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ABSTRACT: In this paper the finite generaÍized Hankel-Clifford transformation is 

extended to certain spaces of (distributions) generalized functions. The operational 

calculus generated is used in solving certain partial differential equations, involving the 

generalized Kepinski-Myller-Lebedev differential operator. 
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1 Introduction 

Malgonde [2] investigated the following variant of the generalized Hankel-Clifford 

transform defined by 

(ha,pf)(y) = F(y) = f (y I xr(a+p)n J a-P ( 2j;Y)f(x)dx, (a-/J) ~ -1/2 
o 

~ 

(1.1) 

= y -a-P J 9a,p(xy)f(x)dx, (a-fJ) ~ -1 /2 
o 

where 9 p(x) = x(a+fJ)/2 J p(2J°; ), J p(x) being the Bessel function ofthe 
a, a- a-

first kind oforder (a-fJ) , in spaces ofgeneralized functions.Note that (1.1) reduces 

to well-known Hankel-Clifford transform for suitable values ofthe parameters viz. 

for a =O and fJ = - µ ,a transform studied in [4]. 
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In this paper following Docta and Méndez-Pérez [l] we establish finite version of (1.1), 

firstly from a classical point of view. For it we begin by considering a Fourier-Bessel 

type of series expansion which suggests the definition of the classical finite generalized 

Hankel-Clifford transformation. Later this transform is extended to certain spaces of 

( distributions) generalized functions. 

In order to do that, we modify previously in a natural way the method developed 

by Zemanian [7] in his research on a variety of distributional series expansions. Recall, 

that the success of Zemanian ' s method Iies in the fact that the differential operators 

considered are always selfadjoint. 

The main objective of our work is to give a procedure that tums out to be valid for 

more general operators having the same positive eigenvalues and whose respective 

systems of eigenfunctions verify the same orthogonality condition, are simultaneously 

considered. Then two testing function spaces and their duals are constructed such that 

certain Fourier-Bessel series converge in them. So we are led on to define two 

distributional finite generalized Hankel-Clifford transformations, which will be called the 

distributional finite generalized Hankel-Clifford transformations of the first kind of order 

(a-/3). This approach is reminiscent ofthe procedure described in [3 and 4] for extending 

the infinite generalized Hankel-Clifford transformation to distributional spaces. Finally, 

the operational calculus generated is used in solving directly certain partial differential 

equations, involving the generalized Kepinski-Myller-Lebedev differential operator. 

2 Preliminary Results 

Considering the Sturm-Liouville problem 

( tla,p +A 2 ) y= O, a:::; X:::; b, (2.1) 

a1y(a)+a2y'(a) = O,b1y(b)+b2y '(b) =O (2.2) 

h - PD a-p+iD -a· b b b 1 d D - d w ere tiª P - x x x , a, a 1, a2 , , 1 , 2 are rea constants an - - . . ~ 

The general solution of the equation (2.1) is 

y= ~,i (x) = A(A-)9-a,p(Ax)+ B(A-)Y a,p(Ax) 

or y= ~A,. (x) = A(A11 )9-a,p (A11x) + B(A11 )Y a,p (A11x) (2.3) 
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and Ya-P ( z) is the Bessel - function of the second kind of order (a - /3) . 

Equation (2. 1) may be written as 

x(a+p) !!_(x1-(a+P) ')2+[íL2x1-(a+Pl+ afJ ]_!!.___( 2)=ü 
dx y x(a+P) dx y 

On integrating by parts in the interval [a, b], we obtain 

(1-a- /J)íL / fx -a-¡J y2 dx -[x2-(a+¡i) y'2 + íL 2 xl -(a+¡i) y2 + afJ y2 ]b 
(a+¡i) 

a X a 

b b -J (a+ /J)x1-(a+Ply'2dx + (a+ fJ)afJ J x-(a+P)- iy2dx =O (2.4) 

Let y = <Pn (x) be the eigenfunctions of the problem (2.1 )-(2.2), which correspond to the 

non-zero eigen-values íL" .Then the orthogonality condition 

b J x-(a+P)</Jm (x)</Jn (x)dx 

ifm=n 

=O, ifm-¡. n, 

may be derived from (2.4) and Sturm-Liouville general theory. 

Consider now the problem 

( !:i.a,p + íL 2 ) </J( X) = O , O ~ X ~ a , 

</J(a) =O 

whose solution is in view of (2.3) 

where A,, íl,2 ,. .. represent the positive zeros arranged in ascending order of 

magnitude ofthe equation [6,p. 479] 
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The above orthogonality condition (2.5) now becomes 

a 

= f x-(a+JJ) 9a,p(A.,,,x)9a,p(A"x)dx 
o 

{ 
2-a-P 1 a" ( 1 )· _ 

= a A.n T a./J-1 A.na 'm - n 

O ;m=t:.n 

3 The Fourier-Bessel Series and the classical finite generalized Hankel­

Clifford transformation 

(2.8) 

(2.9) 

Let f(x) be an arbitrary function defined in (O, a).Then the Fourier -Bessel type series 

expansion can be expressed by virtue of (2. 9) as the following Fourier Bessel expansion 

~ 

f(x) = Lªm?a.p(A.,,,x) (3.1) 
m=I 

where a = 1 ªf x -(a+P) a (A. x)f(x)dx 
m 2-a-P A a" (A. ) Fa,p m 

a m Fa./J-1 ,,,a o 
(3.2) 

The convergence ofthe series (3.1) is straightforward and the following Theorem 3.1 

follows from [ 1]. 

THEOREM 3.1. Let f (x) be a function defined and absolutely integrable on (O, a). 

1 
Assume that (a-/3) ;;:::-- and set 

2 

_ 1 ªf -(a+P) 1 _ 
ª"' - 2-a-/J A z t ?a,p(A-111t)f(t)dt,m - 1,2,3 ... 

a m ?a.p-1(Ama) o 

If f (t) is of the bounded variation in (al' a2 ), (O< a1 < a2 <a) and if t E (al' a2), 

then the series 

11 1 
Lªm?a.p(A111x) converges to - [f(x+O)+ f(x - 0)]. 

2 m= I 

Expression (3.1) and (3.2) and the Theorem 3.1 suggest to introduce the 

integral transform 
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a 

(lí 1,a,flf)(n) = (lía,/J f)(n) = Fa,p(n) = J X-(a+{J) P a,p(Anx)j (x)dx 
o 

which will be called the finite generalized Hankel-Clifford transformation 

ofthe first kind. 

Its inversion formula is given by 

(3.3) 

(3.4) 

We point out the following operational rules: 

1) If f(x)e C2(0,a), upon integrating by parts we deduce the relation 

lía,p[xj"'(x) + (l-a- /3)f'(x) + af3x-1f(x)] 

= f(a)A,n a(l-a-fl) Pa.{J-1 (J.,,a)-A,ntza,{J[f(x)] 

2) If f (x) E C2' (O, a),fUJ (O) are finite andf(iJ (a)= O;i = (1, 2,3, ... 2r - 2), then 

lía,{J [xf"(x) + (1-a- /3)f'(x) + af3x-1f (x)]' = (-1)' J.; lía,{J[f (x)] ' 

r being a positive integer. 

4 The testing function spaces Aa,fl and A·a,fl and their duals 

In this section we shall employ the same notation and terminology as those used in 

Zemanian [7]. 

Thus I denote the interval (O, a) and (a-/3) will be restricted to the interval 

_ _!_ ~ (a- /3) < oo. L 2 (/) and C 2 (/) represent the spaces of equivalence classes of 
2 

functions that are quadratically integrable on 1 with regard to the weight functions 

x -(a+fl) and x(a+fl). A mixed inner product is defined on L2 (!)XL* 2 (/)by 

where g(x) denotes the complex conjugate of g(x). This definition is consistent 

with the inner product considered usually on L 2 (/) and C 2(1) .Indeed,(4.1) 

can be rewritten as 

(f,g) = J x-(a+fl)f(x)(x(a+fl) g(x))dx = Jx<a+/J) (x-<a+fl)J(x))g(x)dx 
I I 
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and note that/ ( x) and x(a+/J)g(x) belong to L2(1) , while x-(a+/J) f (x) and g(x) 

are in L2' (1) . D(J),E(J),D'(J) and E'(J)are well-known spaces oftesting functions 

and their duals [8, p. 32]. 

The differential operator 

tia,/J = xP Dxa-/J+I Dx-ª = xD2 + (1-a- /J)D + x-1 a/) 

is not self-adjoint. We consider, together with tia./J , the operator 

ti'a./J is called the adjoint operator of tia,/J . 

Note that ti' = x-a-/J ti xª+/J IX,/J IX,/J 

The functions 

</J. (x) = 9a,/J ( A.11x) ,n = 1, 2, ..... 

are the eigenfunctions of tia./J ,whereas the functions 

</J'. (x) = x-(a+/J)9a,p (A.. x) ,n = 1, 2, .... . 

are the eigenfunctions of ti'a.p· 

In both the cases we have the same eigenvalues of A.11 (n= l ,2, ... ) which 

are the positive roots of equation (2.8). Therefore, 

and 

(!!.' a./J + A..2 )</J; (x ) = O 

Systems of eigenfunctions {</J. (x)};=1 and {<P: (x) t 1 verify by (2.9) and 

(4.1) the orthogonality condition 

This is equivalent to say that {</J11 (x)};=1 is orthogonal with respect to the weight 

function x -(a+/J) and, on the other hand, that {<P; (x) t 1 is orthogonal with respect 

to x(a+/J). In any case (4.8) holds. 
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A a./J is defined as the linear space of ali infinitely differentiable complex-valued 

functions </J(x) on I such that 

1 

(i) ; k,a.p</J(x ) = [! x(a+fll 1~*' a,p</J(x)l2 dx r exists for every k=O, 1,2, ... 

(ii) ( ~: a,/J</J,</J,, ) = (</J,~k a,p</J,, )holds for each n and k. 

A a,fJ is the countable multinormed space having the topology generated by{;a,fJ} . 

Aa./J is also complete. Consequently, A a./J is a Fréchet space. 

In our context we can establish a result analogous to [7, Lemma l] 

THEOREM 4.1. Let (a- /J) ~ -~ . Every member </JE A a./J can be expanded into a 

generalized series of the form 

~ 1 • 
</J=L 2-a-fJA, $)-z (A )(</J,</J,,)</J" , 

11=1 a 11 a./J-1 11ª 
(4.9) 

which converges in A a./J. 

Proof . Note that~•k a,p</JE L' 2(/) . Hence by (ii) and (4.7) we have 

- ~ 1 (di di ) ~ • k di • 
- ~ ª 2-a-/J A, a2 (-1 a) 'I'• '1'11 a,/J'l'11 

11-I n F a./J-1 n 

where the series involved converge in L* 2 (/) .Therefore 

; k,a./J [</J-t a2-a-fJA, ; 2 (-1 )(</J, </J,, )</J,,· ]~o 
11- I 11 a ./J- 1 na 

as n-? oo. This completes the proof ofTheorem 4.1. 

A~./J is the dual space of A a.fJ and too complete. We now list sorne ofthe properties of 

these spaces 
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(a) D(l) e A a,p e E(!)). E'(!) is a subspace of A:.P . 

(b) It can be seen that </J;(x), given by (4.6), belongs to A a,p· 

(e) The operation </J---? /),. • k a,p</J is a continuous linear mapping of Aa,p in to itself. 

Consequently, the operation f ---? f).a,pÍ defined on A :.P by 

(4.1 O) 

is also a continuous linear mapping of A:.P into itself. 

We will have need of another testing function space A·a.P along this work. A·a.P 

consists of all infinitely differentiable functions </J(x) defined on 1 such that 

1 

(i1) ~· k,a,p</J(x) = [ f X -(a+P) 11),.k a,p</J(x)l2 dx r exists for every k=O, 1,2, ... 

(ii1) ( /),. k a,p</J, </J* n) = ( </J, /),. •k a,p</J* n) holds for each n and k 

As befo re, A• a,p is a Fréchet space. A•' a,p represents the dual space of A• a,p . 

Sorne properties related to these spaces are listed below 

(aJ D(I) e A· a,p e E(!) . E'(!) is a subspace of A•' a,p 

(b1) Note that </JJx), given by (4.5), is now in A *a,p 

(c1) The operation </J---? /),.a,p</J is a continuous linear mapping of A *a.P into itself. 

Hence the operation f---? /),.*a.pf defined on A*' a,p by ( /),.*a,p f,</J) = (f, f).a,p</J) 

for any </JE A* a,p is a continuous linear mapping of A•' a,p into itself. 

Remark 1: Since { tp*11 } is a orthogonal system on 1 with respect to the weight function 

x(a+P), verifying the same orthogonality condition (2.9), we propose to consider this 

other finite generalized Hankel-Clifford transformation 

a a 

(ñ*a.pf)(n) = F*a,p(n) = J X(a+P)</J*n (x)j(x)dx = J ?a,p (Anx)j(x)dx (4.11) 
o o 

the inversion formula being given through 

56 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



F* ( ) -(a+fll a (íL ) 
(ñ*-1 F* )(x) = f(x'p ~ a,/3 n X F a,/3 nx 

a,/3 a,/3 ~ ª2-a-/3 íL rz2 (íL a) 
n- 1 n 'a./J- 1 n 

(4.12) 

By using a similar reasoning as in the proof of Theorem 4.1, we can establish 

THEOREM 4.2. Let(a- /3) ;:::-_!_. If r/JE A*ª/3' then 2 , 

(4.13) 

where the series converges in A· a,fl . 

Remark 2: Observe that(ña,pr/J)(x) = r/Jª /n) = (r/J,r/J:.P ), r/JE A *a,/3 , (4.14) 

is the finite generalized Hankel-Clifford transformation (3.3) acting on the space 

A*a,fl .Thus Theorem 4.2 can be interpreted as the inversion Theorem 3. 1 for ali 

testing function r/JE A *a,/3. Analogously, 

( 4. 15) 

can be considered as the finite generalized Hankel-Clifford transformation ( 4.11). 

lts inversion formula is given in the space A a,fl by ( 4. 12). 

Remark 3: Assume that (a - /3) ;::: _ _!_ . Then Aª /3 may be identified with a subspace of 2 , 

A*' a,/3, that is, A a,/3 e A*' a,/3 . Indeed, every member f E A a,fl generates a regular 

distribution inA*'a./3 by (f,r/J) = Í f(x) r/J(x)dx,r/JEA*a./3• since 

Furthermore, two members of A a,fl which give rise to the same member of A*' a,/3 must 

be identicaL 

In a similar way A· a,fl can be considered as a subspace of A~./3. 

5 Orthogonal series expansions of generalized functions and the distributional 

finite generalized Hankel-Clifford transformation 

The main result of this section can be stated as follows: 
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THEOREM 5.1. Let (a-fJ) ::::-:-_!_. Every member f E A:p can be expanded into a 
2 ' 

generalized series of the form 

which converges in A:./J . 

Proof By virtue of Theorem 4.1 it is inferred that 

for ali </JE Aa,/J .This implies (5.1) truly converges in A:,/J. 

Through an argument similar we can also assert 

( ) 1 ,, 
THEOREM 5.2. Let a- fJ ;:::.: - 2. If f E A a,/J, then 

where the series converges in A'' a,/J. 

In the view of (5 .1), the distributional finite generalized Hankel-Clifford 

transformation ofthe first kind off E A:,/J is defined by 

for each value ofn=l,2,3, ... . 0bserve that this definition has a sense by virtue 

of note (b) in section 4 . Its corresponding inversion formula is supplied by 

Theorem 5.1 and can be expressed as 

We need merely invoke (4.10) to get 
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(5.3) 

(5.4) 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



for all </JE A a,/J and k=0,1,2, .... 

If </J is replaced by </Jn *, and ( 4. 7) is used, we yield 

(1'1k f -(a+fJ) a (A- )) = (J (-A, )k -(a+/J) a (A- )) 
a,/J 'X T a,/J nX ' /1 X T a,/J nX 

This formula may be rewritten in accordance with (5.3) as 

(5.5) 

for every f E A: ./J and k=O, 1,2, ... 

Remark 4: Theorem 5.2 suggests to introduce other variant ofthe distributional finite 

generalized Hankel-Clifford transformation ofthe first kind in the space A:./J by means 

(5.6) 

where f E A'' a,/J for each val u e of n= 1,2, ... The inversion formula is given through 

(n·'-' F * )( ) f( )= ..¿, F *a./J (n) -(a+fl) a (A, ) 
a,/J a,/J X = X ~ a 2-a-/J A,n 9 ;,fJ-1(Ana) X Ta,/J nX 

(5.7) 

Remark 5: Sin ce A' a,/J e A:./J, our classical finite generalized Hankel-Clifford 

transformation ( 4.14) is a special case of the generalized ( distributional) transformation 

of (5 .3) and Theorem 5.1 tums out to be an extension to distributions of Theorem 4.2. 

Similarly, as an immediate consequence of the inclusion A a./J e A'' a,/J, the classical finite 

generalized Hankel-Clifford transformation (4.15) agrees with the distributional finite 

generalized Hankel-Clifford transformation (5.6), so that Theorem 5.2 appears now as the 

distributional version of Theorem 4.1 . 

Remark 6 : Let N be a linear differential operator and denote by N' its adjoint operator. 

Zemanian [7, p.264] investigated only the case N=N' . However, the method developed 

here allows to tackle more general problems (e.g., the case of our operators 

11a,/J and !1 'a./J ) provided that, of course, both operators have the same eigenvalues and 
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their respective systems of eigenfunctions verify also an identical orthogonality 

condition with respect to suitable weight functions. 

6. Application 

To illustrate the use of the distributional finite generalized Hankel-Clifford 

transformation, we wish to solve the following generalized Kepinski-Myller-Lebedev 

partial differential equation, of course, now in a finite interval. 

d2V dV - 1 dV 
x-+(l-a-/3)--x aªv-µ-=0 O<x<a t>O 

dX2 dX 'fJ df ' ' 

satisfying boundary conditions 

i) As t~O+, v(x,f) ~ f(x)E A:.P 

ii) As t~oo, v(x,f) converges uniformly to zero on O< x <a 

iii) As x~a-, v(x,f) converges to zero on t0 :::; f < oo for each f0 <O 

iv) As x---;> O+, v(x,f)=O(x<a-P>) on f0 :::; t < 00 

Let us denote V (n,t)= lía.P ( v(x, f)) .According to ( 4.2), (6.1) becomes 

dV 
lia,pV-µaf = 0 

By applying lía,p to (6.2) and making use of (5.5) we arrive at 

a 
-A-, V(n,f)-µ-V(n,f)=O, , df 

whose solution is 

_ A,,1 

V (n,t) = Fa,p(n)e µ , because ofthe boundary conditions (i) and (ii). 

(6.1) 

(6.2) 

Here lía,pf = Fa,p(n) and A," represents the n'h positive zero ofthe equation 

?a,p(A"a) =O. We may now invoke the inversion formula (5.4) to provide the required 

(6.3) 
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