR+• 4>SR- • 4>sR>. 

assertion ( i) fo llows by applying lemma 2 and sorne resul ts of Yang 

([10, th . 6. 1 , 6 . 3, 6.4, 6.6 and 5. 3 ]). 

To prove (ii) by virtue of (i) it i s enough t o ver ify that R(TS) 

i s closed, which follows immediately from the observation that R(TS) 

i s closed if and only if R(S ) +N(T) is c l osed (for operators with 

closed range l . 

Theorem 5 

Let KESllCo(X). Then, N(I-K) and Y/R(I-K) are superreflexive. In 

general, R(I-K) is not closed. 

Proof : 

Let .iK ):>e the inclusion of M into X, 

subspace K-1 (N(I-K)). Then, KiKESWCo(M,X) 

R(KiK)=N( I-K) , and, hence, N( I-K)ESR. Moreover, 

have Y/R(I-K)ESR. 

where M · is the closed 

([8, coroliary 1]); 

since K'ESWCo(X' ) , we 

Now , we define KEL(~) by Ken=en+l• nEIN. Then, it is clear that 

R(I-K) i s not closed and K is super weakly compact, since ~ is 

superreflexive ([2]). 

Co(X,Y) and F(X,Y) will denote the spaces of compact and finite 
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range operators from X into Y. 

Theorem 6 

Let KeSWCo(X)\.Co(X). Toen, in general, a(I-K), d(I-K) are not 

finite. 

Proof: 

First, it is an easy calculation that, if T1eL(X1 , Y1 ), i=l,2, 

then a(T1xT2 )=max{a(T1 ),a(T2 )}, d(T1xT2 )=max{d(T1 ),d(T2 )}, and, since 

SeL(X,Y) is weakly compact if and only if S=O ((10, th . 4.1]), we 

deduce that T1xT2 is super weakly compact if and only if T1 , T2 are 

super weakly compact. 

Now, we show that if KeSWCo(X)\Co(X), we then have the following 

possibilities for the pair (a(I-K), d(I-K)). 

(1) a(I-K)=oo, d(I-K)<oo. Let T.eFi(X), where X is a non

superref lexi ve Banach space and define SeL (t2 l by Se1 =e1 , Sen=en-en- l, 

n>l. Then, a(I-T)=d(I-T)<oo, a(I-S)=oo, d(I-S)=O. Hence, the operator 

K=TxS satisfies (1). 

(2) a(I-K)<oo, d(I-K)=oo. In the above case, it suffices fo 

replace S by the conjugate operator. 

(3) a(I-K)=d(I-K)=oo. Let T and S be the operators as in the case 

(1) and K=(TxS)x(TxS' ). 

(4) a( I-K)=d(I-K)<oo . 

superreflexive Banach space, 

n>l. Then, a ( I-S)=d {I-S)=l, 

satisfies a(I-K)=d(I-K)<oo. 

Remark 

Let TeFi (X), where X is a non-

and SeL(l2 ) defined by Se1=0, Sen=en• 

a(I-T)=d(I-T)<oo. The operator K=TxS 

In [4], Davis et al. preve that every weakly compact operator 

factors through a reflexive space, that is, Op(R)=WCo, and, since 

TeSWCo if and only if TeWCo, it follows that Op(SR)cSWCo . However, the 

following example will show that the class Op(SR) is, in general, 

l)4 
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properly contained in SWCo . 

Conslder X to be the Orlicz's space Lq([0,1].dt), with 

ip(t)=t(1.+log(l+t)). Since ip(t);,:t , there is a bounded injection, T, of 

L<f> into L1 . Then, lt has been proved in [1] that T~Op(SR), but TeSWCo, 

since if T is not in SWCo, then we derive from [1, prop. I. 3] that 

TBL'P has the finite tree pro~erty, which is not true ([ll). 
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