AN ASSOCIATED STRUCTURE OF A MODULE

Sandip Jana & Supriyo Mazumder

Department of Pure Mathematics University of Calcutta 35, Ballygunge Circular Road Kolkata-700019, India sjpm12@yahoo.co.in / supriyo88@gmail.com

Abstract

In this paper we have generalised the concept of a module in the sense that every module can be embedded into this new structure, which we name as 'quasi module', and every quasi module contains a module. In fact, we have replaced the group structure of a module by a semigroup structure and invited a partial order which has a significant role in formulating this new structure; it is this partial order which is the prime key in relating a quasi module with a module. After discussing several examples we have introduced the concept of order-morphism between two quasi modules, discussed its various properties and finally proved an isomorphism theorem regarding this order-morphism.

AMS Classification: 08A99, 13C99, 06F99

Key words : Module; quasi module; order-morphism; order-isomorphism.

1 Introduction

For any topological module M over a topological unitary ring R, the collection $\mathscr{C}(M)$ of all nonempty compact subsets of M is closed under usual addition of two sets and multiplication of a set by any element of R. Also for any $r, s \in R$ and any $A, B \in \mathscr{C}(M)$ with $A \subseteq B$ we have $(r + s)A \subseteq rA + sA$ and $rA \subseteq rB$. Moreover, if θ be the additive identity in M then $A - A = \{\theta\}$ iff A is a singleton set. Thus $\{\{m\} : m \in M\}$ is the collection of all invertible elements of $\mathscr{C}(M)$, $\{\theta\}$ acting as the additive identity in $\mathscr{C}(M)$. These singletons are the minimal elements of $\mathscr{C}(M)$ with respect to the usual set-inclusion as partial order. Now this collection of all minimal elements of $\mathscr{C}(M)$ can be identified with the module M through the map $\{m\} \mapsto m \ (m \in M)$. This makes a useful connection between the hyperspace $\mathscr{C}(M)$ and its generating module M. The above facts are not just a speciality of the hyperspace $\mathscr{C}(M)$; we have axiomatised these facts and introduced the concept of a *quasi module*, as explained below.

In this paper we have generalised the concept of a module in the sense that every module can be embedded into this new structure, which we name as 'quasi module', and every quasi module contains a module. In fact, we have replaced the group structure of a module by a semigroup structure and invited a partial order within this structure which has a significant role in formulating this new structure; it is this partial order which is the prime key in relating a quasi module with a module. This partial order is made compatible with the semigroup operation and external composition (which is multiplication by an unitary ring, in this case), while formulating the axiom for quasi module. A number of examples have been discussed and it has been shown that every module over an unitary ring can be embedded into a quasi module and every quasi module contains a module as a sub-structure.

In section 3 we have introduced the concept of an order-morphism between two quasi modules over a common unitary ring. Some of its properties have been discussed. Section 4 deals with the arbitrary product of quasi modules. We have shown that Cartesian product of any family of quasi modules is again a quasi module. After defining the kernel of an order-morphism we have proved that kernel of any order-morphism is a quasi module.

In the last section we have discussed an order-isomorphism theorem. For doing this we have introduced first the concept of congruence in a quasi module and then constructed a quotient structure which has been finally settled as a quasi module.

2 Quasi Module

Definition 2.1. Let (X, \leq) be a partially ordered set, '+' be a binary operation on X and '.': $R \times X \longrightarrow X$ be another composition [R being a unitary ring]. If the operations and partial order satisfy the following axioms then $(X, +, \cdot, \leq)$ is called a *quasi module* (in short *qmod*) over R.

 $A_1: (X, +)$ is a commutative semigroup with identity θ .

$$A_{2}: x \leq y \ (x, y \in X) \Rightarrow x + z \leq y + z, \ r \cdot x \leq r \cdot y, \ \forall z \in X, \forall r \in R.$$

$$A_{3}: (i) \ r \cdot (x + y) = r \cdot x + r \cdot y,$$

$$(ii) \ r \cdot (s \cdot r) = (rs) \cdot r.$$

(iii) $(r+s) \cdot x \leq r \cdot x + s \cdot x$,

(iv) $1 \cdot x = x$, '1' being the multiplicative identity of R

(v) $0 \cdot x = \theta$ and $r \cdot \theta = \theta$ ($r \in R$)

 $\forall \, x,y \in X, \; \forall \, r,s \in R.$

 $A_4: x + (-1) \cdot x = \theta \text{ if and only if } x \in X_0 := \left\{ z \in X: y \nleq z, \forall y \in X \smallsetminus \{z\} \right\}$

 A_5 : For each $x \in X, \exists y \in X_0$ such that $y \leq x$.

The elements of the set X_0 (which are evidently the minimal elements of X with respect to the partial order ' \leq ') are called '*one order*' elements of X and, by axiom A_4 , these are the *only* invertible elements of X, the inverse of $x (\in X_0)$ being $(-1) \cdot x$, usually written as '-x'. Also for any $x, y \in X_0$ and $\forall r \in R$ we have, by axiom $A_4, x - x = \theta, y - y = \theta$ $\Rightarrow (x + y) - (x + y) = \theta$ and $rx - rx = r(x - x) = \theta$ and hence $rx, x + y \in X_0$. Moreover, for $r, s \in R$ and $x \in X_0$ we have $(r + s)x \leq rx + sx \Rightarrow (r + s)x = rx + sx$ ($\because rx + sx$ is of order one). Thus we have the following result.

Result 2.2. For any quasi module X over an unitary ring R, the set X_0 of all one order elements of X is a module over R.

ento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Deldocur

Above result shows that every quasi module contains a module. It is now a routine work to verify that, for a topological module M over a topological unitary ring R, the collection $\mathscr{C}(M)$ of all nonempty compact subsets of M forms a quasi module over R with usual setinclusion as partial order and the relevant operations defined as follows : for $A, B \in \mathscr{C}(M)$ and $r \in R, A + B := \{a + b : a \in A, b \in B\}$ and $rA := \{ra : a \in A\}$. The identity element of $\mathscr{C}(M)$ is $\{\theta\}$, where θ is the identity element of M; the set of all one order elements of $\mathscr{C}(M)$ is given by $[\mathscr{C}(M)]_0 = \{\{m\} : m \in M\}$. If we identify $\{\{m\} : m \in M\}$ with Mwe can say that, the topological module M is embedded into the quasi module $\mathscr{C}(M)$. We construct below an example which shows that every module (not necessarily topological) over an unitary ring can be embedded into a quasi module over the same ring.

Example 2.3. Let M be a module over an unitary ring R. Let $\widetilde{M} := M \cup \{\omega\}$ ($\omega \notin M$). Define '+', '.' and the partial order ' \leq_p ' as follows :

(i) The operation '+' between any two elements of M is same as in the module M and $x + \omega := \omega$ and $\omega + x := \omega$, $\forall x \in \widetilde{M}$.

(ii) The operation '·' when applied on R × M is same as in the module M and r · ω := ω, if r(≠ 0) ∈ R and 0 · ω := θ, θ being the identity element in M.
(iii) x ≤_p ω, ∀x ∈ M and x ≤_p x, ∀x ∈ M̃.

(i) The operation '+' between any two elements of M is same as in the module M and $x + \omega := \omega$ and $\omega + x := \omega$, $\forall x \in \widetilde{M}$.

(ii) The operation '·' when applied on $R \times M$ is same as in the module M and $r \cdot \omega := \omega$, if $r \neq 0 \in R$ and $0 \cdot \omega := \theta$, θ being the identity element in M.

(iii) $x \leq_p \omega, \forall x \in M \text{ and } x \leq_p x, \forall x \in \widetilde{M}.$

We show that $(\widetilde{M}, +, \cdot, \leq_p)$ is a quasi module over R. A_1 : Clearly $(\widetilde{M}, +)$ is a commutative semigroup with identity θ and \leq_p is a partial order in \widetilde{M} .

 $A_{2}: \text{Let } y \in \widetilde{M} \text{ and } r (\neq 0) \in R. \text{ Then } \forall x \in M, x \leq_{p} \omega \Rightarrow x + y \leq_{p} \omega + y = \omega \text{ and } r \cdot x = rx \leq_{p} r \cdot \omega = \omega. \text{ Also for any } x \in \widetilde{M}, x \leq_{p} x \Rightarrow x + y \leq_{p} x + y \text{ and } r \cdot x \leq_{p} r \cdot x.$ Since $0 \cdot y = \theta, \forall y \in \widetilde{M} \text{ so } 0 \cdot x \leq_{p} 0 \cdot z$ whenever $x \leq_{p} z (x, z \in \widetilde{M}).$

 A_3 : (i) For $r \neq 0$ and $x \in \widetilde{M}$ we have $r \cdot (x + \omega) = r \cdot \omega = \omega = r \cdot x + r \cdot \omega$ and $0 \cdot (x + \omega) = \theta = 0 \cdot x + 0 \cdot \omega$

(ii) If
$$rr' \neq 0$$
 then $r \cdot (r' \cdot \omega) = \omega = (rr') \cdot \omega$, otherwise $r \cdot (r' \cdot \omega) = \theta = (rr') \cdot \omega$

- (iii) If r + r' = 0 but not both 0 then $(r + r') \cdot \omega = \theta \leq_p \omega = r \cdot \omega + r' \cdot \omega$
- (iv) $1_R \cdot x = x, \forall x \in \widetilde{M}, 1_R$ being the multiplicative identity of R.
- (v) $0 \cdot x = \theta, \forall x \in \widetilde{M}$

The remaining cases follow immediately from the fact that M is a module over R. A_4 : Here $\left[\widetilde{M}\right]_0 = M$. Since $\omega + (-1_R) \cdot \omega = \omega \neq \theta$ and $m + (-1_R) \cdot m = m - m = \theta$, $\forall m \in M$ we have $x + (-1_R) \cdot x = \theta$ iff $x \in M = \left[\widetilde{M}\right]_0$. A_5 : For each $x \in M$, $x \leq_p x$ and for ω we have $m \leq_p \omega$, $\forall m \in M$

Thus it follows that $(\widetilde{M}, +, \cdot, \leq_p)$ is a quasi module over R, where M is the set of all one order elements of \widetilde{M} .

This example shows that every module is contained in a quasi module.

In this example if we consider $M = \mathbb{C}$, the vector space of all complex numbers as a module over the unitary ring \mathbb{Z} then the extended complex plane $\mathbb{C}_{\infty} := \mathbb{C} \cup \{\infty\}$ becomes a quasi module over \mathbb{Z} , provided we define $0.\infty = 0$ and $z < \infty$, $\forall z \in \mathbb{C}$.

Example 2.4. Let \mathbb{Z} be the ring of integers and $\mathbb{Z}^+ := \{n \in \mathbb{Z} : n \ge 0\}$. Then under the usual addition, \mathbb{Z}^+ is a commutative semigroup with the identity 0. Also it is a partially ordered set with respect to the usual order (\leq) of integers. If we define the ring multiplication ' \cdot ' : $\mathbb{Z} \times \mathbb{Z}^+ \longrightarrow \mathbb{Z}^+$ by $(m, n) \longmapsto |m|n$, then it is a routine work to verify that $(\mathbb{Z}^+, +, \cdot, \leq)$ is a quasi module over \mathbb{Z} . Here the set of all one order elements is given by $[\mathbb{Z}^+]_0 = \{0\}.$

Example 2.5. Let $\mathbb{Z}^+[x]$ be the set of all polynomials with coefficients taken from $\mathbb{Z}^+ := \{n \in \mathbb{Z} : n \geq 0\}$. Then with respect to the usual addition (+) of polynomials it is a commutative semigroup with the identity, viz. 'zero polynomial' O(x). Let us define the ring multiplication ' \cdot ': $\mathbb{Z} \times \mathbb{Z}^+[x] \longrightarrow \mathbb{Z}^+[x]$ by $(m, a_0 + a_1x + \cdots + a_nx^n) \longmapsto |m|(a_0 + a_1x + \cdots + a_nx^n)$. Again if $f(x), g(x) \in \mathbb{Z}^+[x]$, where $f(x) := a_0 + a_1x + \cdots + a_nx^n$ $(a_n \neq 0)$ and $g(x) := b_0 + b_1x + \cdots + b_mx^m$ $(b_m \neq 0)$ then we define $f(x) \preccurlyeq g(x)$ if deg $f(x) \le \deg g(x)$ and $a_i \le b_i$, $\forall i = 0, 1, \ldots, n$ (= deg f(x)). Then clearly ' \preccurlyeq ' is a partial order in $\mathbb{Z}^+[x]$. It now follows that $(\mathbb{Z}^+[x], +, \cdot, \preccurlyeq)$ is a quasi module over the unitary ring \mathbb{Z} ; the set of all one order elements of $\mathbb{Z}^+[x]$ is given by $[\mathbb{Z}^+[x]]_0 = \{O(x)\}$.

Example 2.6. Let $\mathbb{Q}^+ := \left\{ \begin{array}{l} p \\ q \end{array} : p, q \in \mathbb{Z}^+, q \neq 0, \gcd(p,q) = 1 \right\}$ i.e. the set of all nonnegative rational numbers. Then with respect to the usual addition of rationals, \mathbb{Q}^+ becomes a commutative semigroup with zero (0) as the identity element. We define the ring multiplication ' \odot ' by elements of the ring \mathbb{Z} by, $(r, \frac{p}{q}) \longmapsto |r| \frac{p}{q}$ $(r \in \mathbb{Z})$. The partial order ' \leq ' on \mathbb{Q}^+ is defined as $\frac{p_1}{q_1} \leq \frac{p_2}{q_2} \Leftrightarrow p_1 \leq p_2$ and $q_1 = q_2$. We now show that under these operations and partial order ($\mathbb{Q}^+, +, \odot, \leq$) becomes a qmod over the unitary ring \mathbb{Z} . First of all, it is clear that ' \leq ' is truly a partial order on \mathbb{Q}^+ . We are only to show the following to establish this example of qmod.

 $\begin{aligned} \mathbf{A_2}: & \text{If } x, y \in \mathbb{Q}^+ \text{ with } x \leq y \text{ then for any } z \in \mathbb{Q}^+ \text{ we have } z + x \leq z + y \text{ and for any } r \in \mathbb{Z} \end{aligned}$ we have $|r|x \leq |r|y \text{ i.e. } r \odot x \leq r \odot y.$ $\mathbf{A_3}: & (i) \ r \odot (x + y) = |r|(x + y) = |r|x + |r|y = r \odot x + r \odot y, \forall r \in \mathbb{Z}, \forall x, y \in \mathbb{Q}^+.$ $(ii) \ r_1 \odot (r_2 \odot x) = |r_1||r_2|x = |r_1r_2|x = (r_1r_2) \odot x, \forall r_1, r_2 \in \mathbb{Z}, \forall x \in \mathbb{Q}^+.$ $(iii) \ (r_1 + r_2) \odot x = |r_1 + r_2|x \leq |r_1|x + |r_2|x = r_1 \odot x + r_2 \odot x, \forall r_1, r_2 \in \mathbb{Z}, \forall x \in \mathbb{Q}^+.$ $(iv) \ 1 \odot x = x, \forall x \in \mathbb{Q}^+.$ $(v) \ 0 \odot x = 0, \forall x \in \mathbb{Q}^+ \text{ and } r \odot 0 = 0, \forall r \in \mathbb{Z}.$ $\mathbf{A_4}: [\mathbb{Q}^+]_0 := \left\{ \begin{array}{c} p \\ q \in \mathbb{Q}^+: \frac{r}{s} \leq \frac{p}{q}, \forall \frac{r}{s} \in \mathbb{Q}^+ \smallsetminus \left\{ \frac{p}{q} \right\} \right\} = \{0\}. \text{ Again, } 1 \odot \frac{p}{q} + (-1) \odot \frac{p}{q} = 0 \Leftrightarrow \\ p \\ q + p \\ q = 0 \Leftrightarrow 2p \\ q = 0 \Leftrightarrow p \\ q = 0. \end{aligned}$ $\mathbf{A_5}: \text{ For each } \begin{array}{c} p \\ q \in \mathbb{Q}^+ \text{ we have } 0 \leq \frac{p}{q}.$ $\mathrm{Thus } (\mathbb{Q}^+, +, \odot, \leq) \text{ is a qmod over } \mathbb{Z}.$

Example 2.7. Let $\{p_1, p_2, \ldots\}$ be a complete enumeration of all primes in order i.e. $2 = p_1 < p_2 < \cdots$. Now any integer $m \ge 1$ can be expressed uniquely as $m = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_i^{\alpha_i} \ldots$, where $\alpha_i \in \mathbb{Z}^+ := \{n \in \mathbb{Z} : n \ge 0\}, \forall i$ and all but finitely many α_i 's are zero. Thus we can identify the integer m with the sequence $(\alpha_1, \alpha_2, \ldots)$ in \mathbb{Z}^+ . In other words, we can say that m can be identified with an element of $(\mathbb{Z}^+)^{\mathbb{N}}$ whose all but finitely many terms are zero and for convenience let us denote this set as $(\mathbb{Z}^+)^{\mathbb{N}}_{00}$ i.e.

$$(\mathbb{Z}^+)_{00}^{\mathbb{N}} := \left\{ (\alpha_1, \alpha_2, \dots) : \alpha_i \in \mathbb{Z}^+, \alpha_i = 0 \text{ for all but finitely many } i's \right\}$$

Let us first introduce some notations : if $\alpha := (\alpha_1, \alpha_2, ...) \in (\mathbb{Z}^+)_{00}^{\mathbb{N}}$ and $p := (p_1, p_2, ...)$ be the sequence of *all* primes in strictly increasing order, as stated above, we denote $p^{\alpha} := p_1^{\alpha_1} p_2^{\alpha_2} \dots$ which is valid since all but finitely many factors in this infinite product are 1. Also if $\alpha, \beta \in (\mathbb{Z}^+)_{00}^{\mathbb{N}}$ then $p^{\alpha} p^{\beta} = p^{\alpha+\beta}$, where $\alpha+\beta$ is the sequence in $(\mathbb{Z}^+)_{00}^{\mathbb{N}}$ obtained by term by term addition of α and β . Again if r is any non-negative integer then $(p^{\alpha})^r = p^{r\alpha}$. Thus the usual product of two integers (≥ 1) can be viewed as the sum of two elements in $(\mathbb{Z}^+)_{00}^{\mathbb{N}}$; also for any integer $m (\geq 1)$ and $r \in \mathbb{Z}^+$ the exponent operation m^r can be viewed as the operation $r\alpha := (r\alpha_1, r\alpha_2, \dots)$, where $m := p^{\alpha}$ and $\alpha := (\alpha_1, \alpha_2, \dots) \in (\mathbb{Z}^+)_{00}^{\mathbb{N}}$. These facts now culminate into the following example of quasi module.

 $(\mathbb{Z}^+)_{00}^{\mathbb{N}}$ is a commutative semigroup with respect to the usual term by term addition of two sequences; it contains an identity element, namely zero sequence '0' (i.e. the sequence all of whose terms are zero). With the help of the unitary ring \mathbb{Z} , we define a ring multiplication '.': $\mathbb{Z} \times (\mathbb{Z}^+)_{00}^{\mathbb{N}} \longrightarrow (\mathbb{Z}^+)_{00}^{\mathbb{N}}$ as $(r, \alpha) \longmapsto |r|\alpha$. We now define an order ' \preccurlyeq ' by $\alpha \preccurlyeq \beta$ iff $p^{\alpha} \leq p^{\beta}$. It is obvious that \preccurlyeq is a partial order in $(\mathbb{Z}^+)_{00}^{\mathbb{N}}$. We show below that $(\mathbb{Z}^+)_{00}^{\mathbb{N}}$ is a qmod over \mathbb{Z} with respect to the aforesaid operations and partial order.

 $\begin{aligned} \mathbf{A_2}: & \text{Let } \alpha, \beta, \gamma \in (\mathbb{Z}^+)_{00}^{\mathbb{N}} \text{ with } \alpha \preccurlyeq \beta. \text{ Then } p^{\alpha} \leq p^{\beta} \Rightarrow p^{\gamma} p^{\alpha} \leq p^{\gamma} p^{\beta} \Rightarrow p^{\gamma+\alpha} \leq p^{\gamma+\beta} \\ \Rightarrow \gamma+\alpha \preccurlyeq \gamma+\beta. \text{ Again for any } r \in \mathbb{Z} \text{ we have } (p^{\alpha})^{|r|} \leq (p^{\beta})^{|r|} \Rightarrow p^{|r|\alpha} \leq p^{|r|\beta} \Rightarrow r \cdot \alpha \preccurlyeq r \cdot \beta. \\ \mathbf{A_3}: & \text{Let } \alpha, \beta \in (\mathbb{Z}^+)_{00}^{\mathbb{N}} \text{ and } n, n_1, n_2 \in \mathbb{Z}. \text{ Also let } \alpha := (\alpha_i)_{i\in\mathbb{N}}, \beta := (\beta_i)_{i\in\mathbb{N}}. \text{ Then} \\ & \text{(i) } n \cdot (\alpha+\beta) = \left(|n|(\alpha_i+\beta_i)\right)_{i\in\mathbb{N}} = \left(|n|\alpha_i\right)_{i\in\mathbb{N}} + \left(|n|\beta_i\right)_{i\in\mathbb{N}} = n \cdot \alpha + n \cdot \beta. \\ & \text{(ii) } n_1 \cdot (n_2 \cdot \alpha) = n_1 \cdot \left(|n_2|\alpha_i\right)_{i\in\mathbb{N}} = \left(|n_1||n_2|\alpha_i\right)_{i\in\mathbb{N}} = \left(|n_1n_2|\alpha_i\right)_{i\in\mathbb{N}} = (n_1n_2) \cdot \alpha. \\ & \text{(iii) } (n_1+n_2) \cdot \alpha = \left(|n_1+n_2|\alpha_i\right)_{i\in\mathbb{N}}. \text{ Now } |n_1+n_2|\alpha_i \leq |n_1|\alpha_i+|n_2|\alpha_i, \forall i \in \mathbb{N}. \text{ So} \\ & p_i^{|n_1+n_2|\alpha_i} \leq p_i^{|n_1|\alpha_i} p_i^{|n_2|\alpha_i}, \forall i \in \mathbb{N} \Rightarrow p^{|n_1+n_2|\alpha} \leq p^{|n_1|\alpha+|n_2|\alpha} \Rightarrow (n_1+n_2) \cdot \alpha \preccurlyeq n_1 \cdot \alpha + n_2 \cdot \alpha. \\ & \text{(iv) } 1 \cdot \alpha = (|1|\alpha_i)_{i\in\mathbb{N}} = \alpha. \end{aligned}$

(v) $0 \cdot \alpha = (|0|\alpha_i)_{i \in \mathbb{N}} = 0$ and $n \cdot 0 = 0$.

 \mathbf{A}_4 : Since any $\alpha \in (\mathbb{Z}^+)_{00}^{\mathbb{N}}$ corresponds to an integer ≥ 1 it follows that, zero sequence '0' is the only one order element of $(\mathbb{Z}^+)_{00}^{\mathbb{N}}$. Again $1 \cdot \alpha + (-1) \cdot \alpha = 0 \Leftrightarrow (\alpha_i + \alpha_i)_{i \in \mathbb{N}} = 0$ $\Leftrightarrow 2\alpha_i = 0, \forall i \Leftrightarrow \alpha = 0$. So axiom A_4 follows.

 $\mathbf{A}_{\mathbf{5}}$: For each $\alpha \in (\mathbb{Z}^+)_{00}^{\mathbb{N}}$, since $p^{\alpha} \ge 1 = p^0$ we have $0 \preccurlyeq \alpha$.

Thus it follows that $\left((\mathbb{Z}^+)_{00}^{\mathbb{N}}, +, \cdot, \preccurlyeq\right)$ is a quasi module over \mathbb{Z} .

3 Order morphism

In this section we introduce a morphism-like structure between two quasi modules over a common unitary ring and study some of its properties.

(iv) $p \leq q \ \left(p, q \in f(X)\right) \Rightarrow f^{-1}(p) \subseteq \downarrow f^{-1}(q) \text{ and } f^{-1}(q) \subseteq \uparrow f^{-1}(p), \text{ where }$ $\uparrow A := \{x \in X : x \ge a \text{ for some } a \in A\}$ and $\downarrow A := \{x \in X : x \le a \text{ for some } a \in A\}$ for

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

A surjective (injective, bijective) order-morphism is called an *order-epimorphism* (ordermonomorphism, order-isomorphism).

Definition 3.1. A mapping $f: X \longrightarrow Y(X, Y)$ being two quasi modules over a unitary

ring R) is called an *order-morphism* if (i) $f(x+y) = f(x) + f(y), \forall x, y \in X$ (ii) $f(rx) = rf(x), \forall r \in R, \forall x \in X$ (iii) $x \le y \ (x, y \in X) \Rightarrow f(x) \le f(y)$

any $A \subseteq X$.

Note 3.2. If $f: X \longrightarrow Y$ be an order-morphism and θ, θ' be the identity elements of X, Y respectively then $f(\theta) = f(0,\theta) = 0$, $f(\theta) = \theta'$. Again if x_0 be an one order element of X then so is $f(x_0)$ of Y. In fact, $x_0 \in X_0 \Rightarrow x_0 - x_0 = \theta \Rightarrow f(x_0) - f(x_0) = \theta'$ $\Rightarrow f(x_0) \in Y_0$. Also if $y_0 \in Y_0 \cap f(X)$ then $\exists x \in f^{-1}(y_0) \Rightarrow \exists x_0 \in X_0$ such that $x_0 \leq x \Rightarrow f(x_0) \leq f(x) = y_0 \Rightarrow f(x_0) = y_0 [\because y_0 \text{ is an one order element of } Y].$ Thus $f^{-1}(y_0) \cap X_0 \neq \emptyset.$

Before proceeding further let us first introduce the following concept which will be useful in the sequel.

Definition 3.3. A subset Y of a qmod X is said to be a sub quasi module (subqmod in short) if Y itself be a quasi module with all the compositions of X being restricted to Y.

Note 3.4. A subset Y of a qmod X (over a unitary ring R) is a sub quasi module iff Y satisfies the following conditions :

(i) $rx + sy \in Y, \forall r, s \in R, \forall x, y \in Y.$ (ii) $Y_0 \subseteq X_0 \cap Y$, where $Y_0 := \{z \in Y : y \not\leq z, \forall y \in Y \setminus \{z\}\}$ (iii) $\forall y \in Y, \exists y_0 \in Y_0$ such that $y_0 \leq y$

If Y be a subqmod of X then actually $Y_0 = X_0 \cap Y$, since for any $Y \subseteq X$ we have $X_0 \cap Y \subseteq Y_0.$

Proposition 3.5. If $f: X \longrightarrow Y$ (X, Y being two quasi modules over a unitary ring R) be an order-morphism then $f(M) := \{f(m) : m \in M\}$ is a subqmod of Y, for any subqmod M of X.

Proof. For $x, y \in M$ and $r, s \in R$ we have $rf(x) + sf(y) = f(rx + sy) \in f(M)$, since $rx + sy \in M$ for, M is a subquood of X. Clearly, $f(M) \cap Y_0 \subseteq [f(M)]_0$. Now let $y \in [f(M)]_0$ ⇒ ∃ $m \in M$ such that y = f(m). So ∃ $p \in M_0$ such that $p \leq m \Rightarrow f(p) \leq f(m) \Rightarrow f(p) = f(m) = y$ [∵ y is an one order element of f(M) and $f(p) \in f(M)$]. Since $M_0 = M \cap X_0$ so $p \in X_0 \Rightarrow f(p)$ is an one order element of Y and hence $y = f(p) \in Y_0 \cap f(M)$. Thus $[f(M)]_0 \subseteq f(M) \cap Y_0$. Therefore $[f(M)]_0 = f(M) \cap Y_0$. Again for any $m \in M$, ∃ $m_0 \in M_0$ such that $m_0 \leq m \Rightarrow f(m_0) \leq f(m)$. Here $f(m_0)$ is an one order element of Y.

Proposition 3.6. Let X, Y, Z be three qmods over an unitary ring R and $f : X \longrightarrow Y$, $g : Y \longrightarrow Z$ be two order-morphisms. Then their composition $g \circ f : X \longrightarrow Z$ is an order-morphism, provided f is onto.

 $\begin{aligned} &Proof. \ (g \circ f)(rx_1 + x_2) = g(f(rx_1 + x_2)) = g(rf(x_1) + f(x_2)) = r.(g \circ f)(x_1) + (g \circ f)(x_2), \\ &\forall x_1, x_2 \in X \text{ and } \forall r \in R. \text{ Moreover, } x_1 \leq x_2 (x_1, x_2 \in X) \Rightarrow f(x_1) \leq f(x_2) \Rightarrow g(f(x_1)) \leq g(f(x_2)) \Rightarrow (g \circ f)(x_1) \leq (g \circ f)(x_2). \end{aligned}$

Now let $z_1, z_2 \in (g \circ f)(X)$ such that $z_1 \leq z_2$. Let $x \in (g \circ f)^{-1}(z_1)$. Then $(g \circ f)(x) = z_1 \Rightarrow g(f(x)) = z_1 \Rightarrow f(x) \in g^{-1}(z_1) \subseteq \downarrow g^{-1}(z_2) \Rightarrow f(x) \leq y$, for some $y \in g^{-1}(z_2) \Rightarrow g(y) = z_2$. Now f being onto, $y \in f(X)$ and hence $x \in \downarrow f^{-1}(y) \Rightarrow x \leq x'$, where f(x') = y. Therefore $(g \circ f)(x') = g(f(x')) = g(y) = z_2 \Rightarrow x \in \downarrow (g \circ f)^{-1}(z_2)$. $\therefore (g \circ f)^{-1}(z_1) \subseteq \downarrow (g \circ f)^{-1}(z_2)$.

Again $x_0 \in (g \circ f)^{-1}(z_2) \Rightarrow (g \circ f)(x_0) = z_2 \Rightarrow g(f(x_0)) = z_2 \Rightarrow f(x_0) \in g^{-1}(z_2) \subseteq \uparrow g^{-1}(z_1)$ $\Rightarrow f(x_0) \ge y'$, for some $y' \in g^{-1}(z_1)$. So $g(y') = z_1$. Now f being onto, $y' \in f(X)$ and hence $x_0 \in \uparrow f^{-1}(y') \Rightarrow x_0 \ge x''$, where f(x'') = y'. Therefore $(g \circ f)(x'') = g(f(x'')) = g(y') = z_1$ $\Rightarrow x_0 \in \uparrow (g \circ f)^{-1}(z_1)$.

 $\therefore (g \circ f)^{-1}(z_2) \subseteq \uparrow (g \circ f)^{-1}(z_1).$

Thus it follows that $(g \circ f)$ is an order-morphism.

Proposition 3.7. If $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$ (X, Y, Z being qmods over the same unitary ring R) be two order-morphisms such that $g \circ f: X \longrightarrow Z$ is also an order-morphism then

- (i) $g \circ f$ is onto iff both f, g are onto;
- (ii) $g \circ f$ is injective iff both f, g are injective.

Proof. First of all, $g \circ f$ is an order-morphism provided f is onto. So (i) is immediate. For (ii), we are only to show that g is injective whenever $g \circ f$ is injective. Actually $g \circ f$ is injective implies g is injective on f(X); in fact, if $g(f(x_1)) = g(f(x_2))$ for $f(x_1) \neq f(x_2)$ (and hence for $x_1 \neq x_2$) then injectivity of $g \circ f$ would be contradicted. Since for $g \circ f$ to be an order-morphism f needs to be onto, (ii) follows.

Remark 3.8. The above proposition readily implies that two order-isomorphisms, after composition, generates again an order-isomorphism; inverse of an order-isomorphism is an order-isomorphism and the identity map on any qmod is an order-isomorphism. Thus 'order-isomorphism' induces an equivalence relation on the collection of all qmods over the same unitary ring and we can identify two such qmods related by this equivalence relation.

Definition 3.9. Let $f : X \longrightarrow Y$ (X, Y being two qmods over the same unitary ring R) be an order-morphism. We define ker $f := \{(x, y) \in X \times X : f(x) = f(y)\}$ and call it the *'kernel of f'*.

It is immediate from definition that $(x, x) \in \ker f$, $\forall x \in X$ and thus if we write $\Delta := \{(x, x) : x \in X\}$ then $\Delta \subseteq \ker f$, equality holds iff f is injective.

We now show that ker f is a subqmod of $X \times X$, but for doing so we have to first discuss the Cartesian product of qmods.

4 Arbitrary product of quasi modules

In this section we shall discuss arbitrary product of quasi modules and show that the product is also a quasi module.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Definition 4.1. Let $\{X_{\mu} : \mu \in \Lambda\}$ be an arbitrary family of quasi modules over the unitary ring R. Let $X := \prod_{\mu \in \Lambda} X_{\mu}$ be the Cartesian product of these quasi modules defined as $: x \in X$ if and only if $x : \Lambda \longrightarrow \bigcup_{\mu \in \Lambda} X_{\mu}$ is a map such that $x(\mu) \in X_{\mu}, \forall \mu \in \Lambda$. Then by the axiom of choice we know that X is nonempty, since Λ is nonempty and each X_{μ} contains at least the additive identity θ_{μ} (say).

Let us denote $x_{\mu} := x(\mu), \forall \mu \in \Lambda$. Also we write each $x \in X$ as $x = (x_{\mu})$, where $x_{\mu} = p_{\mu}(x), p_{\mu} : X \longrightarrow X_{\mu}$ being the projection map, $\forall \mu \in \Lambda$. Now we define addition, ring multiplication and partial order as follows : for $x = (x_{\mu}), y = (y_{\mu}) \in X$ and $r \in R$ (i) $x + y = (x_{\mu} + y_{\mu})$; (ii) $r.x = (rx_{\mu})$; (iii) $x \leq y$ if $x_{\mu} \leq y_{\mu}, \forall \mu \in \Lambda$.

We now show that $(X, +, ., \leq)$ is a quasi module over R. A_1 : Clearly X is a commutative semigroup with identity θ , where $\theta = (\theta_{\mu})$. $A_2: x \leq y \Rightarrow x_{\mu} \leq y_{\mu}, \forall \mu \in \Lambda \Rightarrow x_{\mu} + z_{\mu} \leq y_{\mu} + z_{\mu} \text{ and } rx_{\mu} \leq ry_{\mu}, \forall \mu \in \Lambda \text{ and } \forall r \in R$ $\Rightarrow x + z \leq y + z \text{ and } rx \leq ry$, where $z = (z_{\mu}) \in X$. $A_3: \text{For } x = (x_{\mu}), y = (y_{\mu}) \in X \text{ and for } r, s \in R \text{ we have}$ (i) $r(x + y) = (r(x_{\mu} + y_{\mu})) = (rx_{\mu} + ry_{\mu}) = (rx_{\mu}) + (ry_{\mu}) = rx + ry$. (ii) $r(sx) = r(sx_{\mu}) = rs(x_{\mu}) = rsx$. (iii) each X_{μ} being a quasi module, $(r+s)x_{\mu} \leq rx_{\mu} + sx_{\mu}$, $\forall \mu \in \Lambda \Rightarrow (r+s)x \leq rx + sx$. (iv) $1.x = (1.x_{\mu}) = (x_{\mu}) = x$, 1 being the multiplicative identity of R.

(v) $0.x = (0.x_{\mu}) = (\theta_{\mu}) = \theta$. Again $r.\theta = (r.\theta_{\mu}) = (\theta_{\mu}) = \theta$.

 $\begin{array}{l} A_4: x-x=\theta \Leftrightarrow x_{\mu}-x_{\mu}=\theta_{\mu}, \forall \mu\in\Lambda\Leftrightarrow x_{\mu}\in [X_{\mu}]_0, \forall \mu\in\Lambda, \text{ where } [X_{\mu}]_0 \text{ is the set} \\ \text{of all one order elements of } X_{\mu}. \text{ We claim that } X_0=\left\{(x_{\mu})\in X: x_{\mu}\in [X_{\mu}]_0, \forall \mu\in\Lambda\right\}\equiv \\ \prod_{\mu\in\Lambda} [X_{\mu}]_0. \text{ In fact, } x=(x_{\mu})\notin\prod_{\mu\in\Lambda} [X_{\mu}]_0\Rightarrow x_{\lambda}\notin [X_{\lambda}]_0 \text{ for some } \lambda\in\Lambda. \text{ Then } \exists i_{\lambda}\in [X_{\lambda}]_0 \\ \text{ such that } i_{\lambda}\leq x_{\lambda}, i_{\lambda}\neq x_{\lambda}. \text{ Let } y=(y_{\mu}) \text{ where } y_{\mu}=x_{\mu}, \ \mu\neq\lambda \text{ and } y_{\lambda}=i_{\lambda}. \text{ Then} \\ y\leq x, \ y\neq x\Rightarrow x\notin X_0. \text{ Conversely if } x_{\mu}\in [X_{\mu}]_0, \forall \mu\in\Lambda \text{ then } x=(x_{\mu})\in X_0. \\ A_5: \text{ Let } x=(x_{\mu})\in X. \text{ Then } x_{\mu}\in X_{\mu}, \forall \mu\in\Lambda\Rightarrow\exists t_{\mu}\in [X_{\mu}]_0, \forall \mu\in\Lambda \text{ such that } t_{\mu}\leq x_{\mu}, \end{array}$

 $\forall \mu \in \Lambda \Rightarrow t = (t_{\mu}) \leq (x_{\mu}) = x$, where $t \in X_0$.

 $\therefore (X, +, ., \leq)$ is a quasi module over R.

Proposition 4.2. Let $\{X_i : i \in \Lambda\}$ be an arbitrary family of quasi modules over an unitary ring R and $X := \prod_{i \in \Lambda} X_i$ be the product qmod of these qmods. Then each projection map $p_j : X \longrightarrow X_j$ is an order-epimorphism.

Proof. Let $x = (x_i), y = (y_i) \in X$ and $r \in R$. Then $p_j(rx + y) = rx_j + y_j = rp_j(x) + p_j(y)$. Again if $x \leq y$ then $x_i \leq y_i, \forall i \in \Lambda \Rightarrow p_j(x) \leq p_j(y)$. Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Now let $a, b \in p_j(X) = X_j$ (since every projection map is onto) with $a \leq b$. Let $x = (x_i) \in p_j^{-1}(a)$. Then $p_j(x) = a$ i.e. $x_j = a$. We choose $y = (y_i)$ where $y_i = x_i$ for $i \neq j$ and $y_j = b$. Then $x \leq y$ and $p_j(y) = y_j = b$ i.e. $y \in p_j^{-1}(b)$. Thus we have $p_j^{-1}(a) \subseteq \downarrow p_j^{-1}(b)$. Similarly we can show that $p_j^{-1}(b) \subseteq \uparrow p_j^{-1}(a)$. So p_j being onto the proposition follows. \Box

Proposition 4.3. Let $f : X \longrightarrow Y$ be an order-morphism (X, Y being two qmods over an unitary ring R). Then ker f is a subqmod of $X \times X$.

Proof. For $(x_1, y_1), (x_2, y_2) \in \ker f$ and $r, s \in R$ we have $f(rx_1 + sx_2) = rf(x_1) + sf(x_2) = rf(y_1) + sf(y_2) = f(ry_1 + sy_2) \Rightarrow (rx_1 + sx_2, ry_1 + sy_2) \in \ker f$ i.e. $r(x_1, y_1) + s(x_2, y_2) \in \ker f$.

Now let $(x, y) \in \ker f$ but $(x, y) \notin X_0 \times X_0$. Without loss of generality assume that $x \notin X_0$. Then $\exists a \in X_0$ such that $a \leq x$. So $f(a) \leq f(x) = f(y)$. Now f being an order-morphism, $\exists z \in f^{-1}(f(a))$ such that $z \leq y$. Then $\exists t \in X_0$ such that $t \leq z \Rightarrow f(t) \leq f(z) = f(a)$. Now a being one order, f(a) is so and hence $f(t) = f(a) \Rightarrow (a, t) \in \ker f$. Also $(a, t) \leq (x, y)$ and $(a, t) \neq (x, y)$. This ensures that $(x, y) \notin [\ker f]_0$. Thus we have $[\ker f]_0 \subseteq \ker f \cap (X_0 \times X_0)$. Also from this argument we find that for any $(x, y) \in \ker f$, $\exists (a, t) \in \ker f \cap (X_0 \times X_0) = [\ker f]_0$ such that $(a, t) \leq (x, y)$ (if (x, y) itself be of order one we need not find (a, t)). The proposition then follows from the note 3.4.

5 Order isomorphism theorem

In this section we present an isomorphism theorem between quasi modules.

Lemma 5.1. Let X, Y, Z be three quasi modules over the unitary ring $R, \alpha : X \longrightarrow Y$ be an order-epimorphism and $\beta : X \longrightarrow Z$ be an order-morphism such that ker $\alpha \subseteq \ker \beta$. Then \exists a unique order-morphism $\gamma : Y \longrightarrow Z$ such that $\gamma \circ \alpha = \beta$.

Proof. We first show that if an order-morphism $\gamma : Y \longrightarrow Z$ exists satisfying $\gamma \circ \alpha = \beta$ then that must be unique. In fact, if γ' be another such order-morphism then $\gamma \circ \alpha = \beta = \gamma' \circ \alpha$. This shows that γ, γ' coincide on $\alpha(X)$. α being onto, γ, γ' really coincide on Y.

To prove the existence let $y \in Y$. α being order-epimorphism, $\alpha^{-1}(y) \neq \emptyset$. Now ker $\alpha \subseteq \ker \beta \Rightarrow \beta$ is constant on $\alpha^{-1}(y)$. So it is reasonable to define $\gamma(y) := \beta(\alpha^{-1}(y))$, $\forall y \in Y$. Clearly then $\gamma \circ \alpha = \beta$. Now let $y, y' \in Y, r \in R$ and $x \in \alpha^{-1}(y), x' \in \alpha^{-1}(y')$. Then $\gamma(y) = \beta(x)$ and $\gamma(y') = \beta(x')$. Now α being an order-morphism, we have $y + ry' = \alpha(x) + r\alpha(x') = \alpha(x + rx') \Rightarrow x + rx' \in \alpha^{-1}(y + ry')$. Then β being an order-morphism we have $\gamma(y) + r\gamma(y') = \beta(x) + r\beta(x') = \beta(x + rx') = \gamma(y + ry')$.

Next let $y \leq y'(y, y' \in Y)$. Then $\alpha^{-1}(y) \subseteq \downarrow \alpha^{-1}(y')$. So for $x \in \alpha^{-1}(y)$, $\exists x' \in \alpha^{-1}(y')$ such that $x \leq x'$. Thus $\gamma(y) = \beta(x) \leq \beta(x') = \gamma(y')$.

For declaring γ to be an order-morphism it now remains to show that $\gamma^{-1}(z) \subseteq \downarrow \gamma^{-1}(z')$ and $\gamma^{-1}(z') \subseteq \uparrow \gamma^{-1}(z)$, whenever $z \leq z' [z, z' \in \gamma(Y)]$. To prove the first inclusion let $y \in \gamma^{-1}(z)$. Then $\alpha^{-1}(y) \subseteq \beta^{-1}(z) \subseteq \downarrow \beta^{-1}(z')$. So for $x \in \alpha^{-1}(y)$, $\exists x' \in \beta^{-1}(z')$ such that $x \leq x'$. Then $y = \alpha(x) \leq \alpha(x') = y'$ (say). Now $\gamma(y') = \gamma(\alpha(x')) = \beta(x') = z'$ $\Rightarrow y' \in \gamma^{-1}(z')$, where $y \leq y'$. The second inclusion can be similarly disposed of. \Box

Lemma 5.2. Let X, Y, Z be three quasi modules over the unitary ring R, $\alpha : Y \longrightarrow X$ be an order-monomorphism and $\beta : Z \longrightarrow X$ be an order-morphism such that $\alpha(Y) = \beta(Z)$. Then \exists a unique order-epimorphism $\gamma : Z \longrightarrow Y$ such that the following diagram commutes.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Proof. α being an order-monomorphism it follows that α is an order-isomorphism from Y onto the sub quasi module $\alpha(Y) (\equiv \beta(Z))$ of X. Thus we may define $\gamma := \alpha^{-1} \circ \beta$. It then follows from the remark 3.8 and proposition 3.6 that γ is an order-morphism, since β is 'onto' the domain of α^{-1} . Since $\alpha^{-1}(\beta(Z)) = Y$, so γ is surjective. Also $\alpha \circ \gamma = \beta$ i.e. the above diagram is commutative.

If, together with γ , any other γ' makes the above diagram commutative then, $\alpha \circ \gamma = \beta = \alpha \circ \gamma' \Longrightarrow \gamma = \gamma'$ (since α is an order-isomorphism).

Before going to prove the isomorphism theorem we need to construct a quotient structure which again necessitates the introduction of the concept of 'congruence'. So let us define this concept first.

Definition 5.3. An equivalence relation E, defined on a quasi module X over an unitary ring R, is said to be a *congruence* on X if,

(i) $(x, y) \in E \Rightarrow (a + x, a + y) \in E, \forall a \in X$

(ii) $(x, y) \in E \Rightarrow (rx, ry) \in E, \forall r \in R$

(iii) $x \le y \le z$ and $(x, z) \in E \Rightarrow (x, y) \in E$ (and hence $(y, z) \in E$)

(iv) $a \le x \le b$ and $(x, y) \in E \Rightarrow \exists c, d \in X$ with $c \le y \le d$ such that $(a, c), (b, d) \in E$.

Proposition 5.4. If $\phi : X \longrightarrow Y(X, Y \text{ being two qmods over an unitary ring } R) be an order-morphism then ker <math>\phi$ is a congruence on X.

Del documento, de los autores. Digitalización realizada por ULPGC. Biblioteca Universitaria, 2017

Proof. Clearly ker ϕ is an equivalence relation on X. Let $(x, y) \in \ker \phi$, $a \in X$ and $r \in R$. Then $\phi(a+x) = \phi(a) + \phi(x) = \phi(a) + \phi(y) = \phi(a+y)$ and $\phi(rx) = r\phi(x) = r\phi(y) = \phi(ry)$. Thus $(a + x, a + y), (rx, ry) \in \ker \phi$. Again $x \leq y \leq z \Rightarrow \phi(x) \leq \phi(y) \leq \phi(z)$. So $(x, z) \in \ker \phi \Rightarrow \phi(x) = \phi(z) = \phi(y) \Rightarrow (x, y) \in \ker \phi$.

Next let $b \ge x$. Then $\phi(b) \ge \phi(x) = \phi(y) \Rightarrow y \in \phi^{-1}(\phi(y)) \subseteq \downarrow \phi^{-1}(\phi(b)) \Rightarrow \exists d \in \phi^{-1}(\phi(b))$ such that $y \le d$. Now $\phi(d) = \phi(b) \Rightarrow (b, d) \in \ker \phi$. Similarly for $a \le x$ we have $\phi(a) \le \phi(x) = \phi(y)$. So $y \in \phi^{-1}(\phi(y)) \subseteq \uparrow \phi^{-1}(\phi(a)) \Rightarrow \exists c \in \phi^{-1}(\phi(a))$ such that $y \ge c$. Now $\phi(c) = \phi(a) \Rightarrow (a, c) \in \ker \phi$. Thus ker ϕ is a congruence on X.

We now give a quotient structure on X using the above congruence. For this let us construct the quotient set $X/\ker \phi := \{[x] : x \in X\}$, where [x] is the equivalence class containing x obtained by the congruence $\ker \phi$. We define addition, ring multiplication and partial order on $X/\ker \phi$ as follows : For $x, y \in X$ and $r \in R$,

(i) [x] + [y] := [x + y]; (ii) r[x] := [rx]; (iii) $[x] \le [y]$ if and only if $\phi(x) \le \phi(y)$.

Theorem 5.5. If $\phi : X \longrightarrow Y(X, Y \text{ being two qmods over an unitary ring } R) be an order-morphism then <math>X/\ker \phi$ is a quasi module over R.

Proof. A_1 : Clearly $(X/\ker\phi, +)$ is a commutative semigroup with identity $[\theta]$, where θ is the identity of X.

 $\begin{aligned} A_2: \operatorname{Let}\ [x], [y], [z] \in X/\operatorname{ker}\phi \text{ and } [x] \leq [y]. \operatorname{Now, } \phi(x+z) = \phi(x) + \phi(z) \leq \phi(y) + \phi(z) = \\ \phi(y+z) \Rightarrow [x+z] \leq [y+z] \Rightarrow [x] + [z] \leq [y] + [z]. \operatorname{Also, } \phi(rx) = r\phi(x) \leq r\phi(y) = \phi(ry), \\ \forall r \in R \Rightarrow [rx] \leq [ry] \Rightarrow r[x] \leq r[y], \forall r \in R. \\ A_3: (i) \ r([x] + [y]) = r[x+y] = [rx+ry] = [rx] + [ry] = r[x] + r[y] \\ (ii) \ r(s[x]) = r[sx] = [rsx] = rs[x], \text{ where } r, s \in R \\ (iii) \ (r+s)x \leq rx+sx \Rightarrow \phi((r+s)x) \leq \phi(rx) + \phi(sx) \Rightarrow (r+s)[x] = [(r+s)x] \leq \\ [rx] + [sx] = r[x] + s[x] \\ (iv) \ 0[x] = [0x] = [\theta] \text{ and } r[\theta] = [r\theta] = [\theta], \forall r \in R \\ A_4: [x] + (-1)[x] = [\theta] \Leftrightarrow [x] + [-x] = [\theta] \Leftrightarrow [x-x] = [\theta] \Leftrightarrow \phi(x-x) = \phi(\theta) \Leftrightarrow \\ \phi(x) - \phi(x) = \theta' \text{ (where } \theta' \text{ is the identity in } Y) \Leftrightarrow \phi(x) \in Y_0. \text{ Now the set of all one order} \\ elements of X/\operatorname{ker}\phi \text{ is given by } [X/\operatorname{ker}\phi]_0 := \left\{ [x] \in X/\operatorname{ker}\phi : [y] \nleq [x], \forall [y] \neq [x] \right\} = \\ \left\{ [x] : \phi(y) \notin \phi(x), \forall \phi(y) \neq \phi(x) \right\} = \left\{ [x] : \phi(x) \in [\phi(X)]_0 = \phi(X) \cap Y_0 \right\} [\because \phi(X) \text{ is a subqmod of } Y]. \text{ Thus we have } [x] + (-1)[x] = [\theta] \text{ if and only if } [x] \in [X/\operatorname{ker}\phi]_0. \end{aligned}$

p being an one order element of *X*, $\phi(p)$ is so in *Y* and hence $[p] \in [X/\ker\phi]_0$. **Proposition 5.6.** Let $\phi: X \longrightarrow Y(X, Y \text{ being two qmods over an unitary ring } R) be an$

order-morphism. Then the canonical map $\pi : X \longrightarrow X/\ker \phi$ defined by $\pi(x) := [x], \forall x \in X$ is an order-epimorphism.

Proof. Since ϕ is an order-morphism it follows immediately that π satisfies the first three axioms of an order-morphism. Also π is an onto map. So we are only to show that $\pi^{-1}([x]) \subseteq \downarrow \pi^{-1}([y])$ and $\pi^{-1}([y]) \subseteq \uparrow \pi^{-1}([x])$, whenever $[x] \leq [y]$ in $X/\ker \phi$. For this let $a \in \pi^{-1}([x])$. Then $[a] = \pi(a) = [x] \Rightarrow \phi(a) = \phi(x) \leq \phi(y)$. Now $a \in \phi^{-1}(\phi(a)) \subseteq \downarrow \phi^{-1}(\phi(y)) \Rightarrow \exists b \in \phi^{-1}(\phi(y))$ such that $a \leq b$. Again $\phi(b) = \phi(y) \Rightarrow \pi(b) = [b] = [y]$. Thus we have $a \in \downarrow \pi^{-1}([y])$ i.e. $\pi^{-1}([x]) \subseteq \downarrow \pi^{-1}([y])$, whenever $[x] \leq [y]$ in $X/\ker \phi$. Similarly $\pi^{-1}([y]) \subseteq \uparrow \pi^{-1}([x])$.

We now have the following isomorphism theorem.

Theorem 5.7. If $\phi : X \longrightarrow Y(X, Y \text{ being two qmods over an unitary ring } R) be an order-morphism then <math>X/\ker \phi$ is order-isomorphic to $\phi(X)$.

Proof. ker $\pi := \{(x, y) : \pi(x) = \pi(y)\} = \{(x, y) : [x] = [y]\} = \{(x, y) : \phi(x) = \phi(y)\} =$ ker ϕ . Since $\phi : X \longrightarrow \phi(X) \subseteq Y$ is an order-morphism and $\pi : X \longrightarrow X/\ker \phi$ is an order-epimorphism (by proposition 5.6), by lemma 5.1 we can find a unique order-morphism $\psi : X/\ker \phi \longrightarrow \phi(X)$ such that $\psi \circ \pi = \phi$. Now $\phi : X \longrightarrow \phi(X)$ is onto implies ψ is onto. Again $\psi[x] = \psi[y] \Rightarrow \psi(\pi(x)) = \psi(\pi(y)) \Rightarrow \phi(x) = \phi(y) \Rightarrow (x, y) \in \ker \phi$ $\Rightarrow [x] = [y]$, where $[x], [y] \in X/\ker \phi$. Therefore ψ is injective and hence bijective. \Box

Acknowledgement : The second author is thankful to UGC, INDIA for financial assistance.

References

 T. S. Blyth; Module theory : an approach to linear algebra; Oxford University Press, USA (1977)