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Abstract

In this paper we have generalised the concept of a module in the sense that

every module can be embedded into this new structure, which we name as ‘quasi
module’, and every quasi module contains a module. In fact, we have replaced the
group structure of a module by a semigroup structure and invited a partial order
which has a significant role in formulating this new structure; it is this partial order
which is the prime key in relating a quasi module with a module. After discussing
several examples we have introduced the concept of order-morphism between two
quasi modules, discussed its various properties and finally proved an isomorphism

theorem regarding this order-morphism.
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1 Introduction

For any topological module M over a topological unitary ring R, the collection €' (M)
of all nonempty compact subsets of M is closed under usual addition of two sets and
multiplication of a set by any element of R. Also for any r,s € R and any A, B € € (M)
with A C B we have (1 + s)A C rA+ sA and rA C rB. Moreover, if § be the additive
identity in M then A — A = {6} iff A is a singleton set. Thus {{m} cm € M} is the
collection of all invertible elements of € (M), {#} acting as the additive identity in € (M).
These singletons are the minimal elements of €' (M) with respect to the usual set-inclusion

as partial order. Now this collection of all minimal elements of €' (M) can be identified with



the module M through the map {m} —— m (m € M). This makes a useful connection
between the hyperspace (M) and its generating module M. The above facts are not just
a speciality of the hyperspace @ (M); we have axiomatised these facts and introduced the
concept of a quasi module, as explained below.

In this paper we have generalised the concept of a module in the sense that every
module can be embedded into this new structure, which we name as ‘quasi module’, and
every quasi module contains a module. In fact, we have replaced the group structure of a
module by a semigroup structure and invited a partial order within this structure which
has a significant role in formulating this new structure; it is this partial order which is the
prime key in relating a quasi module with a module. This partial order is made compatible
with the semigroup operation and external composition (which is multiplication by an
unitary ring, in this case), while formulating the axiom for quasi module. A number of
examples have been discussed and it has been shown that every module over an unitary
ring can be embedded into a quasi module and every quasi module contains a module as a
sub-structure.

In section 3 we have introduced the concept of an order-morphism between two quasi
modules over a common unitary ring. Some of its properties have been discussed. Section 4
deals with the arbitrary product of quasi modules. We have shown that Cartesian product
of any family of quasi modules is again a quasi module. After defining the kernel of an
order-morphism we have proved that kernel of any order-morphism is a quasi module.

In the last section we have discussed an order-isomorphism theorem. For doing this we
have introduced first the concept of congruence in a quasi module and then constructed a

quotient structure which has been finally settled as a quasi module.

2 Quasi Module

Definition 2.1. Let (X, <) be a partially ordered set, ‘4+’ be a binary operation on X
and “: R x X — X be another composition [R being a unitary ring]. If the operations

and partial order satisfy the following axioms then (X, +, -, <) is called a quasi module (in

short gmod) over R.

A; 1 (X, +) is a commutative semigroup with identity 6.
Ay:z<y(r,yeX)=z+z<y+z r-z<r-y, Vze X,VreR.
Ay ()7 (z+y) =r-z+7-y,

(i) r-(s-x) = (rs) -z,
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(iii) (r+s) -z <r-xz+s-uz,
(iv) 1 -2 =, ‘1’ being the multiplicative identity of R
(v)O-z=0andr-0 =6 (reR)
Ve,ye X, Vr,s € R.
A4:I—}—(—l)~:1:=9ifandonlyifx€X0::{zeX:y}ﬁz,VyeX\{z}}
As : For each z € X, 3 y € X such that y < x.

The elements of the set X, (which are evidently the minimal elements of X with respect
to the partial order ‘<’) are called ‘one order’ elements of X and, by axiom Ay, these are
the only invertible elements of X, the inverse of z (€ Xj) being (—1) - z, usually written
as ‘—x’. Also for any z,y € Xy and Vr € R we have, by axiom Ay, v —x =60,y —y =40
= (x+y)—(r+y)=0and re —re =r(x —z) = 6 and hence rz,x +y € Xy. Moreover,
for ;s € R and x € X, we have (r + s)z <rz+ sz = (r+ s)x =rz + sz (. re + sz is of

order one). Thus we have the following result.

Result 2.2. For any quasi module X over an unitary ring R, the set Xy of all one order

elements of X is a module over R.

Above result shows that every quasi module contains a module. It is now a routine work
to verify that, for a topological module M over a topological unitary ring R, the collection
% (M) of all nonempty compact subsets of M forms a quasi module over R with usual set-
inclusion as partial order and the relevent operations defined as follows : for A, B € (M)
andr € R, A+ B:={a+b:a€ Abe B} and rA := {ra:a € A}. The identity element
of €(M) is {0}, where 6 is the identity element of M; the set of all one order elements of
¢ (M) is given by [€(M)]y = {{m} tm € M} If we identify {{m} tm € M} with M
we can say that, the topological module M is embedded into the quasi module € (M). We
construct below an example which shows that every module (not necessarily topological)

over an unitary ring can be embedded into a quasi module over the same ring.

Example 2.3. Let M be a module over an unitary ring R. Let M = M UHw} (w ¢ M).
Define ‘4, *-” and the partial order ‘<, as follows :

(i) The operation ‘4 between any two elements of M is same as in the module M and
r+w:=wandw+z:=w,Vr € M.

(ii) The operation ‘-* when applied on R x M is same as in the module M and r - w := w,
if r(#0) € Rand 0-w := 6, 6 being the identity element in M.

(iii) <, w, Vo € M and z <, z, Yz € M.
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(i) The operation ‘+’ between any two elements of M is same as in the module M and
r+w:=wandw+z:=w,Vre M.
(ii) The operation *-* when applied on R x M is same as in the module M and r - w 1= w,
if r(#£0) € Rand 0w := 6, 6 being the identity element in M.
(iii) £ <, w, Vo € M and = <, z, Yz € M.
We show that (]\NL b R ) is a quasi module over R.
A : Clearly (M, +) is a commutative semigroup with identity 6 and ‘<’ is a partial order
in M.
Ag:LetyEMandr(#O) €ER ThenVee M, z<,w=2+y <,w+y=wand
T =1, T W= w. Alsoforany:vel\’z,xgpxéx%-y <ztyandr-z <, r-w.
Since0~y=0,Vy61\7500~x§p0~zwheneverxg,,z (m,ze M)
Az : (i) Forr # 0and x € M wehave r - (z+w) =r-w =w =r-zr+7r- w and
0-(z4+w)=0=0-2+0-w
(ii) If rr" # 0 then 7 - (7' - w) = w = (rr') - w, otherwise r - (r' -w) =60 = (rr') - w
(iii) If r + 7" = 0 but not both 0 then (r +7) - w=0<,w=7r-w+r-w
(iv)1g-z=2z,Vx € M, 1x being the multiplicative identity of R.
(V)0-z=0,VzeM
The remaining cases follow immediately from the fact that M is a module over R.
Ay : Here [M]o =M. Since w+ (—1g) - w=w#Oand m+ (—1g) - m=m—m = 0,
Vme M we have x + (—1g) -z =0 iff r € M = []\7[]0.
As : For each x € M, x <, x and for w we have m <, w, Vm € M
Thus it follows that (1\7 s =y ) is a quasi module over R, where M is the set of all
one order elements of M.
This example shows that every module is contained in a quasi module.
In this example if we consider M = C, the vector space of all complex numbers as a
module over the unitary ring Z then the extended complex plane C, := CU {oo} becomes

a quasi module over Z, provided we define 0.0o =0 and z < oo, Vz € C.

Example 2.4. Let Z be the ring of integers and Z* := {n € Z : n > 0}. Then under the
usual addition, Z* is a commutative semigroup with the identity 0. Also it is a partially
ordered set with respect to the usual order (<) of integers. If we define the ring multipli-

cation ' : Z x Z* — Z* by (m,n) — |m|n, then it is a routine work to verify that

(Z*t,+,-,<) is a quasi module over Z. Here the set of all one order elements is given by
(Z*]o = {0}
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Example 2.5. Let Z*[z| be the set of all polynomials with coefficients taken from Z* :=
{n € Z : n > 0}. Then with respect to the usual addition (+) of polynomials it is a
commutative semigroup with the identity, viz. ‘zero polynomial’ O(x). Let us define the
ring multiplication ‘- : Z x Z* [x] — Z*[z] by (m,ap+a1z+- - -+ a,z™) — |m|(ap+a1z+
s apx™). Again if f(z),g(x) € ZT[z], where f(z) :=ap+ a1z + -+ + apz™ (@, # 0) and
g(z) :=by + bz + -+ + bypa™ (b, # 0) then we define f(z) < g(z) if deg f(z) < degg(x)
and a; < b;, Vi =0,1,...,n(=deg f(x)). Then clearly ‘5’ is a partial order in Z*[z]. It
now follows that (Z"[z],+,, <) is a quasi module over the unitary ring Z; the set of all
one order elements of Z"[z] is given by [Z* [x]]o = {O(z)}

Example 2.6. Let QF := {%’ cp,q € ZF,q # 0,gcd(p,q) = 1} i.e. the set of all non-
negative rational numbers. Then with respect to the usual addition of rationals, Q* be-
comes a commutative semigroup with zero (0) as the identity element. We define the ring
multiplication ‘@’ by elements of the ring Z by, (r, g) - |r|§ (r € Z). The partial order
‘<’ on Q% is defined as % < Z—Z < pr < po and ¢ = ¢o. We now show that under these
operations and partial order (Q1, 4, ®, <) becomes a qmod over the unitary ring Z. First
of all, it is clear that ‘<’ is truly a partial order on Q. We are only to show the following
to establish this example of qmod.

Ay Ifz,y € QF with <y then for any z € QT we have z +z < 2+ y and for any r € Z
we have |r|lz < |rlyie. roOz <roy.
As:(Dro@+y)=r|z+y)=|rlz+|rly=r0z+roy, VreZ Va,y € Q'.

(ii) 711 @ (12 @ ) = |r1||ra]x = |rima|z = (rire) @z, Vry,m0 € Z, Vo € QF.

(iii) (M +r) Qz=|r+mrlz<|njlz+|nlr=ri@r+r0z, Vr,rp € Z, Ve € QF.

(ivy 1oz =2,Vzre Q.

(v)0ez=0,YzeQandr©0=0,Vr € Z.

A @ ={2eQ": £ 2V cQ \{2}} = {0}. Again, 102+ (-1)O
E+=028=0&5=0

Aj; : For each 5 € Q" we have 0 < g.

Thus (QF, +,®, <) is a qmod over Z.

QS
I
o
2

Example 2.7. Let {py,ps,...} be a complete enumeration of all primes in order i.e. 2 =
p1 < pz < ---. Now any integer m > 1 can be expressed uniquely as m = p{'p3*...p{" ..,
where ; € Z" := {n € Z : n > 0}, Vi and all but finitely many «;’s are zero. Thus we
can identify the integer m with the sequence (ay,as,...) in Z*. In other words, we can
say that m can be identified with an element of (Z*)N whose all but finitely many terms

are zero and for convenience let us denote this set as (Z*)g i.e.
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ZHN =g, a9,...) oy € ZF, a; = 0 for all but finitely many i’s
00

Let us first introduce some notations : if a := (a1, ag,...) € (Z1), and p := (p1,pa, .- .)
be the sequence of all primes in strictly increasing order, as stated above, we denote
p* := p{'p3? ... which is valid since all but finitely many factors in this infinite product are
1. Alsoif a, B € (Z*)}, then p®p? = p**#, where a+ 3 is the sequence in (Z*)}, obtained by
term by term addition of @ and 8. Again if r is any non-negative integer then (p®)" = p"*.
Thus the usual product of two integers (> 1) can be viewed as the sum of two elements in
(Z*)Y); also for any integer m (> 1) and r € Z* the exponent operation m” can be viewed
as the operation ra := (raj,rasg,...), where m := p® and a = (ay,ay,...) € (Z),.
These facts now culminate into the following example of quasi module.

(Z*+)Y, is a commutative semigroup with respect to the usual term by term addition of
two sequences; it contains an identity element, namely zero sequence ‘0’ (i.e. the sequence
all of whose terms are zero). With the help of the unitary ring Z, we define a ring multipli-
cation *: Z x (Z1)5, — (Z*)Y, as (r,a) — |r|a. We now define an order ‘5’ by a < f3
iff p* < p. It is obvious that < is a partial order in (Z*)},. We show below that (Z*),
is a qmod over Z with respect to the aforesaid operations and partial order.

Ay Let o, 8,7 € (Z*)), with a < 3. Then p* < p? = p'p* < p'p? = prte < p*Fh
= y+a < v+ 8. Again for any r € Z we have (p®)I"l < (pP)I'l = plrle < pIrlB = r.a g 7-B.
Ag: Let o, 8 € (Z1)Y, and n,ny,ny € Z. Also let a := (a,—)ieN, 8= (ﬁi)ieN. Then

) e ot 8) = (l(a+ 8)) o= (110s) oy + (10155 = -+

(i) ny - (ng - @) = nyq - <|n2|ai)ieN: (|n1||n2|ai)ieN:(|n1n2|ai>ieN = (ning) - a.

(iii) (n1 +ne) - a = (|n1 + n2|ai>ieN. Now |n; + nola; < |ni|ay + |nejay, Vi € N So
plrtnzles < plmlecplnales o N o pinitnzle < pimlatinale o () L ng) oo gy - a+ng - o
(iv) 1 a = (]1|as)ieny = o

(v) 0-a = (|0]as)ien =0 and n-0 = 0.

A, : Since any a € (Z1)Y, corresponds to an integer > 1 it follows that, zero sequence ‘0’
is the only one order element of (Z*)},. Again 1-a+ (=1)-a =0 (ai + ai)ieN =10
& 20; =0, Vi< a=0. So axiom Ay follows.

As : For each a € (ZT)Y,, since p* > 1 = p° we have 0 < a.

Thus it follows that ((Z+)0N0, +,, < ) is a quasi module over Z.

3 Order morphism

In this section we introduce a morphism-like structure between two quasi modules over a

common unitary ring and study some of its properties.
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Definition 3.1. A mapping f : X — Y (X, Y being two quasi modules over a unitary
ring R) is called an order-morphism if
() flz+y) =fl@)+ fly), Vo,ye X
(ii) f(rz) =rf(z),Vre R,V e X
(iif) z <y (z,y € X) = f(z) < f(y)
(iv) p< g (p,a€ f(X)) = f'(p) €} f7'(q) and f~*(g) €t f~}(p), where
tA={reX:x>aforsomea € A} and | A:={zx € X : 2 < a for some a € A} for
any A C X.

A surjective (injective, bijective) order-morphism is called an order-epimorphism (order-

monomorphism, order-isomorphism).

Note 3.2. If f : X — Y be an order-morphism and 6,6 be the identity elements of
X, Y respectively then f(0) = f(0.0) = 0.f(0) = 0. Again if xy be an one order element
of X then so is f(xg) of Y. In fact, 29 € Xo = 29 — 20 = 0 = f(z0) — f(zo) = ¢
= f(x) € Yy. Also if yo € Yo N f(X) then Jz € f~1(yo) = Jzo € Xo such that
20 <z = f(zo) < f(x) = yo = f(xo) = Yo [ Yo is an one order element of Y]. Thus
f7H(yo) N Xo # 0.

Before proceeding further let us first introduce the following concept which will be useful

in the sequel.

Definition 3.3. A subset Y of a qmod X is said to be a sub quasi module (subgmod in

short) if Y itself be a quasi module with all the compositions of X being restricted to Y.

Note 3.4. A subset Y of a qmod X (over a unitary ring R) is a sub quasi module iff Y’

satisfies the following conditions :
(i)re+syeY,Vrse R Va,yeY.
(i) Yo C XoNY, where Yy := {z €Y :yfdazVyet ~ {z}}
(iii) Vy € Y, Jyo € Yy such that yo <y
If Y be a subqmod of X then actually Yy = X, NY, since for any Y C X we have
XoNY CY,.

Proposition 3.5. If f : X — Y (X, Y being two quasi modules over a unitary ring R)
be an order-morphism then f(M) :={f(m):m € M} is a subgmod of Y, for any subgmod
M of X.

Proof. For z,y € M and r,s € R we have rf(z) + sf(y) = f(rz + sy) € f(M), since
ra+sy € M for, M is a subqmod of X. Clearly, f(M)NYy C [f(M)]o. Now let y € [f(M)]o

15
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= dm € M such that y = f(m). So Ip € My such that p <m = f(p) < f(m) = f(p) =
f(m) =y [ y is an one order element of f(M) and f(p) € f(M)]. Since My = M N X,
so p € Xy = f(p) is an one order element of Y and hence y = f(p) € Yo N f(M). Thus
[f(M)]o C f(M)NYy. Therefore [f(M)]o = f(M)NYy. Again for any m € M, Img € M,
such that mg < m = f(mg) < f(m). Here f(mg) is an one order element of Y and hence
f(mo) € [f(M)]o. Thus it follows that f(M) is a subqmod of Y. O

Proposition 3.6. Let X,Y,Z be three gqmods over an unitary ring R and f : X — Y,
g Y — Z be two order-morphisms. Then their composition go f : X — Z is an

order-morphism, provided f is onto.

Proof. (go f)(rzy +x2) = g(f(rz1 +22)) = g(rf(z1) + f(x2)) = r-(g 0 f)(21) + (g0 f)(22),
Vzi,29 € X and Vr € R. Moreover, x1 < 23 (21,22 € X) = f(x1) < f(x2) = 9(f(21)) <
9(f(2)) = (g0 (@) < (g0 f)(za).

Now let 21,22 € (go f)(X) such that z; < 2. Let # € (go f)7!(21). Then (go f)(x) =
n = g(f(@) = 2 = f(z) € g7'(n1) Sl g7'(22) = f(2) < y, for some y € g7'(2,)
= g(y) = 20. Now f being onto, y € f(X) and hence z €| f~'(y) = = < 2/, where
f(a') =y. Therefore (go f)(z') = g(f(2')) = g(y) = 22 = x €] (9o /)7 (22).
s (g0 f)7H (=) Sl (go f) 7 (z2).
Again 7 € (9o f)~(22) = (90 f)(z0) = 22 = g(f(20)) = 22 = f(z0) € g7 '(22) ST g7 (21)
= f(zo) > ¥/, for some y’ € g7(21). So g(y') = z1. Now f being onto, ¢’ € f(X) and hence
20 €1 f1(y/) = 30 > 2", where f(a") = /. Therefore (g0 f)(z") = g(f(2")) = g(1/) = 21
= 30 €1 (g0 )7 (=),
(g0 ) (22) €1 (g0 £)(21).
Thus it follows that (g o f) is an order-morphism. O

Proposition 3.7. If f : X — Y, g: Y — Z (X,Y, Z being qmods over the same unitary

ring R) be two order-morphisms such that go f : X — Z is also an order-morphism then

(i) g o f is onto iff both f,g are onto;
(i) g o f is injective iff both f,qg are injective.

Proof. First of all, go f is an order-morphism provided f is onto. So (i) is immediate. For
(ii), we are only to show that g is injective whenever g o f is injective. Actually go f is
injective implies g is injective on f(X); in fact, if g(f(z1)) = g(f(z2)) for f(z1) # f(x2)
(and hence for x; # x3) then injectivity of g o f would be contradicted. Since for go f to

be an order-morphism f needs to be onto, (ii) follows. O
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Remark 3.8. The above proposition readily implies that two order-isomorphisms, after
composition, generates again an order-isomorphism; inverse of an order-isomorphism is
an order-isomorphism and the identity map on any qmod is an order-isomorphism. Thus
‘order-isomorphism’ induces an equivalence relation on the collection of all qmods over the

same unitary ring and we can identify two such qmods related by this equivalence relation.

Definition 3.9. Let f: X — Y (X, Y being two qmods over the same unitary ring R)
be an order-morphism. We define ker f := {(m,y) eXxX: f(x)= f(y)} and call it the
‘kernel of f°.

It is immediate from definition that (z,z) € ker f, Vo € X and thus if we write

A= {(w,x) ‘T E X} then A C ker f, equality holds iff f is injective.

We now show that ker f is a subqmod of X x X but for doing so we have to first discuss

the Cartesian product of qmods.

4 Arbitrary product of quasi modules

In this section we shall discuss arbitrary product of quasi modules and show that the

product is also a quasi module.

Definition 4.1. Let {X, : p € A} be an arbitrary family of quasi modules over the

unitary ring R. Let X := H X, be the Cartesian product of these quasi modules defined
HEA

as: x € X if and only if z : A — | J X, is a map such that z(p) € X,,, Vu € A. Then
HEA
by the axiom of choice we know that X is nonempty, since A is nonempty and each X,

contains at least the additive identity 6, (say).

Let us denote z, := x(p), Vu € A. Also we write each z € X as x = (z,), where
z, = pu(x), pp + X — X, being the projection map, ¥ € A. Now we define addition,
ring multiplication and partial order as follows : for = (z,),y = (y,) € X and r € R

(i) z+y = (x, +yu); (i) re = (re,); (i)  <yifz, <y, YpeA.

We now show that (X, +, ., <) is a quasi module over R.
Ay : Clearly X is a commutative semigroup with identity 6, where 6 = (6,,).
Ayz<y=z, <y, VueA=>z,+2,<y,+2,andrz, <ry, VpeAandVr € R
=+ 2 <y+zand re <ry, where z = (2,) € X.
Az For . = (z,),y = (y,) € X and for r, s € R we have
(@) r(z+y) = (r(zu + yu)) = (rxu + ryu) = (rzy) + (ryu) =rz +ry.

(ii) r(sz) = r(sz,) =rs(z,) = rse.
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(iii) each X, being a quasi module, (r + s)z, < rz, + sz, Yu € A = (r + s)x < rz + sz.
(iv) 1.z = (1.z,) = (x,) = z, 1 being the multiplicative identity of R.
(v) 0.z = (0.z,) = (0,) = 6. Again r.0 = (r.0,) = (0,) = 0.

Ayrz—z=0&z,—2,=0,YVue A&z, € X, Vu € A, where [X,]o is the set
of all one order elements of X,. We claim that X, = {(x#) € X :z, €[ X,V € A} =

H[Xu]O- In fact, v = (z,) ¢ H [X.Jo = x\ ¢ [X)]o for some A € A. Then iy € [X)]o
peA peEA
such that iy < ), iy # . Let y = (y,) where y, = z,, p # X and y, = iy. Then

y<z,y#az=uz¢ Xy Conversely if z, € [X,]o, YV € A then z = (x,) € Xy. Thus

Xo=[][Xulo. Soz—z =0z € X,
HEA
As: Let © = (z,) € X. Then z, € X,, Vp € A = 3¢, € [X,]o, Vo € A such that t, <z,

VueA=t=(t,) <(z,) =z, where t € Xj.

- (X, 4+, ., <) is a quasi module over R.

Proposition 4.2. Let {X; : i € A} be an arbitrary family of quasi modules over an unitary
ring R and X = H X; be the product qmod of these gqmods. Then each projection map
pi: X — X is a;tegrder-epz’morphism.
Proof. Let x = (2;),y = (y;) € X and r € R. Then p;(rz +y) = rz; +y; = rpj(x) + p;(y).
Again if £ <y then z; < y;, Vi e A = p;(z) < p;(y).

Now let a,b € p;j(X) = X; (since every projection map is onto) with a < b. Let
z = (z;) € p; '(a). Then p;(z) = a ie. z; =a. We choose y = (y;) where y; = z; for i # j
and y; =b. Thenz < yand p;(y) =y; =bie y € pj’l(b). Thus we have pj’l(a) cl pj_l(b).
Similarly we can show that pj_l(b) ct p]-_l(a). So p; being onto the proposition follows. [

Proposition 4.3. Let f: X — Y be an order-morphism (X,Y being two qgmods over an

unitary ring R). Then ker f is a subgmod of X x X.

Proof. For (z1,vy1), (¥2,y2) € ker f and r, s € R we have f(rzy + sxg) = rf(21) + sf(x2) =
rf(y)+sf(y2) = f(ryitsyz) = (roi+sme, ry1+sya) € ker fie. 7(v1,y1)+5(72, y2) € ker f.

Now let (x,y) € ker f but (z,y) ¢ Xo x Xo. Without loss of generality assume that
x ¢ Xo. Then Ja € Xy such that a < z. So f(a) < f(z) = f(y). Now f being an
order-morphism, 3z € f~1(f(a)) such that z <y. Then 3t € X, such that t < 2z = f(t) <
f(2) = f(a). Now a being one order, f(a) is so and hence f(t) = f(a) = (a,t) € ker f.
Also (a,t) < (z,y) and (a,t) # (z,y). This ensures that (z,y) ¢ [ker f]op. Thus we have
[ker f]o C ker f N (Xy x Xp). Also from this argument we find that for any (z,y) € ker f,
d(a,t) € ker f N (Xo x Xo) = [ker f]o such that (a,t) < (z,y) (if (z,y) itself be of order
one we need not find (a, t)) The proposition then follows from the note 3.4. O
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5 Order isomorphism theorem

In this section we present an isomorphism theorem between quasi modules.

Lemma 5.1. Let X.Y,Z be three quasi modules over the unitary ring R, o : X — Y
be an order-epimorphism and 3 : X — Z be an order-morphism such that ker o C ker 3.

Then 3 a unique order-morphism v : Y — Z such that yo«a = 3.

>

Proof. We first show that if an order-morphism v : Y — Z exists satisfying yoa = 3 then

X

Z

«

Y

that must be unique. In fact, if 4 be another such order-morphism then yoa = 8 =+ oa.
This shows that 7,4 coincide on «(X). « being onto, v,~" really coincide on Y.

To prove the existence let y € Y. «a being order-epimorphism, a~(y) # 0. Now
kera C ker 3 = /3 is constant on a~!(y). So it is reasonable to define v(y) := B(a"(y)),
Vy € Y. Clearly then yoa = 3. Now let y,5' € Y, r € Rand z € a~(y), 2/ € a” ().
Then v(y) = B(x) and v(y') = f(2"). Now «a being an order-morphism, we have y + ry’ =
a(z) +ra(x’) = a(x +ra’) = x+r2’ € a*(y+ry’). Then B being an order-morphism we
have v(y) +ry(y') = B(z) + rB(z’) = B(x +ra’) = y(y + ry).

Next let y < ' (y,y' € Y). Then a!(y) Cl o !(y'). So for z € a™!(y), 32’ € a1 (y)
such that x < 2’. Thus y(y) = S(z) < B(2") =~(v).

For declaring ~ to be an order-morphism it now remains to show that y=1(2) CJ v~ 1(2’)
and v71(2') €1 v !(2), whenever z < 2/ [z,z’ S W(Y)]. To prove the first inclusion let
y € v }(2). Then a~l(y) C B71(z) € B7Y(2'). So for x € a~}(y), Iz’ € B~1(2') such
that x < 2’. Then y = a(z) < a(z’) = ¢ (say). Now y(y') = y(a(z')) = B(z') =

z/
=y € v (%), where y < 3. The second inclusion can be similarly disposed of. O

Lemma 5.2. Let X,Y,Z be three quasi modules over the unitary ring R, a: Y — X be
an order-monomorphism and B : Z — X be an order-morphism such that o(Y) = B(Z).

Then 3 a unique order-epimorphismy : Z — Y such that the following diagram commutes.

7

Y
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Proof. « being an order-monomorphism it follows that « is an order-isomorphism from Y
onto the sub quasi module a(Y") ( = ﬁ(Z)) of X. Thus we may define v := a0 3. It
then follows from the remark 3.8 and proposition 3.6 that v is an order-morphism, since /3
is ‘onto’ the domain of a~!. Since a1(3(Z)) =Y, so v is surjective. Also aovy = 3 i.e.
the above diagram is commutative.

If, together with v, any other 7/ makes the above diagram commutative then, ov oy =

B =aoy = v =+ (since a is an order-isomorphism). O

Before going to prove the isomorphism theorem we need to construct a quotient struc-
ture which again necessitates the introduction of the concept of ‘congruence’. So let us

define this concept first.

Definition 5.3. An equivalence relation E, defined on a quasi module X over an unitary
ring R, is said to be a congruence on X if,

(i) (z,y) e E= (a+z,a+y) € E,Vae X

(ii) (z,y) € E= (ra,ry) € E,Vr e R

(iii) z <y <zand (z,2) € E = (z,y) € E (and hence (y, z) € E)

(ivia<z <band (z,y) € E = J¢,d € X with ¢ <y < d such that (a,c), (b,d) € E.

Proposition 5.4. If ¢ : X — Y (X,Y being two gmods over an unitary ring R) be an

order-morphism then ker ¢ is a congruence on X.

Proof. Clearly ker ¢ is an equivalence relation on X. Let (z,y) € ker¢, a € X and r € R.
Then ¢(a+2) = $(a) +(z) = 3(a) + (y) = Bla+y) and (rz) = ré(z) = ré(y) = B(ry).
Thus (a + z,a + y), (rz,ry) € kerg. Again v < y < z = ¢(z) < ¢(y) < #(2). So
(z,2) € ker§p = ¢(z) = ¢(2) = d(y) = (2,y) € ker ¢.

Next let b > z. Then ¢(b) > ¢(z) = ¢(y) = y € ¢~ (d(y)) Sl 67 (4(b)) = 3d €
¢~ (¢(b)) such that y < d. Now ¢(d) = ¢(b) = (b,d) € ker ¢. Similarly for a < 2 we have
8(a) < 6(x) = 8(y). S0 y € -1 (#() C1 6~ (9(@)) = Ic € 67 (6(a)) such that y > c.
Now ¢(c) = ¢(a) = (a,c) € ker ¢. Thus ker ¢ is a congruence on X. O

We now give a quotient structure on X using the above congruence. For this let us
construct the quotient set X/ker ¢ := {[m] czx e X }, where [z] is the equivalence class
containing z obtained by the congruence ker ¢. We define addition, ring multiplication and
partial order on X/ ker ¢ as follows : For z,y € X and r € R,

(i) [2] + [y] = [z + y]; (i) rlz] = [ra]; (iii) [2] < [y] if and only if ¢(z) < é(y).

Theorem 5.5. If ¢ : X — Y (X,Y being two gmods over an unitary ring R) be an

order-morphism then X/ker ¢ is a quasi module over R.
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Proof. A, : Clearly (X/ker ¢, +) is a commutative semigroup with identity [0], where 6 is
the identity of X.
A : Let [a], [y], [2] € X/ker¢ and [z] < [y]. Now, ¢(z +z) = ¢(z) + ¢(2) < d(y) + é(2) =
dy+2) = [z +z2] <[y+z] = [z]+ [2] <[yl + [2]. Also, ¢(rz) = ré(z) < ré(y) = ¢(ry),
VreR=[rz] <[ry] = r[z] <r[y], Vr € R.
Az : (1) r(fe] + [y]) = rlz + 9] = [re +ry] = [re] + [ry] = r[z] + r[y]
(ii) r(s[z]) = r[sz] = [rsz] = rs|z], where ;s € R
(iii) (r + )z < rx+ sz = o((r + s)z) < od(rz) + ¢(sz) = (r+ s)[z] = [(r + s)z] <
[rz] + [sx] = r[z] + s]z]
(iv) 1g[z] = [2]
(v) O[z] = [0z] = [0] and r[0] = [r0] = [0], VI € R

Ay c o]+ (D[] = [0] & [a] +[-2] = [0] & [z —2] = [0] & ¢(z —2) = ¢(0) &
d(x) — ¢(x) = 0" (where ¢’ is the identity in Y') & ¢(z) € Y. Now the set of all one order
elements of X/ ker¢ is given by [X/ ker (f)] = {[ | € X/ker¢ : [y] £ [z],V[y] # [x]}
{la] - ¢(y) £ 6(x), Vo) # o)} = {[a] : () € [p(X)o = $(X mYo} [. $(X) is a
suquod of Y]. Thus we have [z] + (—1)[z] = [9] if and only if [z] € [X/ ker ng}O.
Aj : Let [2] € X/ ker¢. Then Ip € X such that p <z = ¢(p) < ¢(x) = [p] < [z]. Here
p being an one order element of X, ¢(p) is so in Y and hence [p] € [X/ ker 45]0. O

Proposition 5.6. Let ¢ : X — Y (X, Y being two qmods over an unitary ring R) be an
order-morphism. Then the canonical map © : X — X/ker¢ defined by w(x) = [z],

Vx € X is an order-epimorphism.

Proof. Since ¢ is an order-morphism it follows immediately that 7 satisfies the first three
axioms of an order-morphism. Also 7 is an onto map. So we are only to show that

’1([:10]) al ﬂ’l([y]) and ﬂ"l([y]) ct Tr'l([x]), whenever [z] < [y] in X/ ker¢. For this
let a € 71([z]). Then [a] = 7(a) = [2] = ¢(a) = ¢(x) < ¢(y). Now a € ¢~}(¢(a)) CL
671 (¢(y)) = 3b € 6~ (6(y)) such that a < b. Again $(b) = d(y) = () = [¢] = [y]- Thus
we have a €| 7r‘1<[y]) ie. ﬂ‘l([x]) cl n‘l([y]), whenever [z] < [y] in X/ ker ¢. Similarly
w1 ([y]) <t 71 ([a1). o

We now have the following isomorphism theorem.

Theorem 5.7. If ¢ : X — Y (X,Y being two gmods over an unitary ring R) be an

order-morphism then X/ ker ¢ is order-isomorphic to ¢(X).
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X HX)CY
| >
X/ ker ¢

Proof. ket i= {(z,9) : 7(x) = 7(9)} = {(@9) : 2] = )} = {(z,0) : 6(x) = D(»)} =
ker¢. Since ¢ : X — ¢(X) C Y is an order-morphism and 7 : X — X/ker¢ is
an order-epimorphism (by proposition 5.6), by lemma 5.1 we can find a unique order-
morphism 1) : X/ ker ¢ — ¢(X) such that por = ¢. Now ¢ : X — ¢(X) is onto implies
i is onto. Again ¥[z] = Yyl = ¥(r(z)) = ¥((y)) = é(x) = é(y) = (z,y) € ker¢
= [z] = [y], where [z], [y] € X/ ker ¢. Therefore 9 is injective and hence bijective. O
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