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38271 La La9una (Tenerife), Spain 

ABSTRACT 

Characterizations of annuli among plane domains with analytic boundary in 
· terms of potential theory and of quadrature identities are obtained using 

elementary techniques. 
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I. INTRODUCTION AND MAIN RESULT 

Let G be a finitely-connected plane domain whose boundary r consists of two 

or more pairwise disjoint, analytic closed curves. Denote by Yo the "outer" 

boundary component, and write y 1=f-y 0 • Also, if A0 , P0 and A1 , P1 represent 

the area and perimeter of the domains enclosed by Yo and y 1 , respectively, then 

set µ 0 =A0 /P 0 , µ 1 = -Ai/P 1 • The aim of this note is to prove the following result. 

Theorem 1: In the above notation and hypotheses, let further dA represent the 

area element in G, and lets denote the arclength parameter on r. Then, the 

following are equivalent: 

(i) The Cauchy problem 

6v: -1 in G, 

v= -µ~ on Yo, v= -µ~ on y 1 • 

av av 
an -µo on Yo, an -µ1 on yl 
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is solvable in G. Here, 
av 
an denotes the outer normal derivative of v on r. 

(ii) The quadrature identity 

ff u dA 
G 

holds for every harmonic function u in G. 

au ds 
an ( 1) 

(iii) G is an annulus centered at the origin with outer radius 2µ 0 and inner 

radius -2µ 1 • 

We recall that a quadrature identity for a vector space F of functions 

defined and integrable with respect to area measure in the plane domain 0 is 

an identity of the type 

ff f dA 
G 

L( f) , (2) 

valid for all functions f in the given class F, where L is some linear functional 

on F. See, e. g., [1), [2) and references therein for further orientation on 

this vaste subject. 

Another characterization of the annulus by a quadrature identity has been 

obtained by Ave! [3). A condition analogous to the one in part (i) of Theorem 

1, also requiring the solvability of certain (overdetermined) Cauchy problem 

for a Poisson differential equation, has been shown to characterize the balls 

in the Euclidean space :Rn by Serrin [4 ). The connection between quadrature 

identities and differential equations has been pointed out by Shapiro [s) . 

It should be remarked, however, that the techniques used in [3] and [s] are not 

suitable to deal with quadrature identities ( 2) where the defining functional L 

is supported on the boundary of 0, as it happens in (1). Further, the methods 

chosen in our approach are simple and elementary. 

In the next Section II we present an auxiliary result, needed in the proof 

of Theorem 1, which will be deferred until the last Section III. Throughout the 

rest of this note, r will always stand for the dist 'ir 1· e from the origin in a:. 
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II. AN AUXILIARY LEMMA 

The proof of Theorem 1 is based on the following observation due to 

Weinberger (6], which we label as Lemma 2. 

Lemma 2: Let the real-valued functions t, v satisfy the Poisson equations 6t:-1, 

6v:-1 in the plane domain G. Then, 

w = lgrad vj 2 + t 

is subharmonic in G. Moreover, w is harmonic if, and only if, 

for some real constant c. 

Proof: Since 

1 (6v) 2 ~ 2 

6jgrad vj 2 , 

we have 

6w 

v = - .!. r 2 + c 
4 

6jgrad vl 2 
- 1 ~ 0, 

( 3) 

(4) 

(5) 

(6) 

thus proving that w is subharmonic in G. If w is harmonic then equality holds in 

(6). This leads to an equality also in (4) and (5). As 6v:-1, it follows that 

- l 
) 

and 
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in G. Henc~, v= - ~ r 2 up to an additive real constant. The converse, that w 

is harmonic when v has the form (3) and At:-1, is clear. 

III. PROOF OF THEOREM 1 

We begin by noticing that if (iii) holds then (3), with c=O, is a solution 

of the Cauchy problem (i). Thus, we only need to show that (i) is equivalent 

to (ii), and that (i) implies (iii). 

(i) implies (ii): Let v be as stated in (i), and let u be harmonic in G. Then, 

from Green's formula it follows that 

ff u dA = -ff u Av dA 
G G 

= -ff G v Au dA + fr v :~ ds - fr u :~ ds 

: f v au ds - f u av ds 
r an r an 

= µ 0 f u ds + µ 1 J u ds - µ ~ f : ~ ds - µff 
lo li lo li 

au 
an ds . 

This establishes (ii). 

(ii) implies (i): Set t=u 0 - ~ r 2 , where u 0 is the solution of Dirichlet's 

problem in G with boundary data 1 4 r 2
• Note that t satisfies the Poisson 

equation At:-1 in G and is zero on r. Next, let u be an arbitrary Cm function 

on r, and denote also by u its harmonic extension into G. By Green's Formula, 

where w0 , w1 are the harmonic measures of y 0 , y 1 , respectively (thatis,w
1

isthe 
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solution of Dirichlet's problem in G with boundary data 1 on yi, 0 on r-yi (i=O, 

1)). Now, being u arbitrary, we conclude that 

The function v = t-µ~w 0 - µ~w 1 is thus a solution of the Cauchy problem (i). 

(i) implies (iii): It suffices to show that v has the form (3) for some real 

constant c. This will follow at once from Leltlfla 2 if we can prove that 

w = lgrad vl 2 + t 

is harmonic in G, where t is as described above. With this purpose we define 

The function h is harmonic in G and has the same boundary values as w. Since w is 

subharmonic (Lerrma 2), by the Maximum Principle either 

w < h in G (7) 

or 

w - h in G. (8) 

Nonoccurrence of (7) would complete the proof of Theorem 1. But (7) cannot hold, 

since 

JJ w dA 
G 

JJ h dA, 
G 

as we now proceed to show. Indeed, observing that 

formula, the first member of (9) is computed to be 
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ds + ff h dA 
G 

Another application of Green's Formula then yields 

But, on the other hand, 

f v 
r 

av ds 
an 

Insertion of (11) and <12) into (10) proves (9) and the Theorem. 
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