AN ASSOCIATED STRUCTURE OF A MODULE

Sandip Jana \& Supriyo Mazumder
Department of Pure Mathematics
University of Calcutta
35, Ballygunge Circular Road
Kolkata-700019, India
sjpm12@yahoo.co.in / supriyo88@gmail.com

Abstract

In this paper we have generalised the concept of a module in the sense that every module can be embedded into this new structure, which we name as 'quasi module', and every quasi module contains a module. In fact, we have replaced the group structure of a module by a semigroup structure and invited a partial order which has a significant role in formulating this new structure; it is this partial order which is the prime key in relating a quasi module with a module. After discussing several examples we have introduced the concept of order-morphism between two quasi modules, discussed its various properties and finally proved an isomorphism theorem regarding this order-morphism.

AMS Classification: 08A99, 13C99, 06F99
Key words : Module; quasi module; order-morphism; order-isomorphism.

1 Introduction

For any topological module M over a topological unitary ring R, the collection $\mathscr{C}(M)$ of all nonempty compact subsets of M is closed under usual addition of two sets and multiplication of a set by any element of R. Also for any $r, s \in R$ and any $A, B \in \mathscr{C}(M)$ with $A \subseteq B$ we have $(r+s) A \subseteq r A+s A$ and $r A \subseteq r B$. Moreover, if θ be the additive identity in M then $A-A=\{\theta\}$ iff A is a singleton set. Thus $\{\{m\}: m \in M\}$ is the collection of all invertible elements of $\mathscr{C}(M),\{\theta\}$ acting as the additive identity in $\mathscr{C}(M)$. These singletons are the minimal elements of $\mathscr{C}(M)$ with respect to the usual set-inclusion as partial order. Now this collection of all minimal elements of $\mathscr{C}(M)$ can be identified with
the module M through the map $\{m\} \longmapsto m(m \in M)$. This makes a useful connection between the hyperspace $\mathscr{C}(M)$ and its generating module M. The above facts are not just a speciality of the hyperspace $\mathscr{C}(M)$; we have axiomatised these facts and introduced the concept of a quasi module, as explained below.

In this paper we have generalised the concept of a module in the sense that every module can be embedded into this new structure, which we name as 'quasi module', and every quasi module contains a module. In fact, we have replaced the group structure of a module by a semigroup structure and invited a partial order within this structure which has a significant role in formulating this new structure; it is this partial order which is the prime key in relating a quasi module with a module. This partial order is made compatible with the semigroup operation and external composition (which is multiplication by an unitary ring, in this case), while formulating the axiom for quasi module. A number of examples have been discussed and it has been shown that every module over an unitary ring can be embedded into a quasi module and every quasi module contains a module as a sub-structure.

In section 3 we have introduced the concept of an order-morphism between two quasi modules over a common unitary ring. Some of its properties have been discussed. Section 4 deals with the arbitrary product of quasi modules. We have shown that Cartesian product of any family of quasi modules is again a quasi module. After defining the kernel of an order-morphism we have proved that kernel of any order-morphism is a quasi module.

In the last section we have discussed an order-isomorphism theorem. For doing this we have introduced first the concept of congruence in a quasi module and then constructed a quotient structure which has been finally settled as a quasi module.

2 Quasi Module

Definition 2.1. Let (X, \leq) be a partially ordered set, ' + ' be a binary operation on X and ' $\because: R \times X \longrightarrow X$ be another composition [R being a unitary ring]. If the operations and partial order satisfy the following axioms then $(X,+, \cdot, \leq)$ is called a quasi module (in short qmod) over R.

$$
\begin{aligned}
& A_{1}:(X,+) \text { is a commutative semigroup with identity } \theta \text {. } \\
& A_{2}: x \leq y(x, y \in X) \Rightarrow x+z \leq y+z, r \cdot x \leq r \cdot y, \forall z \in X, \forall r \in R . \\
& A_{3}: \text { (i) } r \cdot(x+y)=r \cdot x+r \cdot y, \\
& \quad \text { (ii) } r \cdot(s \cdot x)=(r s) \cdot x,
\end{aligned}
$$

(iii) $(r+s) \cdot x \leq r \cdot x+s \cdot x$,
(iv) $1 \cdot x=x$, ' 1 ' being the multiplicative identity of R
(v) $0 \cdot x=\theta$ and $r \cdot \theta=\theta(r \in R)$
$\forall x, y \in X, \forall r, s \in R$.

$$
A_{4}: x+(-1) \cdot x=\theta \text { if and only if } x \in X_{0}:=\{z \in X: y \not \leq z, \forall y \in X \backslash\{z\}\}
$$

A_{5} : For each $x \in X, \exists y \in X_{0}$ such that $y \leq x$.

The elements of the set X_{0} (which are evidently the minimal elements of X with respect to the partial order ' \leq ') are called 'one order' elements of X and, by axiom A_{4}, these are the only invertible elements of X, the inverse of $x\left(\in X_{0}\right)$ being $(-1) \cdot x$, usually written as ' $-x$ '. Also for any $x, y \in X_{0}$ and $\forall r \in R$ we have, by axiom $A_{4}, x-x=\theta, y-y=\theta$ $\Rightarrow(x+y)-(x+y)=\theta$ and $r x-r x=r(x-x)=\theta$ and hence $r x, x+y \in X_{0}$. Moreover, for $r, s \in R$ and $x \in X_{0}$ we have $(r+s) x \leq r x+s x \Rightarrow(r+s) x=r x+s x(\because r x+s x$ is of order one). Thus we have the following result.

Result 2.2. For any quasi module X over an unitary ring R, the set X_{0} of all one order elements of X is a module over R.

Above result shows that every quasi module contains a module. It is now a routine work to verify that, for a topological module M over a topological unitary ring R, the collection $\mathscr{C}(M)$ of all nonempty compact subsets of M forms a quasi module over R with usual setinclusion as partial order and the relevent operations defined as follows : for $A, B \in \mathscr{C}(M)$ and $r \in R, A+B:=\{a+b: a \in A, b \in B\}$ and $r A:=\{r a: a \in A\}$. The identity element of $\mathscr{C}(M)$ is $\{\theta\}$, where θ is the identity element of M; the set of all one order elements of $\mathscr{C}(M)$ is given by $[\mathscr{C}(M)]_{0}=\{\{m\}: m \in M\}$. If we identify $\{\{m\}: m \in M\}$ with M we can say that, the topological module M is embedded into the quasi module $\mathscr{C}(M)$. We construct below an example which shows that every module (not necessarily topological) over an unitary ring can be embedded into a quasi module over the same ring.

Example 2.3. Let M be a module over an unitary ring R. Let $\widetilde{M}:=M \bigcup\{\omega\}(\omega \notin M)$. Define ' + ', ' '' and the partial order ' \leq_{p} ' as follows :
(i) The operation ' + ' between any two elements of M is same as in the module M and $x+\omega:=\omega$ and $\omega+x:=\omega, \forall x \in \widetilde{M}$.
(ii) The operation '.' when applied on $R \times M$ is same as in the module M and $r \cdot \omega:=\omega$, if $r(\neq 0) \in R$ and $0 \cdot \omega:=\theta, \theta$ being the identity element in M.
(iii) $x \leq_{p} \omega, \forall x \in M$ and $x \leq_{p} x, \forall x \in \widetilde{M}$.
(i) The operation ' + ' between any two elements of M is same as in the module M and $x+\omega:=\omega$ and $\omega+x:=\omega, \forall x \in \widetilde{M}$.
(ii) The operation '.' when applied on $R \times M$ is same as in the module M and $r \cdot \omega:=\omega$, if $r(\neq 0) \in R$ and $0 \cdot \omega:=\theta, \theta$ being the identity element in M.
(iii) $x \leq_{p} \omega, \forall x \in M$ and $x \leq_{p} x, \forall x \in \widetilde{M}$.

We show that $\left(\widetilde{M},+, \cdot, \leq_{p}\right)$ is a quasi module over R.
A_{1} : Clearly $(\widetilde{M},+)$ is a commutative semigroup with identity θ and ' \leq_{p} ' is a partial order in \widetilde{M}.
A_{2} : Let $y \in \widetilde{M}$ and $r(\neq 0) \in R$. Then $\forall x \in M, x \leq_{p} \omega \Rightarrow x+y \leq_{p} \omega+y=\omega$ and $r \cdot x=r x \leq_{p} r \cdot \omega=\omega$. Also for any $x \in \widetilde{M}, x \leq_{p} x \Rightarrow x+y \leq_{p} x+y$ and $r \cdot x \leq_{p} r \cdot x$. Since $0 \cdot y=\theta, \forall y \in \widetilde{M}$ so $0 \cdot x \leq_{p} 0 \cdot z$ whenever $x \leq_{p} z(x, z \in \widetilde{M})$.
A_{3} : (i) For $r \neq 0$ and $x \in \widetilde{M}$ we have $r \cdot(x+\omega)=r \cdot \omega=\omega=r \cdot x+r \cdot \omega$ and $0 \cdot(x+\omega)=\theta=0 \cdot x+0 \cdot \omega$
(ii) If $r r^{\prime} \neq 0$ then $r \cdot\left(r^{\prime} \cdot \omega\right)=\omega=\left(r r^{\prime}\right) \cdot \omega$, otherwise $r \cdot\left(r^{\prime} \cdot \omega\right)=\theta=\left(r r^{\prime}\right) \cdot \omega$
(iii) If $r+r^{\prime}=0$ but not both 0 then $\left(r+r^{\prime}\right) \cdot \omega=\theta \leq_{p} \omega=r \cdot \omega+r^{\prime} \cdot \omega$
(iv) $1_{R} \cdot x=x, \forall x \in \widetilde{M}, 1_{R}$ being the multiplicative identity of R.
(v) $0 \cdot x=\theta, \forall x \in \widetilde{M}$

The remaining cases follow immediately from the fact that M is a module over R.
A_{4} : Here $[\widetilde{M}]_{0}=M$. Since $\omega+\left(-1_{R}\right) \cdot \omega=\omega \neq \theta$ and $m+\left(-1_{R}\right) \cdot m=m-m=\theta$, $\forall m \in M$ we have $x+\left(-1_{R}\right) \cdot x=\theta$ iff $x \in M=[\widetilde{M}]_{0}$.
A_{5} : For each $x \in M, x \leq_{p} x$ and for ω we have $m \leq_{p} \omega, \forall m \in M$
Thus it follows that $\left(\widetilde{M},+, \cdot, \leq_{p}\right)$ is a quasi module over R, where M is the set of all one order elements of \widetilde{M}.
This example shows that every module is contained in a quasi module.
In this example if we consider $M=\mathbb{C}$, the vector space of all complex numbers as a module over the unitary ring \mathbb{Z} then the extended complex plane $\mathbb{C}_{\infty}:=\mathbb{C} \cup\{\infty\}$ becomes a quasi module over \mathbb{Z}, provided we define $0 . \infty=0$ and $z<\infty, \forall z \in \mathbb{C}$.

Example 2.4. Let \mathbb{Z} be the ring of integers and $\mathbb{Z}^{+}:=\{n \in \mathbb{Z}: n \geq 0\}$. Then under the usual addition, \mathbb{Z}^{+}is a commutative semigroup with the identity 0 . Also it is a partially ordered set with respect to the usual order (\leq) of integers. If we define the ring multiplication '.' $: \mathbb{Z} \times \mathbb{Z}^{+} \longrightarrow \mathbb{Z}^{+}$by $(m, n) \longmapsto|m| n$, then it is a routine work to verify that $\left(\mathbb{Z}^{+},+, \cdot, \leq\right)$ is a quasi module over \mathbb{Z}. Here the set of all one order elements is given by $\left[\mathbb{Z}^{+}\right]_{0}=\{0\}$.

Example 2.5. Let $\mathbb{Z}^{+}[x]$ be the set of all polynomials with coefficients taken from $\mathbb{Z}^{+}:=$ $\{n \in \mathbb{Z}: n \geq 0\}$. Then with respect to the usual addition $(+)$ of polynomials it is a commutative semigroup with the identity, viz. 'zero polynomial' $O(x)$. Let us define the ring multiplication ' '' : $\mathbb{Z} \times \mathbb{Z}^{+}[x] \longrightarrow \mathbb{Z}^{+}[x]$ by $\left(m, a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right) \longmapsto|m|\left(a_{0}+a_{1} x+\right.$ $\left.\cdots+a_{n} x^{n}\right)$. Again if $f(x), g(x) \in \mathbb{Z}^{+}[x]$, where $f(x):=a_{0}+a_{1} x+\cdots+a_{n} x^{n}\left(a_{n} \neq 0\right)$ and $g(x):=b_{0}+b_{1} x+\cdots+b_{m} x^{m}\left(b_{m} \neq 0\right)$ then we define $f(x) \preccurlyeq g(x)$ if $\operatorname{deg} f(x) \leq \operatorname{deg} g(x)$ and $a_{i} \leq b_{i}, \forall i=0,1, \ldots, n(=\operatorname{deg} f(x))$. Then clearly ' \preccurlyeq ' is a partial order in $\mathbb{Z}^{+}[x]$. It now follows that $\left(\mathbb{Z}^{+}[x],+, \cdot, \preccurlyeq\right)$ is a quasi module over the unitary ring \mathbb{Z}; the set of all one order elements of $\mathbb{Z}^{+}[x]$ is given by $\left[\mathbb{Z}^{+}[x]\right]_{0}=\{O(x)\}$.

Example 2.6. Let $\mathbb{Q}^{+}:=\left\{\frac{p}{q}: p, q \in \mathbb{Z}^{+}, q \neq 0, \operatorname{gcd}(p, q)=1\right\}$ i.e. the set of all nonnegative rational numbers. Then with respect to the usual addition of rationals, \mathbb{Q}^{+}becomes a commutative semigroup with zero (0) as the identity element. We define the ring multiplication ' \odot ' by elements of the ring \mathbb{Z} by, $\left(r, \frac{p}{q}\right) \longmapsto|r| \frac{p}{q}(r \in \mathbb{Z})$. The partial order ' \leq ' on \mathbb{Q}^{+}is defined as $\frac{p_{1}}{q_{1}} \leq \frac{p_{2}}{q_{2}} \Leftrightarrow p_{1} \leq p_{2}$ and $q_{1}=q_{2}$. We now show that under these operations and partial order $\left(\mathbb{Q}^{+},+, \odot, \leq\right)$ becomes a qmod over the unitary ring \mathbb{Z}. First of all, it is clear that ' \leq ' is truly a partial order on \mathbb{Q}^{+}. We are only to show the following to establish this example of qmod.
$\mathbf{A}_{\mathbf{2}}$: If $x, y \in \mathbb{Q}^{+}$with $x \leq y$ then for any $z \in \mathbb{Q}^{+}$we have $z+x \leq z+y$ and for any $r \in \mathbb{Z}$ we have $|r| x \leq|r| y$ i.e. $r \odot x \leq r \odot y$.
$\mathbf{A}_{\mathbf{3}}:\left(\right.$ i) $r \odot(x+y)=|r|(x+y)=|r| x+|r| y=r \odot x+r \odot y, \forall r \in \mathbb{Z}, \forall x, y \in \mathbb{Q}^{+}$.
(ii) $r_{1} \odot\left(r_{2} \odot x\right)=\left|r_{1}\right|\left|r_{2}\right| x=\left|r_{1} r_{2}\right| x=\left(r_{1} r_{2}\right) \odot x, \forall r_{1}, r_{2} \in \mathbb{Z}, \forall x \in \mathbb{Q}^{+}$.
(iii) $\left(r_{1}+r_{2}\right) \odot x=\left|r_{1}+r_{2}\right| x \leq\left|r_{1}\right| x+\left|r_{2}\right| x=r_{1} \odot x+r_{2} \odot x, \forall r_{1}, r_{2} \in \mathbb{Z}, \forall x \in \mathbb{Q}^{+}$.
(iv) $1 \odot x=x, \forall x \in \mathbb{Q}^{+}$.
(v) $0 \odot x=0, \forall x \in \mathbb{Q}^{+}$and $r \odot 0=0, \forall r \in \mathbb{Z}$.
$\mathbf{A}_{\mathbf{4}}:\left[\mathbb{Q}^{+}\right]_{0}:=\left\{\frac{p}{q} \in \mathbb{Q}^{+}: \frac{r}{s} \not \leq \frac{p}{q}, \forall \frac{r}{s} \in \mathbb{Q}^{+} \backslash\left\{\frac{p}{q}\right\}\right\}=\{0\}$. Again, $1 \odot \frac{p}{q}+(-1) \odot \frac{p}{q}=0 \Leftrightarrow$ ${ }_{q}^{p}+\frac{p}{q}=0 \Leftrightarrow 2_{q}^{p}=0 \Leftrightarrow \frac{p}{q}=0$.
$\mathbf{A}_{\mathbf{5}}$: For each $\underset{q}{p} \in \mathbb{Q}^{+}$we have $0 \leq \frac{p}{q}$.
Thus $\left(\mathbb{Q}^{+},+, \odot, \leq\right)$ is a qmod over \mathbb{Z}.
Example 2.7. Let $\left\{p_{1}, p_{2}, \ldots\right\}$ be a complete enumeration of all primes in order i.e. $2=$ $p_{1}<p_{2}<\cdots$. Now any integer $m \geq 1$ can be expressed uniquely as $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{i}^{\alpha_{i}} \ldots$, where $\alpha_{i} \in \mathbb{Z}^{+}:=\{n \in \mathbb{Z}: n \geq 0\}, \forall i$ and all but finitely many α_{i} 's are zero. Thus we can identify the integer m with the sequence $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ in \mathbb{Z}^{+}. In other words, we can say that m can be identified with an element of $\left(\mathbb{Z}^{+}\right)^{\mathbb{N}}$ whose all but finitely many terms are zero and for convenience let us denote this set as $\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ i.e.
$\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}:=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots\right): \alpha_{i} \in \mathbb{Z}^{+}, \alpha_{i}=0\right.$ for all but finitely many $\left.i ' s\right\}$
Let us first introduce some notations : if $\alpha:=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ and $p:=\left(p_{1}, p_{2}, \ldots\right)$ be the sequence of all primes in strictly increasing order, as stated above, we denote $p^{\alpha}:=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots$ which is valid since all but finitely many factors in this infinite product are 1. Also if $\alpha, \beta \in\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ then $p^{\alpha} p^{\beta}=p^{\alpha+\beta}$, where $\alpha+\beta$ is the sequence in $\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ obtained by term by term addition of α and β. Again if r is any non-negative integer then $\left(p^{\alpha}\right)^{r}=p^{r \alpha}$. Thus the usual product of two integers (≥ 1) can be viewed as the sum of two elements in $\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$; also for any integer $m(\geq 1)$ and $r \in \mathbb{Z}^{+}$the exponent operation m^{r} can be viewed as the operation $r \alpha:=\left(r \alpha_{1}, r \alpha_{2}, \ldots\right)$, where $m:=p^{\alpha}$ and $\alpha:=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$. These facts now culminate into the following example of quasi module.
$\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ is a commutative semigroup with respect to the usual term by term addition of two sequences; it contains an identity element, namely zero sequence ' 0 ' (i.e. the sequence all of whose terms are zero). With the help of the unitary ring \mathbb{Z}, we define a ring multiplication ' \cdot ': $\mathbb{Z} \times\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}} \longrightarrow\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ as $(r, \alpha) \longmapsto|r| \alpha$. We now define an order ' \preccurlyeq ' by $\alpha \preccurlyeq \beta$ iff $p^{\alpha} \leq p^{\beta}$. It is obvious that \preccurlyeq is a partial order in $\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$. We show below that $\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ is a qmod over \mathbb{Z} with respect to the aforesaid operations and partial order.
$\mathbf{A}_{\mathbf{2}}$: Let $\alpha, \beta, \gamma \in\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ with $\alpha \preccurlyeq \beta$. Then $p^{\alpha} \leq p^{\beta} \Rightarrow p^{\gamma} p^{\alpha} \leq p^{\gamma} p^{\beta} \Rightarrow p^{\gamma+\alpha} \leq p^{\gamma+\beta}$ $\Rightarrow \gamma+\alpha \preccurlyeq \gamma+\beta$. Again for any $r \in \mathbb{Z}$ we have $\left(p^{\alpha}\right)^{|r|} \leq\left(p^{\beta}\right)^{|r|} \Rightarrow p^{|r| \alpha} \leq p^{|r| \beta} \Rightarrow r \cdot \alpha \preccurlyeq r \cdot \beta$. $\mathbf{A}_{\mathbf{3}}:$ Let $\alpha, \beta \in\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ and $n, n_{1}, n_{2} \in \mathbb{Z}$. Also let $\alpha:=\left(\alpha_{i}\right)_{i \in \mathbb{N}}, \beta:=\left(\beta_{i}\right)_{i \in \mathbb{N}}$. Then
(i) $n \cdot(\alpha+\beta)=\left(|n|\left(\alpha_{i}+\beta_{i}\right)\right)_{i \in \mathbb{N}}=\left(|n| \alpha_{i}\right)_{i \in \mathbb{N}}+\left(|n| \beta_{i}\right)_{i \in \mathbb{N}}=n \cdot \alpha+n \cdot \beta$.
(ii) $n_{1} \cdot\left(n_{2} \cdot \alpha\right)=n_{1} \cdot\left(\left|n_{2}\right| \alpha_{i}\right)_{i \in \mathbb{N}}=\left(\left|n_{1}\right|\left|n_{2}\right| \alpha_{i}\right)_{i \in \mathbb{N}}=\left(\left|n_{1} n_{2}\right| \alpha_{i}\right)_{i \in \mathbb{N}}=\left(n_{1} n_{2}\right) \cdot \alpha$.
(iii) $\left(n_{1}+n_{2}\right) \cdot \alpha=\left(\left|n_{1}+n_{2}\right| \alpha_{i}\right)_{i \in \mathbb{N}}$. Now $\left|n_{1}+n_{2}\right| \alpha_{i} \leq\left|n_{1}\right| \alpha_{i}+\left|n_{2}\right| \alpha_{i}, \forall i \in \mathbb{N}$. So $p_{i}^{\left|n_{1}+n_{2}\right| \alpha_{i}} \leq p_{i}^{\left|n_{1}\right| \alpha_{i}} p_{i}^{\left|n_{2}\right| \alpha_{i}}, \forall i \in \mathbb{N} \Rightarrow p^{\left|n_{1}+n_{2}\right| \alpha} \leq p^{\left|n_{1}\right| \alpha+\left|n_{2}\right| \alpha} \Rightarrow\left(n_{1}+n_{2}\right) \cdot \alpha \preccurlyeq n_{1} \cdot \alpha+n_{2} \cdot \alpha$.
(iv) $1 \cdot \alpha=\left(|1| \alpha_{i}\right)_{i \in \mathbb{N}}=\alpha$.
(v) $0 \cdot \alpha=\left(|0| \alpha_{i}\right)_{i \in \mathbb{N}}=0$ and $n \cdot 0=0$.
\mathbf{A}_{4} : Since any $\alpha \in\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$ corresponds to an integer ≥ 1 it follows that, zero sequence ' 0 ' is the only one order element of $\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$. Again $1 \cdot \alpha+(-1) \cdot \alpha=0 \Leftrightarrow\left(\alpha_{i}+\alpha_{i}\right)_{i \in \mathbb{N}}=0$ $\Leftrightarrow 2 \alpha_{i}=0, \forall i \Leftrightarrow \alpha=0$. So axiom A_{4} follows.
$\mathbf{A}_{\mathbf{5}}$: For each $\alpha \in\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}}$, since $p^{\alpha} \geq 1=p^{0}$ we have $0 \preccurlyeq \alpha$.
Thus it follows that $\left(\left(\mathbb{Z}^{+}\right)_{00}^{\mathbb{N}},+, \cdot, \preccurlyeq\right)$ is a quasi module over \mathbb{Z}.

3 Order morphism

In this section we introduce a morphism-like structure between two quasi modules over a common unitary ring and study some of its properties.

Definition 3.1. A mapping $f: X \longrightarrow Y(X, Y$ being two quasi modules over a unitary ring R) is called an order-morphism if
(i) $f(x+y)=f(x)+f(y), \forall x, y \in X$
(ii) $f(r x)=r f(x), \forall r \in R, \forall x \in X$
(iii) $x \leq y(x, y \in X) \Rightarrow f(x) \leq f(y)$
(iv) $p \leq q(p, q \in f(X)) \Rightarrow f^{-1}(p) \subseteq \downarrow f^{-1}(q)$ and $f^{-1}(q) \subseteq \uparrow f^{-1}(p)$, where
$\uparrow A:=\{x \in X: x \geq a$ for some $a \in A\}$ and $\downarrow A:=\{x \in X: x \leq a$ for some $a \in A\}$ for any $A \subseteq X$.

A surjective (injective, bijective) order-morphism is called an order-epimorphism (ordermonomorphism, order-isomorphism).

Note 3.2. If $f: X \longrightarrow Y$ be an order-morphism and θ, θ^{\prime} be the identity elements of X, Y respectively then $f(\theta)=f(0 . \theta)=0 . f(\theta)=\theta^{\prime}$. Again if x_{0} be an one order element of X then so is $f\left(x_{0}\right)$ of Y. In fact, $x_{0} \in X_{0} \Rightarrow x_{0}-x_{0}=\theta \Rightarrow f\left(x_{0}\right)-f\left(x_{0}\right)=\theta^{\prime}$ $\Rightarrow f\left(x_{0}\right) \in Y_{0}$. Also if $y_{0} \in Y_{0} \cap f(X)$ then $\exists x \in f^{-1}\left(y_{0}\right) \Rightarrow \exists x_{0} \in X_{0}$ such that $x_{0} \leq x \Rightarrow f\left(x_{0}\right) \leq f(x)=y_{0} \Rightarrow f\left(x_{0}\right)=y_{0}\left[\because y_{0}\right.$ is an one order element of $\left.Y\right]$. Thus $f^{-1}\left(y_{0}\right) \cap X_{0} \neq \emptyset$.

Before proceeding further let us first introduce the following concept which will be useful in the sequel.

Definition 3.3. A subset Y of a qmod X is said to be a sub quasi module (subqmod in short) if Y itself be a quasi module with all the compositions of X being restricted to Y.

Note 3.4. A subset Y of a qmod X (over a unitary ring R) is a sub quasi module iff Y satisfies the following conditions :
(i) $r x+s y \in Y, \forall r, s \in R, \forall x, y \in Y$.
(ii) $Y_{0} \subseteq X_{0} \cap Y$, where $Y_{0}:=\{z \in Y: y \not 又 z, \forall y \in Y \backslash\{z\}\}$
(iii) $\forall y \in Y, \exists y_{0} \in Y_{0}$ such that $y_{0} \leq y$

If Y be a subqmod of X then actually $Y_{0}=X_{0} \cap Y$, since for any $Y \subseteq X$ we have $X_{0} \cap Y \subseteq Y_{0}$.

Proposition 3.5. If $f: X \longrightarrow Y(X, Y$ being two quasi modules over a unitary ring $R)$ be an order-morphism then $f(M):=\{f(m): m \in M\}$ is a subqmod of Y, for any subqmod M of X.

Proof. For $x, y \in M$ and $r, s \in R$ we have $r f(x)+s f(y)=f(r x+s y) \in f(M)$, since $r x+s y \in M$ for, M is a subqmod of X. Clearly, $f(M) \cap Y_{0} \subseteq[f(M)]_{0}$. Now let $y \in[f(M)]_{0}$
$\Rightarrow \exists m \in M$ such that $y=f(m)$. So $\exists p \in M_{0}$ such that $p \leq m \Rightarrow f(p) \leq f(m) \Rightarrow f(p)=$ $f(m)=y[\because y$ is an one order element of $f(M)$ and $f(p) \in f(M)]$. Since $M_{0}=M \cap X_{0}$ so $p \in X_{0} \Rightarrow f(p)$ is an one order element of Y and hence $y=f(p) \in Y_{0} \cap f(M)$. Thus $[f(M)]_{0} \subseteq f(M) \cap Y_{0}$. Therefore $[f(M)]_{0}=f(M) \cap Y_{0}$. Again for any $m \in M, \exists m_{0} \in M_{0}$ such that $m_{0} \leq m \Rightarrow f\left(m_{0}\right) \leq f(m)$. Here $f\left(m_{0}\right)$ is an one order element of Y and hence $f\left(m_{0}\right) \in[f(M)]_{0}$. Thus it follows that $f(M)$ is a subqmod of Y.

Proposition 3.6. Let X, Y, Z be three qmods over an unitary ring R and $f: X \longrightarrow Y$, $g: Y \longrightarrow Z$ be two order-morphisms. Then their composition $g \circ f: X \longrightarrow Z$ is an order-morphism, provided f is onto.

Proof. $(g \circ f)\left(r x_{1}+x_{2}\right)=g\left(f\left(r x_{1}+x_{2}\right)\right)=g\left(r f\left(x_{1}\right)+f\left(x_{2}\right)\right)=r .(g \circ f)\left(x_{1}\right)+(g \circ f)\left(x_{2}\right)$, $\forall x_{1}, x_{2} \in X$ and $\forall r \in R$. Moreover, $x_{1} \leq x_{2}\left(x_{1}, x_{2} \in X\right) \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right) \Rightarrow g\left(f\left(x_{1}\right)\right) \leq$ $g\left(f\left(x_{2}\right)\right) \Rightarrow(g \circ f)\left(x_{1}\right) \leq(g \circ f)\left(x_{2}\right)$.

Now let $z_{1}, z_{2} \in(g \circ f)(X)$ such that $z_{1} \leq z_{2}$. Let $x \in(g \circ f)^{-1}\left(z_{1}\right)$. Then $(g \circ f)(x)=$ $z_{1} \Rightarrow g(f(x))=z_{1} \Rightarrow f(x) \in g^{-1}\left(z_{1}\right) \subseteq \downarrow g^{-1}\left(z_{2}\right) \Rightarrow f(x) \leq y$, for some $y \in g^{-1}\left(z_{2}\right)$ $\Rightarrow g(y)=z_{2}$. Now f being onto, $y \in f(X)$ and hence $x \in \downarrow f^{-1}(y) \Rightarrow x \leq x^{\prime}$, where $f\left(x^{\prime}\right)=y$. Therefore $(g \circ f)\left(x^{\prime}\right)=g\left(f\left(x^{\prime}\right)\right)=g(y)=z_{2} \Rightarrow x \in \downarrow(g \circ f)^{-1}\left(z_{2}\right)$. $\therefore(g \circ f)^{-1}\left(z_{1}\right) \subseteq \downarrow(g \circ f)^{-1}\left(z_{2}\right)$.
Again $x_{0} \in(g \circ f)^{-1}\left(z_{2}\right) \Rightarrow(g \circ f)\left(x_{0}\right)=z_{2} \Rightarrow g\left(f\left(x_{0}\right)\right)=z_{2} \Rightarrow f\left(x_{0}\right) \in g^{-1}\left(z_{2}\right) \subseteq \uparrow g^{-1}\left(z_{1}\right)$ $\Rightarrow f\left(x_{0}\right) \geq y^{\prime}$, for some $y^{\prime} \in g^{-1}\left(z_{1}\right)$. So $g\left(y^{\prime}\right)=z_{1}$. Now f being onto, $y^{\prime} \in f(X)$ and hence $x_{0} \in \uparrow f^{-1}\left(y^{\prime}\right) \Rightarrow x_{0} \geq x^{\prime \prime}$, where $f\left(x^{\prime \prime}\right)=y^{\prime}$. Therefore $(g \circ f)\left(x^{\prime \prime}\right)=g\left(f\left(x^{\prime \prime}\right)\right)=g\left(y^{\prime}\right)=z_{1}$ $\Rightarrow x_{0} \in \uparrow(g \circ f)^{-1}\left(z_{1}\right)$.
$\therefore(g \circ f)^{-1}\left(z_{2}\right) \subseteq \uparrow(g \circ f)^{-1}\left(z_{1}\right)$.
Thus it follows that $(g \circ f)$ is an order-morphism.
Proposition 3.7. If $f: X \longrightarrow Y, g: Y \longrightarrow Z(X, Y, Z$ being qmods over the same unitary ring R) be two order-morphisms such that $g \circ f: X \longrightarrow Z$ is also an order-morphism then
(i) $g \circ f$ is onto iff both f, g are onto;
(ii) $g \circ f$ is injective iff both f, g are injective.

Proof. First of all, $g \circ f$ is an order-morphism provided f is onto. So (i) is immediate. For (ii), we are only to show that g is injective whenever $g \circ f$ is injective. Actually $g \circ f$ is injective implies g is injective on $f(X)$; in fact, if $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$ for $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (and hence for $x_{1} \neq x_{2}$) then injectivity of $g \circ f$ would be contradicted. Since for $g \circ f$ to be an order-morphism f needs to be onto, (ii) follows.

Remark 3.8. The above proposition readily implies that two order-isomorphisms, after composition, generates again an order-isomorphism; inverse of an order-isomorphism is an order-isomorphism and the identity map on any qmod is an order-isomorphism. Thus 'order-isomorphism' induces an equivalence relation on the collection of all qmods over the same unitary ring and we can identify two such qmods related by this equivalence relation.

Definition 3.9. Let $f: X \longrightarrow Y(X, Y$ being two qmods over the same unitary ring $R)$ be an order-morphism. We define ker $f:=\{(x, y) \in X \times X: f(x)=f(y)\}$ and call it the 'kernel of f '.

It is immediate from definition that $(x, x) \in \operatorname{ker} f, \forall x \in X$ and thus if we write $\Delta:=\{(x, x): x \in X\}$ then $\Delta \subseteq \operatorname{ker} f$, equality holds iff f is injective.

We now show that ker f is a subqmod of $X \times X$, but for doing so we have to first discuss the Cartesian product of qmods.

4 Arbitrary product of quasi modules

In this section we shall discuss arbitrary product of quasi modules and show that the product is also a quasi module.

Definition 4.1. Let $\left\{X_{\mu}: \mu \in \Lambda\right\}$ be an arbitrary family of quasi modules over the unitary ring R. Let $X:=\prod_{\mu \in \Lambda} X_{\mu}$ be the Cartesian product of these quasi modules defined as : $x \in X$ if and only if $x: \Lambda \longrightarrow \bigcup_{\mu \in \Lambda} X_{\mu}$ is a map such that $x(\mu) \in X_{\mu}, \forall \mu \in \Lambda$. Then by the axiom of choice we know that X is nonempty, since Λ is nonempty and each X_{μ} contains at least the additive identity θ_{μ} (say).
Let us denote $x_{\mu}:=x(\mu), \forall \mu \in \Lambda$. Also we write each $x \in X$ as $x=\left(x_{\mu}\right)$, where $x_{\mu}=p_{\mu}(x), p_{\mu}: X \longrightarrow X_{\mu}$ being the projection map, $\forall \mu \in \Lambda$. Now we define addition, ring multiplication and partial order as follows : for $x=\left(x_{\mu}\right), y=\left(y_{\mu}\right) \in X$ and $r \in R$
(i) $x+y=\left(x_{\mu}+y_{\mu}\right)$; (ii) $r . x=\left(r x_{\mu}\right)$; (iii) $x \leq y$ if $x_{\mu} \leq y_{\mu}, \forall \mu \in \Lambda$.

We now show that $(X,+, ., \leq)$ is a quasi module over R.
A_{1} : Clearly X is a commutative semigroup with identity θ, where $\theta=\left(\theta_{\mu}\right)$.
$A_{2}: x \leq y \Rightarrow x_{\mu} \leq y_{\mu}, \forall \mu \in \Lambda \Rightarrow x_{\mu}+z_{\mu} \leq y_{\mu}+z_{\mu}$ and $r x_{\mu} \leq r y_{\mu}, \forall \mu \in \Lambda$ and $\forall r \in R$ $\Rightarrow x+z \leq y+z$ and $r x \leq r y$, where $z=\left(z_{\mu}\right) \in X$.
A_{3} : For $x=\left(x_{\mu}\right), y=\left(y_{\mu}\right) \in X$ and for $r, s \in R$ we have
(i) $r(x+y)=\left(r\left(x_{\mu}+y_{\mu}\right)\right)=\left(r x_{\mu}+r y_{\mu}\right)=\left(r x_{\mu}\right)+\left(r y_{\mu}\right)=r x+r y$.
(ii) $r(s x)=r\left(s x_{\mu}\right)=r s\left(x_{\mu}\right)=r s x$.
(iii) each X_{μ} being a quasi module, $(r+s) x_{\mu} \leq r x_{\mu}+s x_{\mu}, \forall \mu \in \Lambda \Rightarrow(r+s) x \leq r x+s x$.
(iv) $1 \cdot x=\left(1 \cdot x_{\mu}\right)=\left(x_{\mu}\right)=x, 1$ being the multiplicative identity of R.
(v) $0 \cdot x=\left(0 \cdot x_{\mu}\right)=\left(\theta_{\mu}\right)=\theta$. Again r. $\theta=\left(r \cdot \theta_{\mu}\right)=\left(\theta_{\mu}\right)=\theta$.
$A_{4}: x-x=\theta \Leftrightarrow x_{\mu}-x_{\mu}=\theta_{\mu}, \forall \mu \in \Lambda \Leftrightarrow x_{\mu} \in\left[X_{\mu}\right]_{0}, \forall \mu \in \Lambda$, where $\left[X_{\mu}\right]_{0}$ is the set of all one order elements of X_{μ}. We claim that $X_{0}=\left\{\left(x_{\mu}\right) \in X: x_{\mu} \in\left[X_{\mu}\right]_{0}, \forall \mu \in \Lambda\right\} \equiv$ $\prod_{\mu \in \Lambda}\left[X_{\mu}\right]_{0}$. In fact, $x=\left(x_{\mu}\right) \notin \prod_{\mu \in \Lambda}\left[X_{\mu}\right]_{0} \Rightarrow x_{\lambda} \notin\left[X_{\lambda}\right]_{0}$ for some $\lambda \in \Lambda$. Then $\exists i_{\lambda} \in\left[X_{\lambda}\right]_{0}$ such that $i_{\lambda} \leq x_{\lambda}, i_{\lambda} \neq x_{\lambda}$. Let $y=\left(y_{\mu}\right)$ where $y_{\mu}=x_{\mu}, \mu \neq \lambda$ and $y_{\lambda}=i_{\lambda}$. Then $y \leq x, y \neq x \Rightarrow x \notin X_{0}$. Conversely if $x_{\mu} \in\left[X_{\mu}\right]_{0}, \forall \mu \in \Lambda$ then $x=\left(x_{\mu}\right) \in X_{0}$. Thus $X_{0}=\prod_{\mu \in \Lambda}\left[X_{\mu}\right]_{0}$. So $x-x=\theta \Leftrightarrow x \in X_{0}$.
A_{5} : Let $x=\left(x_{\mu}\right) \in X$. Then $x_{\mu} \in X_{\mu}, \forall \mu \in \Lambda \Rightarrow \exists t_{\mu} \in\left[X_{\mu}\right]_{0}, \forall \mu \in \Lambda$ such that $t_{\mu} \leq x_{\mu}$, $\forall \mu \in \Lambda \Rightarrow t=\left(t_{\mu}\right) \leq\left(x_{\mu}\right)=x$, where $t \in X_{0}$.
$\therefore(X,+, ., \leq)$ is a quasi module over R.

Proposition 4.2. Let $\left\{X_{i}: i \in \Lambda\right\}$ be an arbitrary family of quasi modules over an unitary ring R and $X:=\prod_{i \in \Lambda} X_{i}$ be the product qmod of these qmods. Then each projection map $p_{j}: X \longrightarrow X_{j}$ is an order-epimorphism.

Proof. Let $x=\left(x_{i}\right), y=\left(y_{i}\right) \in X$ and $r \in R$. Then $p_{j}(r x+y)=r x_{j}+y_{j}=r p_{j}(x)+p_{j}(y)$. Again if $x \leq y$ then $x_{i} \leq y_{i}, \forall i \in \Lambda \Rightarrow p_{j}(x) \leq p_{j}(y)$.

Now let $a, b \in p_{j}(X)=X_{j}$ (since every projection map is onto) with $a \leq b$. Let $x=\left(x_{i}\right) \in p_{j}^{-1}(a)$. Then $p_{j}(x)=a$ i.e. $x_{j}=a$. We choose $y=\left(y_{i}\right)$ where $y_{i}=x_{i}$ for $i \neq j$ and $y_{j}=b$. Then $x \leq y$ and $p_{j}(y)=y_{j}=b$ i.e. $y \in p_{j}^{-1}(b)$. Thus we have $p_{j}^{-1}(a) \subseteq \downarrow p_{j}^{-1}(b)$. Similarly we can show that $p_{j}^{-1}(b) \subseteq \uparrow p_{j}^{-1}(a)$. So p_{j} being onto the proposition follows.

Proposition 4.3. Let $f: X \longrightarrow Y$ be an order-morphism (X, Y being two qmods over an unitary ring R). Then $\operatorname{ker} f$ is a subqmod of $X \times X$.

Proof. For $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \operatorname{ker} f$ and $r, s \in R$ we have $f\left(r x_{1}+s x_{2}\right)=r f\left(x_{1}\right)+s f\left(x_{2}\right)=$ $r f\left(y_{1}\right)+s f\left(y_{2}\right)=f\left(r y_{1}+s y_{2}\right) \Rightarrow\left(r x_{1}+s x_{2}, r y_{1}+s y_{2}\right) \in \operatorname{ker} f$ i.e. $r\left(x_{1}, y_{1}\right)+s\left(x_{2}, y_{2}\right) \in \operatorname{ker} f$.

Now let $(x, y) \in \operatorname{ker} f$ but $(x, y) \notin X_{0} \times X_{0}$. Without loss of generality assume that $x \notin X_{0}$. Then $\exists a \in X_{0}$ such that $a \leq x$. So $f(a) \leq f(x)=f(y)$. Now f being an order-morphism, $\exists z \in f^{-1}(f(a))$ such that $z \leq y$. Then $\exists t \in X_{0}$ such that $t \leq z \Rightarrow f(t) \leq$ $f(z)=f(a)$. Now a being one order, $f(a)$ is so and hence $f(t)=f(a) \Rightarrow(a, t) \in \operatorname{ker} f$. Also $(a, t) \leq(x, y)$ and $(a, t) \neq(x, y)$. This ensures that $(x, y) \notin[\operatorname{ker} f]_{0}$. Thus we have $[\operatorname{ker} f]_{0} \subseteq \operatorname{ker} f \cap\left(X_{0} \times X_{0}\right)$. Also from this argument we find that for any $(x, y) \in \operatorname{ker} f$, $\exists(a, t) \in \operatorname{ker} f \cap\left(X_{0} \times X_{0}\right)=[\operatorname{ker} f]_{0}$ such that $(a, t) \leq(x, y)$ (if (x, y) itself be of order one we need not find $(a, t))$. The proposition then follows from the note 3.4.

5 Order isomorphism theorem

In this section we present an isomorphism theorem between quasi modules.
Lemma 5.1. Let X, Y, Z be three quasi modules over the unitary ring $R, \alpha: X \longrightarrow Y$ be an order-epimorphism and $\beta: X \longrightarrow Z$ be an order-morphism such that $\operatorname{ker} \alpha \subseteq \operatorname{ker} \beta$. Then \exists a unique order-morphism $\gamma: Y \longrightarrow Z$ such that $\gamma \circ \alpha=\beta$.

Proof. We first show that if an order-morphism $\gamma: Y \longrightarrow Z$ exists satisfying $\gamma \circ \alpha=\beta$ then that must be unique. In fact, if γ^{\prime} be another such order-morphism then $\gamma \circ \alpha=\beta=\gamma^{\prime} \circ \alpha$. This shows that γ, γ^{\prime} coincide on $\alpha(X)$. α being onto, γ, γ^{\prime} really coincide on Y.

To prove the existence let $y \in Y . \alpha$ being order-epimorphism, $\alpha^{-1}(y) \neq \emptyset$. Now $\operatorname{ker} \alpha \subseteq \operatorname{ker} \beta \Rightarrow \beta$ is constant on $\alpha^{-1}(y)$. So it is reasonable to define $\gamma(y):=\beta\left(\alpha^{-1}(y)\right)$, $\forall y \in Y$. Clearly then $\gamma \circ \alpha=\beta$. Now let $y, y^{\prime} \in Y, r \in R$ and $x \in \alpha^{-1}(y), x^{\prime} \in \alpha^{-1}\left(y^{\prime}\right)$. Then $\gamma(y)=\beta(x)$ and $\gamma\left(y^{\prime}\right)=\beta\left(x^{\prime}\right)$. Now α being an order-morphism, we have $y+r y^{\prime}=$ $\alpha(x)+r \alpha\left(x^{\prime}\right)=\alpha\left(x+r x^{\prime}\right) \Rightarrow x+r x^{\prime} \in \alpha^{-1}\left(y+r y^{\prime}\right)$. Then β being an order-morphism we have $\gamma(y)+r \gamma\left(y^{\prime}\right)=\beta(x)+r \beta\left(x^{\prime}\right)=\beta\left(x+r x^{\prime}\right)=\gamma\left(y+r y^{\prime}\right)$.

Next let $y \leq y^{\prime}\left(y, y^{\prime} \in Y\right)$. Then $\alpha^{-1}(y) \subseteq \downarrow \alpha^{-1}\left(y^{\prime}\right)$. So for $x \in \alpha^{-1}(y), \exists x^{\prime} \in \alpha^{-1}\left(y^{\prime}\right)$ such that $x \leq x^{\prime}$. Thus $\gamma(y)=\beta(x) \leq \beta\left(x^{\prime}\right)=\gamma\left(y^{\prime}\right)$.

For declaring γ to be an order-morphism it now remains to show that $\gamma^{-1}(z) \subseteq \downarrow \gamma^{-1}\left(z^{\prime}\right)$ and $\gamma^{-1}\left(z^{\prime}\right) \subseteq \uparrow \gamma^{-1}(z)$, whenever $z \leq z^{\prime}\left[z, z^{\prime} \in \gamma(Y)\right]$. To prove the first inclusion let $y \in \gamma^{-1}(z)$. Then $\alpha^{-1}(y) \subseteq \beta^{-1}(z) \subseteq \downarrow \beta^{-1}\left(z^{\prime}\right)$. So for $x \in \alpha^{-1}(y), \exists x^{\prime} \in \beta^{-1}\left(z^{\prime}\right)$ such that $x \leq x^{\prime}$. Then $y=\alpha(x) \leq \alpha\left(x^{\prime}\right)=y^{\prime}$ (say). Now $\gamma\left(y^{\prime}\right)=\gamma\left(\alpha\left(x^{\prime}\right)\right)=\beta\left(x^{\prime}\right)=z^{\prime}$ $\Rightarrow y^{\prime} \in \gamma^{-1}\left(z^{\prime}\right)$, where $y \leq y^{\prime}$. The second inclusion can be similarly disposed of.

Lemma 5.2. Let X, Y, Z be three quasi modules over the unitary ring $R, \alpha: Y \longrightarrow X$ be an order-monomorphism and $\beta: Z \longrightarrow X$ be an order-morphism such that $\alpha(Y)=\beta(Z)$. Then \exists a unique order-epimorphism $\gamma: Z \longrightarrow Y$ such that the following diagram commutes.

Proof. α being an order-monomorphism it follows that α is an order-isomorphism from Y onto the sub quasi module $\alpha(Y)(\equiv \beta(Z))$ of X. Thus we may define $\gamma:=\alpha^{-1} \circ \beta$. It then follows from the remark 3.8 and proposition 3.6 that γ is an order-morphism, since β is 'onto' the domain of α^{-1}. Since $\alpha^{-1}(\beta(Z))=Y$, so γ is surjective. Also $\alpha \circ \gamma=\beta$ i.e. the above diagram is commutative.

If, together with γ, any other γ^{\prime} makes the above diagram commutative then, $\alpha \circ \gamma=$ $\beta=\alpha \circ \gamma^{\prime} \Longrightarrow \gamma=\gamma^{\prime}$ (since α is an order-isomorphism).

Before going to prove the isomorphism theorem we need to construct a quotient structure which again necessitates the introduction of the concept of 'congruence'. So let us define this concept first.

Definition 5.3. An equivalence relation E, defined on a quasi module X over an unitary ring R, is said to be a congruence on X if,
(i) $(x, y) \in E \Rightarrow(a+x, a+y) \in E, \forall a \in X$
(ii) $(x, y) \in E \Rightarrow(r x, r y) \in E, \forall r \in R$
(iii) $x \leq y \leq z$ and $(x, z) \in E \Rightarrow(x, y) \in E$ (and hence $(y, z) \in E$)
(iv) $a \leq x \leq b$ and $(x, y) \in E \Rightarrow \exists c, d \in X$ with $c \leq y \leq d$ such that $(a, c),(b, d) \in E$.

Proposition 5.4. If $\phi: X \longrightarrow Y(X, Y$ being two qmods over an unitary ring $R)$ be an order-morphism then $\operatorname{ker} \phi$ is a congruence on X.

Proof. Clearly $\operatorname{ker} \phi$ is an equivalence relation on X. Let $(x, y) \in \operatorname{ker} \phi, a \in X$ and $r \in R$. Then $\phi(a+x)=\phi(a)+\phi(x)=\phi(a)+\phi(y)=\phi(a+y)$ and $\phi(r x)=r \phi(x)=r \phi(y)=\phi(r y)$. Thus $(a+x, a+y),(r x, r y) \in \operatorname{ker} \phi$. Again $x \leq y \leq z \Rightarrow \phi(x) \leq \phi(y) \leq \phi(z)$. So $(x, z) \in \operatorname{ker} \phi \Rightarrow \phi(x)=\phi(z)=\phi(y) \Rightarrow(x, y) \in \operatorname{ker} \phi$.

Next let $b \geq x$. Then $\phi(b) \geq \phi(x)=\phi(y) \Rightarrow y \in \phi^{-1}(\phi(y)) \subseteq \downarrow \phi^{-1}(\phi(b)) \Rightarrow \exists d \in$ $\phi^{-1}(\phi(b))$ such that $y \leq d$. Now $\phi(d)=\phi(b) \Rightarrow(b, d) \in \operatorname{ker} \phi$. Similarly for $a \leq x$ we have $\phi(a) \leq \phi(x)=\phi(y)$. So $y \in \phi^{-1}(\phi(y)) \subseteq \uparrow \phi^{-1}(\phi(a)) \Rightarrow \exists c \in \phi^{-1}(\phi(a))$ such that $y \geq c$. Now $\phi(c)=\phi(a) \Rightarrow(a, c) \in \operatorname{ker} \phi$. Thus ker ϕ is a congruence on X.

We now give a quotient structure on X using the above congruence. For this let us construct the quotient set $X / \operatorname{ker} \phi:=\{[x]: x \in X\}$, where $[x]$ is the equivalence class containing x obtained by the congruence ker ϕ. We define addition, ring multiplication and partial order on $X / \operatorname{ker} \phi$ as follows : For $x, y \in X$ and $r \in R$,
(i) $[x]+[y]:=[x+y]$; (ii) $r[x]:=[r x]$; (iii) $[x] \leq[y]$ if and only if $\phi(x) \leq \phi(y)$.

Theorem 5.5. If $\phi: X \longrightarrow Y(X, Y$ being two qmods over an unitary ring $R)$ be an order-morphism then $X / \operatorname{ker} \phi$ is a quasi module over R.

Proof. A_{1} : Clearly $(X / \operatorname{ker} \phi,+)$ is a commutative semigroup with identity [θ], where θ is the identity of X.
$A_{2}:$ Let $[x],[y],[z] \in X / \operatorname{ker} \phi$ and $[x] \leq[y]$. Now, $\phi(x+z)=\phi(x)+\phi(z) \leq \phi(y)+\phi(z)=$ $\phi(y+z) \Rightarrow[x+z] \leq[y+z] \Rightarrow[x]+[z] \leq[y]+[z]$. Also, $\phi(r x)=r \phi(x) \leq r \phi(y)=\phi(r y)$, $\forall r \in R \Rightarrow[r x] \leq[r y] \Rightarrow r[x] \leq r[y], \forall r \in R$.
$A_{3}:($ (i) $r([x]+[y])=r[x+y]=[r x+r y]=[r x]+[r y]=r[x]+r[y]$
(ii) $r(s[x])=r[s x]=[r s x]=r s[x]$, where $r, s \in R$
(iii) $(r+s) x \leq r x+s x \Rightarrow \phi((r+s) x) \leq \phi(r x)+\phi(s x) \Rightarrow(r+s)[x]=[(r+s) x] \leq$ $[r x]+[s x]=r[x]+s[x]$
(iv) $1_{R}[x]=[x]$
(v) $0[x]=[0 x]=[\theta]$ and $r[\theta]=[r \theta]=[\theta], \forall r \in R$
$A_{4}:[x]+(-1)[x]=[\theta] \Leftrightarrow[x]+[-x]=[\theta] \Leftrightarrow[x-x]=[\theta] \Leftrightarrow \phi(x-x)=\phi(\theta) \Leftrightarrow$ $\phi(x)-\phi(x)=\theta^{\prime}$ (where θ^{\prime} is the identity in $\left.Y\right) \Leftrightarrow \phi(x) \in Y_{0}$. Now the set of all one order elements of $X / \operatorname{ker} \phi$ is given by $[X / \operatorname{ker} \phi]_{0}:=\{[x] \in X / \operatorname{ker} \phi:[y] \not \leq[x], \forall[y] \neq[x]\}=$ $\{[x]: \phi(y) \not \leq \phi(x), \forall \phi(y) \neq \phi(x)\}=\left\{[x]: \phi(x) \in[\phi(X)]_{0}=\phi(X) \cap Y_{0}\right\}[\because \phi(X)$ is a subqmod of $Y]$. Thus we have $[x]+(-1)[x]=[\theta]$ if and only if $[x] \in[X / \operatorname{ker} \phi]_{0}$.
A_{5} : Let $[x] \in X / \operatorname{ker} \phi$. Then $\exists p \in X_{0}$ such that $p \leq x \Rightarrow \phi(p) \leq \phi(x) \Rightarrow[p] \leq[x]$. Here p being an one order element of $X, \phi(p)$ is so in Y and hence $[p] \in[X / \operatorname{ker} \phi]_{0}$.

Proposition 5.6. Let $\phi: X \longrightarrow Y(X, Y$ being two qmods over an unitary ring $R)$ be an order-morphism. Then the canonical map $\pi: X \longrightarrow X / \operatorname{ker} \phi$ defined by $\pi(x):=[x]$, $\forall x \in X$ is an order-epimorphism.

Proof. Since ϕ is an order-morphism it follows immediately that π satisfies the first three axioms of an order-morphism. Also π is an onto map. So we are only to show that $\pi^{-1}([x]) \subseteq \downarrow \pi^{-1}([y])$ and $\pi^{-1}([y]) \subseteq \uparrow \pi^{-1}([x])$, whenever $[x] \leq[y]$ in $X / \operatorname{ker} \phi$. For this let $a \in \pi^{-1}([x])$. Then $[a]=\pi(a)=[x] \Rightarrow \phi(a)=\phi(x) \leq \phi(y)$. Now $a \in \phi^{-1}(\phi(a)) \subseteq \downarrow$ $\phi^{-1}(\phi(y)) \Rightarrow \exists b \in \phi^{-1}(\phi(y))$ such that $a \leq b$. Again $\phi(b)=\phi(y) \Rightarrow \pi(b)=[b]=[y]$. Thus we have $a \in \downarrow \pi^{-1}([y])$ i.e. $\pi^{-1}([x]) \subseteq \downarrow \pi^{-1}([y])$, whenever $[x] \leq[y]$ in $X / \operatorname{ker} \phi$. Similarly $\pi^{-1}([y]) \subseteq \uparrow \pi^{-1}([x])$.

We now have the following isomorphism theorem.
Theorem 5.7. If $\phi: X \longrightarrow Y(X, Y$ being two qmods over an unitary ring $R)$ be an order-morphism then $X / \operatorname{ker} \phi$ is order-isomorphic to $\phi(X)$.

Proof. $\operatorname{ker} \pi:=\{(x, y): \pi(x)=\pi(y)\}=\{(x, y):[x]=[y]\}=\{(x, y): \phi(x)=\phi(y)\}=$ $\operatorname{ker} \phi$. Since $\phi: X \longrightarrow \phi(X) \subseteq Y$ is an order-morphism and $\pi: X \longrightarrow X / \operatorname{ker} \phi$ is an order-epimorphism (by proposition 5.6), by lemma 5.1 we can find a unique ordermorphism $\psi: X / \operatorname{ker} \phi \longrightarrow \phi(X)$ such that $\psi \circ \pi=\phi$. Now $\phi: X \longrightarrow \phi(X)$ is onto implies ψ is onto. Again $\psi[x]=\psi[y] \Rightarrow \psi(\pi(x))=\psi(\pi(y)) \Rightarrow \phi(x)=\phi(y) \Rightarrow(x, y) \in \operatorname{ker} \phi$ $\Rightarrow[x]=[y]$, where $[x],[y] \in X / \operatorname{ker} \phi$. Therefore ψ is injective and hence bijective.

Acknowledgement : The second author is thankful to UGC, INDIA for financial assistance.

References

[1] T. S. Blyth; Module theory : an approach to linear algebra; Oxford University Press, USA (1977)

