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GENERALIZED SEMIFREDHOLM
TRANSFORMATIONS

C. Masa and T. Alvarez

Department of Mathematics, University of Oviedo, Spain

Abstract. — The aim of this paper is to study normally solvable
operators with superreflexive null space or superreflexive conull space.
We use the super weakly compact operators to replace the compact
operators of the classical theory in a natural way.

Resumen. — Utilizando técnicas de analisis no estandar, obtenemos
en estas notas resultados de dualidad, perturbacién y composicién de
operadores normalmente solubles cuyo nicleo o rango es superreflexivo.
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The spaces considered here are always assumed to be Banach
spaces. For a space X, i denotes the nonstandard hull of X considered
in [6]. Recall that X is superreflexive ([7]) if any space finitely
representable in X is reflexive, or, equivalently, if i is reflexive
([3; th. 8.5]).

SR, R and F will denote the classes of all superreflexive,
reflexive and finite dimensional Banach spaces respectively.

All operators acting between Banach spaces are supposed to be
linear and bounded. The class of all operators between arbitrary
Banach spaces is denoted by L. Given two Banach spaces, X and Y,
L(X,Y) is the space of all operators from X into Y. For TeL(X,Y), N(T)
and R(T) will denote the null space and the range of T respectively.
The ascent and descent of T are respectively denoted by a(T) and d(T).

If TeL(X,Y), then the operators %eL(i,Q) and
TeL (X'’ /JgX, Y'’/JyY) are defined by Tx=(Tx)", xeX, and
T(x"+JxX)=T”x”+JYY, x'’€X’’, where Jy is the embedding map of X
into X'’ .

An operator TeL(X,Y) 1is called super weakly compact ([8]),
TeSWCo(X,Y), if for every positive real number r there is a positive
integer n such that there do not exist finite sequences {x,,...,x,} in
X and A{fy,...,f )} in Y with |x{|=|f,|=1 (i=1,...,n), £y(Tx{)>r
(1=j=i=n), fJ(Tx1)=0 (1=i<j=n). This  condition is equivalent to %

weakly compact, %EWCO(%,Q), by a result of Tacon ([8, th. 1]J).

We shall consider the following operator classes:

®,, = {TeL: R(T) closed, N(T)eA}

®,_ = {TeL: R(T) closed, Y/R(T)eA}

Oy = 8pndy,
where A=SR or R; if A=F, we write ¢,, &_ and & respectively.

The terminology and notation from nonstandard analysis that we

use is like those of [6].

In this note we study solvable operators with superreflexive
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null space or superreflexive conull space. A theory similar to the
classical Fredholm theory exists for the generalized Fredholm
operators if we use the super weakly compact operators to replace the

compact operators of the classical theory.

Now, we present two examples illustrating that the classes
OspVOsp. and &gy are, in general, different. :

We take from [3] the notion of weakly-p-compact space (wp) and
weakly-p-compact operator (WCop). The operator TeL(X,Y) is said to be
weakly-p-compact (pz1) if T sends bounded sequences into sequences
which have a weakly-p-convergent subsequence. A Banach space Z belongs
to W, if I, belongs ﬁo WCo,(2).

Let 7 be the Tsirelson’s space. Then, if we combine the
properties

(i) 7 has all the W, properties ([31)

(ii) if Z is a superreflexive Banach space, then there are
numbers p>q>1 such that ZeW, but ZeW, ([31),
we get that J is not superreflexive and that J does not contain.a
superreflexive subspace (or a superreflexive quotient).

So, if M is an infinite dimensional closed subspace of J and i,
qy denote the inclusion of M into J and the quotient map of 7 onto J/M
respectively, we have that i,ed5p,\bsp, quedsp \bsz. Since T 1is a
reflexive space, it 1is «clear that iyedp \®gp_, queéR*\QSR,,‘ which

shows that, in general, Ospe&Prys Psp_GPn-

Theorem 1

Let TeL. Then, T belongs to &gz, ®sz- or &g if and only if T’
belongs to &g, Pgg, or &g; respectively.

It isbsufficient to observe that N(T)’'=X’/R(T’), N(T’)=(Y/R(T))’
and that the superreflexivity is preserved under isomorphisms and

duality ([7, th.2]).
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Lemma 2

Let TeL(X,Y) with closed range. Then, N(T)A is isometric to
N(T).

Let my denote the canonical projection from fin*X to i. We
consider the map B:nN(T)(x)eN(T)Al—eB(nN(T)(x))=nx(x)eN('}).~ By using
the Transfer Principle, we deduce that *N(T)=N(*T), and so, it is easy
to see that B 1is well defined. Moreover, from the definitions it
follows that B is a linear isometry. Finally, we show that B is
sur jective.

Let nx(x)eN(%), that is, x is finite and *Tx»0. Since R(T) is
closed, there exists M>0 such that I*TxlzMixll for xe*X\*N(T). Thus, if
x€*N(T), then my(x)=B(myy(x)), and if xe'N(T), then x=0; so,
1y (x)=my (0)=B(my () (0)).

Theorem 3

Let TeL(X,Y) with closed range and KeSWCo(X,Y) such that R(T+K)
is closed.

(i) If N(T)eSR, then N(T+K)eSR.

(ii) If Y/R(T)eSR, then Y/R(T+K)eSR.

If R(T) is closed, then-R(%) is closed ([8, th. 3]). Moreover,
by virtue of previous lemma, N(T)AEN(%), N(T+K) "=N((T+K)").

(i) Assume that N(T) is superreflexive. Then, N(%) is reflexive,
and since ﬁeWCo(i,?), N(%+£) is reflexive ([10, th. 6.1 and 6.2]).
Hence, N(T+K) is superreflexive.

(ii) Suppose that Y/R(T) 1is superreflexive. Then N(T’) is
superreflexive, and since K’eSWCo(Y’,X’) ([8, corollary 1]), from (i)
we conclude that (Y/R(T+K))’e€SR, and consequently, Y/R(T+K) is

superreflexive.
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Theorem 4
Let T,SeL.
(i) If Je{dgp,, ®5z_» ®sg}s, T,S€J and TS is normally solvable,
then TSeJ.
(ii) ®gp,.d,csp,
@, - PspsCPsps
®_. &g, . Chgpe
bgp & g
Since Te{®gp,, ®gp-, ®sg} 1if and only if %E(¢5R+, ®sp-» srts
assertion (i) follows by applying lemma 2 and some results of Yang
((10, th. 6.1, 6.3, 6.4, 6.6 and 5.3]).
To prove (ii) by virtue of (i) it is enough to verify that R(TS)
is closed, which follows immediately from the observation that R(TS)
is closed if and only if R(S)+N(T) is closed (for operators with

closed range).

Theorem 5

Let KeSWCo(X). Then, N(I-K) and Y/i?;zij are superreflexive. In
general, R(I-K) is not closed.

Let iy vbe the inclusion of M into X, where M 'is the closed
subspace K1(N(I-K)). Then, KiyeSWCo(M,X) ([8, coroliary 11]),
R(Kiy)=N(I-K), and, hence, N(I-K)eSR. Moreover, since K’eSWCo(X’), we

have Y/R(I-K)eSR.
Now, we define KeL({,) by Ke =e .,, neN. Then, it is clear that
R(I-K) is not closed and K is super weakly compact, since £, is

superreflexive ([2]).

Co(X,Y) and F(X,Y) will denote the spaces of compact and finite
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range operators from X into Y.

Theorem 6

Let KeSWCo(X)\Co(X). Then, in general, a(I-X), d(I-K) are not
finite.

First, it is an easy calculation that, if TleL(Xx,&x), i=1,2,
then a(T,xT,)=max{a(T,),a(T,)}, d(T;xT,)=max{d(T,),d(T,)}, and, since

SeL(X,Y) is weakly compact if and only if S=0 ((10, th. 4.1]), we
deduce that T,xT, is super weakly compact if and only if T,, T, are
super weakly compact.

Now, we show that if KeSWCo(X)\Co(X), we then have the following
possibilities for the pair (a(I-K), d(I-K)).

(1) a(IX)=w, d(I-K)<w. Let TeFi(X), where X 1is a non-
superreflexive Banach space and define SeL({,) by Se;=e;, Se =e -e ,,
n>1. Then, a(I-T)=d(I-T)<w, a(I-S)=w, d(I-S)=0. Hence, the operator
K=TxS satisfies (1).

(2) a(I-X)<w, d(IX)=w. In the above case, it suffices to
replace S by the conjugate operator.

(3) a(I-K)=d(I—XK)=w. Let T and S be the operators as in the case
(1) and K=(TxS)x(TxS").

(4) a(I-K)=d(I-K)<w. Let TeFi(X), where X is a non-
superreflexive Banach space, and SeL({,) defined by Se,=0, Se =e,,
n>1. Then, a(I-S)=d(I-S)=1, a(I-T)=d(I-T)<o. The operator K=TxS
satisfies a(I-K)=d(I-K)<w.

Remark

In [4], Davis et al. prove that every weakly compact operator
factors through a reflexive space, that is, Op(R)=WCo, and, since
TeSWCo if and only if %eWCo, it follows that Op(SR)cSWCo. However, the

following example will show that the class Op(SR) is, in general,
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properly contained in SWCo.

Consider X to be the Orlicz’'s space L%([0,1],dt), with
¢(t)=t(1+log(1+t)). Since ¢(t)=t, there is a bounded injection, T, of
L¢ into L'. Then, it has been proved in [1] that T¢Op(SR), but TeSWCo,
since if T is not in SWCo, then we derive from [1, prop. I.3] that

TBL¢ has the finite tree property, which is not true ([1]).
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