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THE EFFECT OF EXTERNAL NOISE ON THE DYNAMICS OF 
SPECULATIVE MARKETS 

JOSÉ M. PACHECO, JOSÉ M. LÓPEZ AND CÉSAR RODRÍGUEZ 

ABSTRACT. A general model for asset price dynamics in speculative markets 
is considered. The choice of a chartist demand function allows to check out 
the agreement between analytical predictions and numerical simulations of this 
model. A discussion is presented on the effect of market noise on speculative 
behaviour. First, by solving a particular Fokker-Planck equation we show that 
the white noise has only a disorganizing effect around the deterministic equi­
librium state. Second, a separation condition is used to deduce the existence 
of limit cycles in the slow-fast dynamics for small values of the average time 
needed for the chartist formation of the price trend. Numerical results show 
that the effect of noise can double the wavelength of alternate slow and fast 
transitions. 

l. INTRODUCTION 

Severa! categories of models have been assessed with the aim of analyzing cycle­
like behaviour in economic theory. In particular, prediction of asset market prices 
is an area where these models are broadly in use and there is active research where 
various mathematical techniques are employed. Among these dynamical systems 
are known to be essential tools in economic analysis, both in the continuous and in 
the discrete cases. 

In this paper emphasis is put on the investigation of sudden changes in the 
behaviour of market asset prices. These changes are idealized as the onset of a 
slow-fast cyclic dynamics for sorne parameter value. In turn, cyclic behaviour itself 
appears as a result of a Hopf bifurcation. But in order to mimic real market 
behaviour, this is still too rigid a frame and dynamical systems are extended to 
other categories of equations. 

The importance of random walks in many classical economic assumptions is 
the starting point for the use of the theory of stochastic differential equations in 
the modelling of economic proQlems, though alternative approaches, as reaction­
diffusion equations have also been applied (see [l]). As a rule, an adequate deter­
ministic dynamical system is built and analyzed in phase space, afterwards it is 
perturbed with noise or diffusion and studied ( or solved) in this new setting. Usu­
ally the stochastic models are treated numerically, because for higher dimensional 
systems the theoretical Fokker-Planck equation approach is cumbersome and ap­
plicable only in a few cases with specific side conditions. This is the way followed 
in this study. 

2. A MODEL FOR AN SPECULATIVE MARKET 

Severa! drawbacks in the application of random walk theory and the paradigm 
of efficients markets led Beja and Goldmann [2] and Chiarella [3] to build more 
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realistic models of the price evolution of an asset in a speculative market. The 
excess demand function is defined as the time derivative P' ( t), where P stands for 
the logarithm of price. The basic hypothesis is that the excess demand function 
can be split into two components: a fundamental one D(t) anda speculative one 
d(t) which correspond to the two basic types of agents acting in the market: 

P'(t) = D(t).+ d(t) 

The two types are called respectively "fundamentalists" and "chartists". The 
first ones make their decisions on a theoretical basis (rational expectatives), while 
chartists ( also known as speculators) estimate prices on the basis of past price trends 
(adaptive expectatives). Chiarella [3] defines the fundamentalist excess demand to 
be proportional to the difference between the equilibrium (walrasian) price W(t) in 
an ideal market and the actual price P(t): 

D(t) = a[W(t) - P(t)] 

where a > O is the slope of the fundamentalist demand. On the other hand, the 
chartist excess demand is represented by a nonlinear function of the difference 
between an average estimation 'lj;(t) of the actual trend P'(t) of P(t) and the yield 
g(t) of sorne other less risky alternative reference, ( e.g. bonds): 

d(t) = h('lj;(t) - g(t)) 

where h is sorne bounded (both above and below) increasing function with a single 
inflection and such that h(O) =O (see [3]). The model is completed by specifying 
how 'lj;(t) is built. Here adaptive expectatives are used, with the following equation 
defining 1f; ( t): 

1/J'(t) = c[P'(t) - 'lj;(t)] 

where e > O is a measure of how quickly chartists adjust their offers. Its inverse 
~ can be considered as the time lag r needed for building expectatives and will 
play an important role in the seque!. Therefore the model reads, dropping the t 
dependence: 

P' = a[W-P]+h('lj;-g) 
r'lj;' = a[W - P] -1/J + h('lj; - g) 

This differential system has a single equilibrium point (Pe, 1/Je) = (W - h(;?', O), 
and under the hypothesis that W and g be constant a change of origin to this point 
yields the new system 

p' - ap + k('lj;) 
r'lj;' = -ap -1/J + k('lj;) 

where p = P - (W - h(;:-ul) and k(1f;) = h('lj; - g) - h(-g) . 
A linear stability analysis can be carried on in order to show how the qualitative 

behaviour of the equilibrium point depends on the parameter r . The jacobian for 
this system is 

(
-a 
.=Q: 

T 

h'('lj; - g) ) 
h 1 (1/J-g)-l 

T 

136 



©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7
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and at the equilibrium point it becomes 

( 
-a 

A= 
.=!! 

T 

h'(-g) ) ( -~aa 
h'(-g)-1 

T 
~~1 ) 

where b = h'(-g) = k'(O) > O, this last inequality being true because of the 
hypotheses made on the function h. The quadratic equation for the eigenvalues is 

2 2 b - 1 ab a(b - 1) 
>. - Tr(A)>. + det(A) = >. +(a - --)>. + - - =O 

r r r 

Therefore, whenever a- (b:;:l) < O, i.e. if r > r* = b:l, one has a stable equilibrium. 
If the reverse inequality holds, an unstable equilibrium appears. Under application 
of the Hopf bifurcation theorem, Chiarella [3] showed that a limit cycle exists when 
r crosses the critica! value r*. 

The features of the cycle can be determined with a little effort. In the last system 
p can be eliminated in the following way. First, substitute the first equation in the 
second one to obtain 

n// = p' - '!/; 

Now, taking the time derivative in this equation: 

r'I/;" = p" - '!/;' 

but p" = -ap' + k' ( '!/; )'!/;' from the first equation, so one has 

r'I/;" = - ap' + k'('l/;)'I/;' - '!/;' = -a[-ap + k('I/;)] + k'('l/;)'I/;' - 'l/;1 

and on taking -ap = r'I/;' - k( '!/;) + '!/; from the second equation it follows that 

r'I/;" = -a[r'I/;' - k('I/;) + '!/; + k('I/;)] + k'('l/;)'I/;' - 'l/;1 = -ar'I/;' - a'I/; + k'('l/;)'I/;' - '!/;' 

and from this last expression a more familiar looking ODE of Liénard type is found: 

r'I/;" +[ar+ 1 - k'('l/;)]'I/;' + a'I/; =O 

Now, using the trick ar = ar - ar* +ar*, one has ar+ 1 = ar - ar* +ar* + 1, 
and remembering the definition r* = b:l ( or b =ar*+ 1), one can write ar+ 1 = 
ar - ar*+ ar*+ 1 = a(r - r*) +ar*+ 1 = ac + b to yield 

r'I/;" + [ac + b - k'('l/;)]'I/;' + a'I/; = O 

A straightforward application of the Olech and Levinson-Smith theorems ( see e.g. 
[4, p. 52 ]) shows that for e > O the equilibrium point is globally asymptotically 
stable, while for e < O there exists a unique stable limit cycle. In other words, this 
model exhibits an asymptotic behaviour with either a stable fixed point or a stable 
limit cycle. Transition from one to another is achieved through a neutral Hopf 
bifurcation arising when the time lag involved in building expectatives is reduced. 
In the limit case, as this time lag becomes extremely small, i.e. when chartists revise 
their estimate of the price trend infinitely rapidly, slow-fast cycles limit appear. 

137 



©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7

4 JOSÉ M. PACHECO , JOSÉ M. LÓPEZ AND CÉSAR RODRÍGUEZ 

3. NUMERICAL SIMULATIONS OF NONLINEAR MODEL 

In this section our goal is to select a specific chartist demand function in order 
to simulate the dynamics of the model. 

The qualitative form chosen for the chartist demand function has led to an special 
choice for the function h, defined in the following way: 

b(e2(s+g) -1) b(e2Y - 1) 
h(s) = e2(s+g) + 1 - --'-e-2Y_+_l-'-

which for the value s = 'ljJ - g yields the following expressions: 

h('l/J - g) 

k('l/J) 

b(e2..P - 1) b(e29 - 1) 
e2..P + 1 

b(e2..P - 1) 
e2 ..P + 1 

e2Y + 1 

It is clear (see Fig 1) that the graph of this function is obtained by modifying the 
well-known function Th(s) = :::¡:::::::: in order to fulfill the properties requested in 
the model. Now the second order ODE becomes 

11 [ 4be2.P J , 
T'l/J + a€+ b - (e2.P + l)2 'ljJ + a'ljJ =O 

and the equivalent system for phase-plane analysis is: 

1/J' <P 

<P' 

The numerical simulations carried out (see Fig 2a, 2b, 2c) coincide in detail with 
the predictions (Hopf bifurcation) of the qualitative analysis of the model. 

As it was pointed out, the appearance of a small parameter in the second equation 
suggests a slow-fast cyclic behaviour for this model. This can be easily checked by 
applying a separation condition for the existence of limit cycles in slow-fast systems 
(see (5]). This separation principle, based on singular perturbation arguments, is 
purely geometric: If the nullcline p = kt;!) of the slow variable separates both stable 
branches of the nullcline p = k(.Pl-.P of the fast variable, as sketched in Fig.2, a 
stable cycle exists in the limit case. Numerical simulations (see Fig. 3a, 3b, 3c, 
4a, 4b, 4c) show clearly that this occurs and relaxation oscillations can be easily 
observed. 

The interpretation is the following: Whenever T-+ O, chartists estímate prices on 
the basis of only recent past prices, thus generating sudden and violent fluctuations 
corresponding to the fast part of the cycle. From an economic viewpoint, persistent 
information gathering will trigger quick reactions from chartist agents. 

4. THE EFFECT OF NOISE ON SPECULATIVE BEHAVIOUR: SOME 
CONCLUSIONS 

Markets are always under the influence of externa! fluctuations of a random 
nature that perturb their dynamics. The observation (see (6], (2]) that the evolution 
of walrasian prices can be represented vía a random walk approach by introducing a 
Wiener process Wt = .,/2{if,t, where f,t is a gaussian 8-correlated white noise signal 
with zero mean and noise intensity u, suggests the introduction of random terms 
in the model, thus becoming a system of stochastic differential equations. 
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To take into account the effect of this random infiuence, we replace the parameter 
W in the deterministic system by a stationary random process Wt = W + v'2CTet, 
where w corresponds to the average state of the environment, and et describes 
fl.uctuations of strenght a around it. Thus, by collecting all noise terms on the 
right hand side, a formal calculation analogous to the one in the deterministic 
case leads to the following nonlinear stochastic differential equations, where a new 
parameter, viz. the noise intensity a, is added to the Hopf bifurcation parameter 
T: 

1/J' 
4be2"1 

-a1/J - [aé + b - ( e2.P + 1 )2 ]4> + V2aa2et 
Systems of this type have been dealt with by the authors in sorne other works 
(see for example [7], [8]) on geomorphological processes, where they showed to 
be extremely useful and accurate. The airo of the study is to analyze how the 
qualitative structure is modified under changes in a. 

A first approach can be obtained by developping the expresion (e1~e::)2 as a 
McLaurin series and retaining only the first term b. This simplifies the system to 

1/J' 4> 

T4>1 -a1/J - aé4> + V2aa2et 
where the second equation can be written conveniently in the form 

T4>' = -(V'(1/J) + aé4>) + V2aa2et 
with V(1/J) = 4, a single well potential. Under these assumptions the stationary 
solution to the Fokker-Planck equation of the system can be obtained in closed form 
(see [8, p. 156]) whenever é > O: 

(·'· ,¡,) - N [- é( a1/J2 + T4>2) J Ps .,,, .,, - exp 2aa 

an elliptic bell shaped density function where N stands for the normalization con­
stant. Sketching several graphs of this stationary probability density (see Fig. 5a, 
5b, 5c), we note that the externa! noise obviously has a disorganizing infiuence. 
lndeed, since for é > O in the deterministic case the equilibrium point is globally 
asymptotically stable, the stationary " probability density " mass will be entirely 
concentrated on it, e. g., it consists of a delta peak centered on the equilibrium 
point. Then the effect of noise will fl.atten and spread this sharp peak, depending 
on its strength. Nevertheless, as was pointed out in the introduction, the general 
nonlinear case can not be dealt with so easily in this way, so a numerical attack 
was chosen. 

Numerical simulations show that noise distorts the limit cycle giving rise to a 
crater-like probability density function and a main feature is that a modulation can 
be observed in the oscillation frequency of the variables (see Fig. 6a, 6b, 6c, 7a, 
7b, 7c). Noise seems to amplify by a factor of two the wavelength of the sample 
paths: This opens the way to the application of averaging techniques in order to 
determine when the chartist agents change abruptly their price estimations. 

It is to be noted that the effect of noise when T is small ( e.g. T = 0.02) is reduced 
to a minimum, showing that intrinsically irregular behaviours are robust to noise 
infl.uence. 
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FIGURES 

Fig 1 : A typical graph of a chartist demand function 

Fig. 3 : Typical isoclines of the dynamics 
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Fig. 2 : The Hopf bifurcation for a = 0.5 ; b = 2 

2a} e= 1 (spiral sink} ; 2b} e= O (centre} ; 2c} e= -0.5 (spiral source) 
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Figs. 4a, 4b : Slow-fast limit cycle for b = 1.05, a = 0.5 , i:: = -0.02 
and relaxation oscillations. 

Fig. 5 : A typical stationary probability density for i:: > O. 
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Figs. 6a, 6b : effect of noise for u = 0.2 
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Figs. 7a, 7b : effect of noise for a= 0.4 
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Figs. 8a, 8b : effect of noise for a = 1 
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