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l. Introduction 

Visual information usually contains a large amount of redundant data. For 
example, if we represent the numbers O to 9 by 6 X 9 bitmaps (printer char­
acters, say), then we have, in principie, to consider 54 individual bits; in 
order to recognize a single character. In this way, we clearly perform too 
much work, since these 54 bits describe 254 "" 1016 possible bitmaps, whereas 
we are only interested in the much smaller set representing {O, ... , 9}. A 
better strategy thus consists in trying to discover significant bits that permit 
to differentiate between these bitmaps ( triggers). The recognition procedure 
for a character will then consist in testing these particular bits. Checking 
whether a specific trigger is "on" or "off" may then lead, for example, to 
the conclusion that the character to recognize belongs to {O, 1, 3, 7} or to 
{2, 4, 5, 6, 8, 9}, say. Within these classes other triggers may then be used in 
order to differentiate between O and 3 or 1 and 7, for example. It is clear that 
the recognition procedure for bitmaps may thus be modeled into the form of 
a binary tree, where each node will correspond to a test on a particular bit. 

*This text is an expanded version of a talk given by the second author at the University 
of La Laguna. He wishes to thank the organizers far their warm hospitality. 

95 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



Somewhat more formally, let us start from a collection of objects S, the 
problem space (for example 1024 x 1024 bitmaps), endowed with a family 
of maps f; : S ---+ {O, 1 }; the feature maps (for example, the individual bits 
for these bitmaps or a subset of these). Consider also a so-called test space 
T ~ S, whose objects w~ want to recognize (a particular sample of 1024x1024 
bitmaps; for example). We want the objects in T to be determined by the 
values of the triggers f;, i.e, we want for any t', t" E T that f;(t') = f;(t") for 
all i implies t' = t". 
The recognition problem may then naively be formulated as: find a minimal 
collection of feature maps amongst the f;, which still permits to differentiate 
between the objects in T. Of course, the term "minimal" is rather ambiguous 
here. lndeed, we may refer to tbe number of triggers needed or the number 
of tests to be actually performed, but also to the cost of performing these 
tests ( calculation time or implementation difficulty). Moreover, the evalua­
tions may be mutually dependent or may have to be performed in a specific 
order. It is thus clear that we should work directly with so-called recognition 
trees, which permit to recognize the objects in T. More precisely, we will 
be interested in binary trees of the forro below, whose nodes correspond to 
certain triggers ( or tests), whose edges are labeled by { +, - } ( expressing the 
outcome of the test corresponding to the node from where they start) and 
whose final nodes, labeled by *• should correspond bijectively to the objects 
to be recognized. 

P1 
+/ '\.-
* P2 

+/ '\.-
* p3 

+/ '\.-

* * 
We assume to be given an externally defined fitness function, whose value 
expresses the overall value of the recognition tree with respect to the partic­
ular problem (e.g., the number of objects in T which are actually recognized 
by the tree). 
We will show in this text how a suitable version of genetic algorithms yields 
a solution to this problem, i.e., allows to construct recognition trees which 
behave optimally with respect to the objective fitness function. For a more 
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detailed treatment and other applications, we refer to [9, 10, 11, 12] and work 
in progress. 

2. Genetic Algorithms 

(2.1) Genetic algorithms, introduced by J. Holland [5], are search algo­
rithms based upan the mechanism of natural selection, as present in the 
general principies of Darwinism and genetics. In particular, they simulate 
ideas like "survival of the fittest", "mutation" and "structured information 
exchange". We refer to [4] for a survey of sorne of the domains, where they 
are succesfully applied. 
The power of genetic algorithms resides in the following characteristics: 

• genetic algorithms do not work directly upan the parameters of a prob­
lem, but on a suitable en~oding of these; 

• genetic algorithms do not work with a single object, but with a popu­
lation of objects; 

• genetic algorithms are "blind"; they do not work with special, addi­
tional information or characteristics, but only with direct information, 
given by the evaluation of an ( objective!) fitness function; 

• genetic algorithms do not work deterministically, but use randomized 
(probabilistic) transition rules. 

To illustrate this, consider the "problem" of maximizing f( x) = x2 on the 
interval [O, 31]. lnstead of using traditional techniques (like hill-climbing and 
gradient methods ), all of which are non-robust, one encades the parameter 
space [O, 31] by using 5-digit binary numbers and one works afterwards on 
the individual bits. One then starts from a random population of 5-digit 
binary strings, which is modified through the probabilistic genetic opera­
tors described below. Working with populations implies an implicit form of 
parallelism, which allows to find global extrema instead of local ones, thus 
eliminating one of the main pitfalls of classical algorithms. 

(2.2) The simple genetic algorithm uses three elementary operators: repro­
duction, crossover and mutation. If we restrict ourselves to these ·operators, 
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the algorithm proceeds as follows: Start from a (random) population A(O) 
of N binary strings of length e, i.e., strings only consisting of O and l. We 
denote the set of these (there are 2t of them) by Re . Each string A; E A(O) 
is given a fitness value f;, determined by the fitness map f : Rt --t R+, 
which describes the "quality" or "strength" of each string, depending upon 
the problem to be solved. 
During the reproduction phase, the algorithm selects strings in A(O), where 
the probability of a particular string being selected is proportional to its 
fitness . Reproduction thus obviously mimicks the "survival of the fittest" 
principle. 
To each pair of selected strings, one then applies crossover with a certain 
probability Pe, by choosing randomly a crossover site 1 :S k :S e - 1, cutting 
both strings into two parts at this site and interchanging the pieces thus 
obtained. For example, if we start from the strings 

A1 : 1100 l 101 

A2 : 0110 l 110 

where the crossover site (k = 4) is indicated by a vertical line (I), then we 
obtain, after crossover, two new strings 

A;:ll00110 

A~ : 0110101 

After this process, individual bits ("genes") are mutated (O --t 1, 1 --t O), with 
a very small probability, say Pm = 0.001. The latter operation is introduced in 
order to really induce changes, not inherently present within the components 
of the initial population and to reintroduce properties that got lost while 
applying the other operators. 
We thus obtain a new population, denoted by A(l), on which the genetic 
algorithm may be applied again. For a precise description of the convergence 
features of this algorithm, we refer to [4, 5, et al]. 

(2.3) Given a population, what kind of information is contained within the 
strings in this population, that permits (through the fitness function) to 
apply directed search towards optima! values? If we consider the following 
example: 
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string fitness 
01101 169 
11000 576 

º~ººº 64 
10011 361 

(which corresponds to the example f: {O, ... ,31}-+ R: x r-+ x 2 , of course), 
then we obviously observe that strings starting with 1 have the highest fitness 
and that, of these, strings starting with 11 score better than those starting 
with 10. We thus see that individual strings possess local information (con­
tained in the fitness of that string), while a population of strings possesses 
global information ( the fitness of the composing strings, combined with struc­
tural information). 
This structural, global information may be described through the use of 
schemata. A length l schema ( corresponding to a population of length l 
strings) is a length C string consisting of the symbols O, 1 and O, where the 
latter should be viewed as a "wild card" ( don't know, don't care) symbol. 
We say that a length l string A satisfies the schema H ( or that H represents 
the string A), and we denote this by H -+ A, if A and H coincide whenever 
possible, i.e., in these places where H has a symbol different from D. 
For example, it is clear that 

0100 
0110 
1100 
1110 

If H has order o(H), i.e., if H has exactly o(H) bits different from O, then 
there are exactly 2t-o(H) strings A with H -+ A. Let us call defining length 
of a schema ( denoted by 8 ( H)) the distan ce between the first and the last 
significant bit of H . One may then show, cf. [4, 5], that schemata with high 
fitness (i.e., schemata which represent strings with fitness above average), low 
order and low defining length (which are usually referred to as buil<f,ing blocks) 
will receive .an essentially exponentially increasing number of representatives 
throughout the successive generations produced by the genetic algorithm. 
Without going into numerical or combinatorical details, let us just point out 
the following example. Consider the schemata 
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string o(H) ó(H) 
H1: 1 o o o o 2 4 
H2: o o 1 1 o 2 1 
H3: D 1 o l o 4 3 

Applying crossover on strings represented by these schemata, it is intuitively 
clear that those represented by H1 and H3 have highest probability of being 
destroyed (i.e., applying crossover to a string satisfying the schema will not 
necessarily yield a new string represented by it ). The reason for this comes 
from the fact that o(H3 ) and 8(H1 ) are "high". Somewhat more precisely, 
for any schema H, let us denote by m(H, t) the number of representatives of 
H within the population A(t). The influence of the genetic operators may 
then be descri bed by 

J(H) ó(H) 
m(H, t + 1) 2 m(H, t)¡(l - Pe f, _ l - o(H)pm), 

where J(H) is the average fitness of the strings represented by H and] is the 
average fitness of the whole population A(t) . From this the above Schema 
Theorem follows easily. 

3. Recognition trees 

(3.1) Consider a problem space S endowed with a family of feature. maps 
Ji, ... , fr : S -t {O, 1 }. A pattern over S is a string p = a1 ... ar, where a; E 

{O, 1, O} should be viewed as the value (if determined) of the corresponding 
feature map f;. We say that s E S satisfies the pattern p = a1 ... ar if 
f;(s) =a; for all l :Si :Sr with a;# D. We write T(p,s) = + or T(p,s) = -
depending on whether s satisfies p or not. A recognition tree of width n is 
a binary tree with n terminal nodes (labeled by * ), whose other nodes are 
labeled by patterns and whose edge pairs are labeled by { +, - }. We denote 
the width of a recognition tree A by w(A). 
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Example (n = 4) 
P1 

+/ '\.-
* P2 

+/ '\.-
p3 * 

+/ '\.-
* * 

For each non-terminal node, labeled by the pattern p say, the edge labeled 
by + resp. - starting in this node will be referred to as the left resp. right 
edge starting in p. 

(3.2) Recognition trees may be encoded as follows. First, if A is a 1-
recognition tree, i.e., if T has just one (final!) node, then we put Ene( A) = *· 
If A is a 2-recognition tree, then it is of the form 

* * 
and we encocle it as Ene( A) = (p * *). In general, if A is an n-recognition 
tree with n 2: 2, say with top labeled by sorne pattern p, then the left and 
right edge starting in p define "left" and "right" subtrees A+ resp. A_ of A. 
In a picture: 

P­
/ '\. ,,_____, 

A_ 

We then define (recursively) Enc(A) = (p Enc(A+) Enc(A_)) . 
For example, the 4-recognition tree A given by 

PI 
+/ '\.-
* P2 

+/ '\.-
p3 * 

+/ '\.-

* * 
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is encodcd a~ Ene( A) = (711 * (¡12(P:i* * )*) ). F:<tch (non -terminal) nodc (labeled 
by thc pattern) p i11 a trPe dctl'rmincs a subtrce Ap with top node p. We 
cal] Enc(J\p) the block determi11Pd by p. Por example, in the previous tree, 
(pi.(p3 * * )*) is the block dctermi11Pd by p2 • 

(3.3) lf T <::::Sin a test space, then we say that a recognitio11 tree A (with 
w(A) =I T 1) recognizes T if the objects t ET correspo11d bijcctively to the 
final nodes of A ancl if they rf'alizc cach test in the unique path from the top 
of A corrcsponcling to llw terminal node corresponcling to t. 
Por example, if t E T sho11ld corrcspond to the terminal node as indicated in 
the figure below: 

then we want: 

* 112 

+/ "'-
]J3 * 

+/ "'-
* * <-'> t 

r(71 1,1) = -

r(pz, l) = + 
r(p3, l) = -

4. Genetic operators 

( 4.1) Let us start from a population A(O ) of ( n- )recognition trees and as­
sume we are given a fitnr·ss f1mclion f, which to each recognition tree A 
associates its fitness J(A). This fitness function will usually consist of a local 
component (depending on the patterns occurring in the recognition tree A) 
and a global component ( clepending mainly on the structure of A itself). 
Por example, if we want to find "optima]" recognition trees in the problem 
of recognizing a test space T <:::: S as in the previous section, then a typical 
fitness function cou lcl be given by lett ing 

f(A) =ne E( A)+ ar(I T 1 -r(A, T)) 
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for each recognition tree A. Here E(A) denotes the average (or total) cost of 
evaluating the tests corresponding to the patterns in the tree, while r(A, T) 
denotes the number of elements in T recognized by A. The constants O:'e 

and O:'r are user defined parameters, which should be calibrated in terms of 
the user's desiderata (what do we prefer: recognizing a maximal number of 
objects in T or minimizing the global cost of the recognition process?). 
Let us now introduce, as in [10], operators to be used by the genetic algo­
rithm. 

( 4.2) Reproduction. The reproduction operator in A(O) and its succes­
sive generations works in exactly the same way as for the ordinary genetic 
algorithm. So, recognition trees will be selected with a probability propor­
tional with their fitness. If we denote this probability by PA, then 

f(A) 
PA = 

LBE.A(O) J(B). 

Again, the argument for this resides in the fact that recognition trees with 
high fitness are likely to produce offspring of at least equal (and possibly 
higher) fitness. This selection procedure is usually implemented by using a 
"roulette model" , i.e., one views the recognition trees as being distributed 
over a roulette, each one occupying a sector of surface proportional to its 
fitness. 

( 4 .3) Crossover. The crossover operator is the analogue for recognition 
trees of the usual crossover for strings. For any node (labeled by a pattern) 
p in a recognition tree A, one denotes by nA(P) the width of the subtree 
of A with top p. If two recognition trees A and A' are selected (through 
reproduction, for example ), then one selects in A randomly a non-terminal 
node. If nA1(p1 ) i= nA(P) for ali nodes p' in A', crossover <loes nothing. 
Otherwise, it selects p' randomly with nA (p') = nA (p). One then interchanges 
in A and A' the subtrees Ap and A~, with top p resp. p' and thus obtains two 
new recognition trees B and B'. 
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So, in a picture, starting from: 

yields 

PI 
+¿ \.-
/* P2 

+¿ \.-
* p3 

+¿ \.-

* 

PI 
+¿ \.-

* 

* p~ + 
+¿ \.-
p; * 

+¿ \.-

* * 

+ 

p~ 
+¿ \.-
p~ * 

+¿ \.-
p; * 

+¿ \.-

* * 

p~ 
+¿ \.-
P2 * 

+¿ \.-
* p3 

+¿ \.-

* * 

The encoding Enc(B) of B is found from that of A by exchanging the block 
defined by pin Enc(A) by the block de:fined by p' in Enc(A'). 
Example: If Ene( A) = (PI* (p2 * (p3 * *))) and Ene( A') = (p~ (p~(p; ** )* )* ), 
then (if crossover is performed with respect to p2 and p~) we obtain new 
recognition trees B and B' with Enc(B) = (PI *(P~(P;**)*)) and Enc(B') = 
(p~ (P2 * (p3 * *)) *). 

( 4.4) Switch. The switch operator for recognition trees may be viewed as 
a global analogue of the mutation operator on strings. It depends on the 
choice of a node pin a recognition tree A. If pis a terminal node, the switch 
operator <loes nothing. Otherwise, it interchanges the left and right edges 
starting in p, in order to produce a new recogniton tree B. 
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In a picture: 
P1 p~ 

+/'\.- +/'\.-
P2 * ::::} p~ * 

+ / \. - +/ '\.-
* p3 p; * 

+/ '\.- +/'\.-, 
* * * * 

The encoding Ene(B) of B may be found from that of A by interchanging 
in Ene(A) the second and third component in the block determined by p. 
Example : If A is encoded by Ene(A) = (p1(p2 * (p3 * *))*) then (if switch 
is applied in P2), we find for B the encoding Ene(B) = (p1(P2(p3 * *)*)*). 

( 4.5) Translocation. The translocation operator for recognition trees may 
be viewed a an "auto-crossover" operator; it should be compared to linear in­
version [3) and translocation [8) for the ordinary genetic algorithm on strings. 
It depenás on the choice of a node pin a recognition tree A. If pis a terminal 
node, then the translocation operator does nothing. Otherwise, it chooses 
randomly a terminal node in A which does not belong to the subtree Ap of A 
with top p and it interchanges this terminal node and Ap, and thus producing 
a new recognition tree B. 
In a picture: 

PI 
+/'\.-

P2 p3 
+/ '\.-+/ '\.-
* * * * 

::::} 

p~ 
+/ '\.-
* p3 

+/ '\.-
P2 * 

+/ '\.-

* * 
The encoding Ene( B) of B may be found from that of A by interchanging 
in Ene( A) sorne * and the block determined by p. 

Exam ple : If Ene( A) = (p 1 (p2 * *) (p3 * *)) and if we apply translocation 
as in the previous example, then we obtain a new recognition tree B with 
Ene(B) = (P1 * (p3(p2 * *)*)). 
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( 4.6) Micro-operators. The main purpose of the previous operators is to 
modify the global structure of recognition trees, but they do not influence 
their contents ( the pat terns w hich la bel their no des). In order to remedy 
this, one introduces rpicro~operators like micro-crossover and micro-mutation 
which act directly on the nodes of the recognition trees in A(O) and its suc­
cessive generations. We refer to [9, 10] for a detailed treatment of these. Let 
us just mention here that micro-crossover is essentially ordinary crossover for 
strings composed of {O, 1, O} ( = patterns) occurring at nodes of recognition 
trees with high fitness . Micro-mutation works in a similar way. 
It may be proved that the relevance of these operators is higher for recogni­
tion trees with low width. In the general case, they should be applied with 
bigger probability in the beginning of the algorithm, relaxing this frequency 
gradually afterwards ( cf. simulated annealing). 

( 4. 7) The algorithm. 

• Start from a random population of N ( n- )recognition trees. 

• Select, through reproduction, two recognition trees and apply 

- crossover with probability Pe; 

- switch with probability Ps; 

- translocation with probability Pt; 

- micro-operators with probability Pµc and Pµm· 

• lterate (until a suitable population A(t) is obtained). 

5. Recognition schemata 

(5.1) Justas in the classical situation, where schemata are used to describe 
populations of strings, the global structure of a population of n-recognition 
trees may be studied by using socalled n-recognition schemata. Here, an n­

recognition schema is just an r-recognition tree H with r :S n. We say that 
H represents an n-recognition tree A ( or that A satisfies H) and we denote 
this by H --t A, if there exists an embedding of H into A. This means that 
H may be recovered as a subtree of A, up to replacing sorne non-terminal 
nodes in A by *· 
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For exarnple with A and H as below we have H -t A: 

PI 
+/ '\.-

A: * P2 

Pi 
+/ '\.-

H: * P2 
+/ '\.- +/ '\.-

p3 * * * 
+'/ '\.-

* * 
If H -t A, then it is also clear that 

Ene( A) = ( . .. Eneo(H) .. . ), 

where Eneo(H) is obtained from Enc(H) by (possibly) replacing sorne ter­
·rninal syrnbols * by patterns. 

( 5.2) If "rnost" representatives of sorne fixed recognition scherna H by 
recognition trees in a population A(O) have high fitness, then this seerns 
to irnply that the presence of the "pattern" H is the origin of the high fit­
ness of these representatives. More evidence for this arises if H tends to 
"survive" through the successive generations generated by applying the ge­
netic algorithrn. So, for each positive integer t, !et A(H, t) be the set of ali 
recognition trees A E A(t) with the property that H -t A and let us write 
m(H, t) =I A(H, t) I· The efficiency of the genetic algorithrn and its effect on 
H rnay be understood by considering the value of m(H, t) through successive 
generations. 

( 5.2.1) If only reproduction is applied, then, exactly as is the classical case, 
we obtain 

J(H) 
m(H, t + 1) = m(H, t)¡· 

It is thus clear that schemata with high fitnes will receive an increasing 
nurnber of representatives. If we assurne, as a first approxirnatiop, that J( H) 
constantly rernains above the average, say f(H) = aj with a > 1, then we 
obtain m(H, t + 1) = am(H, t), so m(H, t) ,...., atm(H, O). The nurnber of 
recognition trees in A(H, t) thus increases exponentially, in this case. One 
rnay show sirnilarly that if H seores below average, then m(H, t) decreases 
exponentially. 
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(5.2.2) If the other operators are also applied, then sorne straightforward 
combinatoria! calculations ( see [9, 10] for full details) show that 

r-2 r-1 r-2 r-1 
m(H, t + 1) ~ m(H, t)(l - Pe n _ 2 )(1 - Ps n _ l )(1 - Pt n _ 2 )(1 - Pµ n _ l ), 

where r = w(H) and pµ = Pµe + (n - l)Pµm· If we assume the above proba­
bilities to be low, we then, by omitting crossed products, get 

J(H) r - 2 r - 1 
m(H, t + 1) ~ m(H, t)-J- (1 - (Pe+ Pt)-- - (p.+ Pµ)--). 

n-2 n-1 

We thus obtain 

(5.3) Theorem. (Schema Theorem) The genetic algorithm attributes to 
recognition trees with low width and high fi.tness an exponentially increasing 
number o[ representatives through the successive generations. 

6. Concluding remarks 

( 6.1) The previous techniques may al so be applied to strategy trees. These 
only differ from recognition trees, in the fact that they do not necessarily have 
a fixed number of terminal nodes. They obviously find their origin within 
game theory, where they are used to model 2-player strategy games. The 
results obtained in [7] show that genetic algorithms may be used on these 
trees, to find optima) strategies, for example. 

(6.2) In principie, visual information (bitmaps) may be encoded linearly. 
For example, the 4 x 3 bitmap 

1 • • 

108 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



may be encoded as 100 110 011 100 (using rows) oras 110 101 100 010 (using 
columns ). Although this works perfectly well if we want to apply the genetic 
algorithm, we may increase its speed and efficiency by working directly with 
a two-dimensional matrix instead of with linear encodings. Introducing suit­
able genetic operators for these "two-dimensional strings", one may thus take 
into account two-dimensional correlations (hardly visible in linear encodings) 
and obtain the desired enhancement of the genetic algorithm. We refer to 
[9, 10] for details. 
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