Rev. Acad. Canar. Cienc., XVI (Núms. 1-2), 9-14 (2004) (publicado en julio de 2005)

SEPARATION OF ZEROS OF PARA-ORTHOGONAL RATIONAL FUNCTIONS

A. Bultheel*, P. González-Vera[†], E. Hendriksen[‡] & Olav Njåstad[§]

Abstract

We generalize a result by L. Golinskii [6] on separation of the zeros of paraorthogonal polynomials on the unit circle to a similar result for para-orthogonal rational functions.

Resumen

En este trabajo se extiende un resultado de Golinskii [6] sobre separación de ceros de polinomios para-ortogonales sobre la circunferencia unidad al caso de funciones racionales para-ortoganales.

1 Introduction

Every probability measure on the unit circle gives rise to an orthonormal sequence $\{\rho_n\}_{n=0}^{\infty}$ of polynomials, so called Szegő polynomials. See for example [7, 8]. Invariant para-orthogonal polynomials are polynomials of the form $c_n[\rho_n(z) + \tau \rho_n^*(z)]$, $|\tau| = 1$, $c_n \neq 0$, where $\rho_n^*(z) = z^n \rho_n(1/\overline{z})$. These polynomials have all their zeros on the unit circle, and they are all simple. The zeros are nodes in a quadrature formula with positive weights which is exact on the space span $\{1/z^{n-1}, \ldots, 1, \ldots, z^{n-1}\}$. See e.g. [7]. An equivalent representation of the invariant para-orthogonal polynomials is as the class of all polynomials of the form $d_n[\rho_n^*(z)\overline{\rho_n^*(w)} - \rho_n(z)\overline{\rho_n(w)}]$, |w| = 1, $d_n \neq 0$. For a given w, the value z = w is a zero of this polynomial. It was shown by Golinskii [6] that the zeros of two consecutive of these polynomials (for a given w) separate each other when the zero z = w is not included among the zeros of the polynomial of highest degree.

The aim of this note is to prove a similar result for orthogonal rational functions on the unit circle. In sections 2 and 3 we give a brief summary of relevant basic properties of such functions. For a more comprehensive treatment, see [3]. In section 4 we give a proof of the indicated result, in the main following the reasoning of Golinskii.

By a quite different approach, Cantero, Moral and Velázquez [5] obtained separation results that contain the result of Golinskii.

^{*}Department of Computer Science, K.U.Leuven, Belgium. The work of this author is partially supported by the Fund for Scientific Research (FWO), projects "CORFU: Constructive study of orthogonal functions", grant #G.0184.02 and the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with the author.

[†]Department Análisis Math., Univ. La Laguna, Tenerife, Spain. The work of this author was partially supported by the scientific research project PB96-1029 of the Spanish D.G.E.S.

[‡]Department of Mathematics, University of Amsterdam, The Netherlands.

[§]Department of Math. Sc., Norwegian Univ. of Science and Technology, Trondheim, Norway

2 Orthogonal rational functions

In the following, \mathbb{D} denotes the open unit disk in the complex plane \mathbb{C} , \mathbb{T} denotes the unit circle and \mathbb{E} the exterior of the closed unit disk.

Let a sequence $\{\alpha_n\}_{n=1}^{\infty}$ of not necessarily distinct points in \mathbb{D} be given. We define

$$\zeta_0 = 1, \quad \zeta_n(z) = z_n \frac{z - \alpha_n}{1 - \overline{\alpha}_n z}, \quad n = 1, 2, \dots,$$
(2.1)

where $z_n = -|\alpha_n|/\alpha_n$ if $\alpha_n \neq 0$ and $z_n = 1$ if $\alpha_n = 0$. Furthermore we define the Blaschke products B_n by

$$B_0 = 1, \quad B_n(z) = \prod_{k=1}^n \zeta_k(z), \quad n = 1, 2, \dots$$
 (2.2)

The functions $\{B_0, B_1, \ldots, B_n\}$ span the space \mathcal{L}_n consisting of all functions of the form $f(z) = P(z)/\pi(z)$, where $P \in \mathcal{P}_n$ (the space of polynomials of degree at most n) and

$$\pi_n(z) = \prod_{k=1}^n (1 - \overline{\alpha}_k z).$$
(2.3)

In general we define for any function $f \in \mathcal{L}_n \setminus \mathcal{L}_{n-1}$ the superstar transform f^* by $f^*(z) = B_n(z)f_*(z)$, where $f_*(z) = \overline{f(1/\overline{z})}$. Note that f^* also belongs to \mathcal{L}_n .

Let μ be a probability measure on \mathbb{T} , with associated inner product $\langle \cdot, \cdot \rangle$ given by

$$\langle f, g \rangle = \int_{\mathbb{T}} f(t) \overline{g(t)} d\mu(t).$$
 (2.4)

We shall use the notation ϕ_n for the elements of the orthonormal basis for \mathcal{L}_n which is ordered such that $\phi_0 = 1$ and $\phi_k \in \mathcal{L}_k \setminus \mathcal{L}_{k-1}$ for k = 1, 2, ..., n. We may then write $\phi_n(z) = p_n(z)/\pi_n(z), \ \phi_n^*(z) = q_n(z)/\pi_n(z)$ where $p_n \in \mathcal{P}_n, \ q_n \in \mathcal{P}_n$.

We note that if $\alpha_n = 0$ for all n, then $B_n(z) = z^n$, $\mathcal{L}_n = \mathcal{P}_n$ and ϕ_n , ϕ_n^* are orthonormal polynomials with respect to μ and their reciprocals. For motivations for studying the rational generalizations of orthogonal polynomials introduced above, we refer to [3, 4].

Let $k_n(z, w)$ denote the reproducing kernel for \mathcal{L}_n , i.e.,

$$k_n(z,w) = \sum_{j=0}^n \phi_j(z) \overline{\phi_j(w)}.$$
(2.5)

The orthonormal functions ϕ_n satisfy

$$\phi_{n+1}^{*}(z)\overline{\phi_{n+1}^{*}(w)} - \phi_{n+1}(z)\overline{\phi_{n+1}(w)} = [1 - \zeta_{n+1}(z)\overline{\zeta_{n+1}(w)}]k_n(z,w),$$
(2.6)

$$\phi_n^*(z)\overline{\phi_n^*(w)} - \zeta_n(z)\overline{\zeta_n(w)}\phi_n(z)\overline{\phi_n(w)} = [1 - \zeta_n(z)\overline{\zeta_n(w)}]k_n(z,w).$$
(2.7)

It follows easily from these formulas that

$$\begin{aligned} |\phi_n(z)| &< |\phi_n^*(z)| \quad \text{for } z \in \mathbb{D} \\ \phi_n(z)| &= |\phi_n^*(z)| \quad \text{for } z \in \mathbb{T} \\ |\phi_n(z)| &> |\phi_n^*(z)| \quad \text{for } z \in \mathbb{E}. \end{aligned}$$

$$(2.8)$$

(Note that $|\zeta_n(z)| < 1$ for $z \in \mathbb{D}$, $|\zeta_n(z)| = 1$ for $z \in \mathbb{T}$ and $|\zeta_n(z)| > 1$ for $z \in \mathbb{E}$.) Furthermore all the zeros of ϕ_n lie in \mathbb{D} . Simple examples (e.g. with μ the normalized Lebesgue measure and $\alpha_n = 0$ for all n, which gives $\phi_n(z) = z^n$) show that the zeros may be multiple.

For more exhaustive treatments, see e.g., [1, 3].

10

3 Para-orthogonal rational functions

Quadrature formulas with positive weights and nodes on \mathbb{T} have important uses. Of special interest are such formulas which integrate exactly all functions in spaces of the form $\mathcal{L}_{p,q} = \{fg: f \in \mathcal{L}_q, g_* \in \mathcal{L}_p\}$ with as large value of p + q as possible. The zeros of ϕ_n can not be used as nodes, since they lie in \mathbb{D} (and may even be multiple). It turns out that so-called invariant para-orthogonal functions give rise to such quadrature formulas, exact on $\mathcal{L}_{n-1,n-1}$ (while no quadrature formula as specified can be exact on $\mathcal{L}_{n-1,n}$ of on $\mathcal{L}_{n,n-1}$). See [2, 3].

A function Q_n in \mathcal{L}_n is called invariant if $Q_n^*(z) = k_n Q_n(z)$ for some $k_n \neq 0$. It is called para-orthogonal if $\langle Q_n, f \rangle = 0$ for all $f \in \mathcal{L}_{n-1} \cap \mathcal{L}_n(\alpha_n)$, where $\mathcal{L}_n(\alpha_n) = \{f \in \mathcal{L}_n : f(\alpha_n) = 0\}$, while $\langle Q_n, 1 \rangle \neq 0$ and $\langle Q_n, B_n \rangle \neq 0$. (These concepts are direct generalizations of corresponding concepts in the polynomial case, i.e., when $\alpha_n = 0$ for all n. These were introduced and studied in [7].)

It can be shown that the invariant para-orthogonal rational functions are exactly functions of the form $c_n Q_n(z,\tau)$, $c_n \neq 0$, where

$$Q_n(z,\tau) = [\phi_n(z) + \tau \phi_n^*(z)], \quad \tau \in \mathbb{T}.$$
(3.1)

Furthermore, $Q_n(z,\tau)$ has exactly *n* simple zeros, all of them lying on \mathbb{T} . See [3].

Now consider a function $d_n\Omega_n(z, w), d_n \neq 0$, where

$$\Omega_n(z,w) = [\phi_n^*(z)\overline{\phi_n^*(w)} - \phi_n(z)\overline{\phi_n(w)}].$$
(3.2)

We may write

$$\Omega_n(z,w) = -\overline{\phi_n(w)} [\phi_n(z) + (-\left[\frac{\phi_n^*(w)}{\phi_n(w)}\right] \phi_n^*(z)].$$
(3.3)

Because of (2.8) we have for $w \in \mathbb{T}$ that $-\overline{[\frac{\phi_n^*(w)}{\phi_n(w)}]} \in \mathbb{T}$. Thus $\Omega_n(z, w)$ is a function of the form $c_n Q_n(z, \tau)$ as in (3.1). On the other hand, for each $\tau \in \mathbb{T}$, there are *n* values of *w* in \mathbb{T} such that $-\overline{[\frac{\phi_n^*(w)}{\phi_n(w)}]} = \tau$. (Note that for a given τ , $-\overline{[\frac{\phi_n^*(w)}{\phi_n(w)}]} = \tau$ may be written as an algebraic equation of degree *n* in *w*, and that according to (2.8), $-\overline{[\frac{\phi_n^*(w)}{\phi_n(w)}]} \in \mathbb{T}$ if and only if $w \in \mathbb{T}$. See also [3, Thm. 5.2.1].) Thus the class of functions of the form $c_n Q_n(z, \tau), c_n \neq 0, \tau \in \mathbb{T}$ as given in (3.1) is exactly the same as the class of functions $d_n \Omega_n(z, w), d_n \neq 0, w \in \mathbb{T}$ as given in (3.2).

4 Separation of zeros

In [6] Golinskii showed that in the polynomial case, i.e., when all α_n equal zero, a certain separation property of the zeros of two consecutive polynomials $\Omega_n(z, w)$ (for fixed w) holds. We shall prove a similar result in the general rational case. The result as well as the proof are rather straightforward generalizations of Golinskii's discussion in the polynomial case.

In the following, w denotes a fixed point on \mathbb{T} . We observe that $[1 - \zeta_n(z)\zeta_n(w)] = 0$ if and only if z = w. It then follows from (2.5)-(2.6) and (3.2) that z = w is a zero of $\Omega_n(z, w)$ for all n, and that the remaining zeros of $\Omega_n(z, w)$ are exactly the zeros of $k_{n-1}(z, w)$.

Now assume that z_0 is a common zero of $\Omega_n(z, w)$ and $\Omega_{n+1}(z, w)$, $z_0 \neq w$. Note that z_0 has to be on \mathbb{T} . It follows from (2.6) and the definition (3.2) that $k_n(z_0, w) = 0$ and

 $k_{n-1}(z_0, w) = 0$, hence also $\phi_n(z_0)\phi_n(w) = 0$. This is impossible since all the zeros of ϕ_n lie in \mathbb{D} . Consequently $\Omega_n(z, w)$ and $\Omega_{n+1}(z, w)$ have no common zeros except z = w.

Now for each n let $z_{n,k} = e^{i\theta_{n,k}}$, k = 0, 1, ..., n-1, be the zeros of $\Omega_n(z, w)$, with $z_{n,0} = w$, ordered such that

$$\theta_{n,0} < \theta_{n,1} < \dots < \theta_{n,n-1} < \theta_{n,0} + 2\pi.$$

$$(4.1)$$

Theorem 4.1 The zeros of $\Omega_n(z, w)$ included z = w and the zeros of $\Omega_{n+1}(z, w)$ not included z = w separate each other in the sense that

$$\theta_{n,0} < \theta_{n+1,1} < \theta_{n,1} < \theta_{n+1,2} < \dots < \theta_{n,n-1} < \theta_{n+1,n}.$$
(4.2)

Proof. Consider the function

$$\Gamma_n(z) = \Gamma_n(z, w) = \frac{k_n(z, w)}{\Omega_n(z, w)}.$$
(4.3)

It follows from the foregoing discussion that the zeros of $k_n(z, w)$ are exactly the points $z_{n+1,1}, \ldots, z_{n+1,n}$ while the zeros of $\Omega_n(z, w)$ are the points $z_{n,0}, \ldots, z_{n,n-1}$. Thus $\Gamma_n(z)$ has simple zeros at the points $z_{n+1,1}, \ldots, z_{n+1,n}$ and simple poles at the points $z_{n,0}, \ldots, z_{n,n-1}$. (Recall that $\Omega_n(z, w)$ and $\Omega_{n+1}(z, w)$ have no common zeros except z = w. Also note that the terms $\pi_n(z)$ in the numerator and the denominator cancel.) Expressing $k_n(z, w)$ by (2.7) we may write

$$\Gamma_n(z) = \frac{\phi_n^*(z)\overline{\phi_n^*(w)} - \zeta_n(z)\overline{\zeta_n(w)}\phi_n(z)\phi_n(w)}{[1 - \zeta_n(z)\overline{\zeta_n(w)}][\phi_n^*(z)\overline{\phi_n^*(w)} - \phi_n(z)\overline{\phi_n(w)}]}.$$
(4.4)

We introduce the function b_n defined by

$$b_n(z) = \frac{\phi_n(z)}{\phi_n^*(z)}.$$
(4.5)

We note that b_n is holomorphic in $\mathbb{D} \cup \mathbb{T}$ and maps \mathbb{D} onto \mathbb{D} , \mathbb{T} onto \mathbb{T} , according to (2.8). In terms of this function, $\Gamma_n(z)$ may be written as

$$\Gamma_n(z) = \frac{1 - \zeta_n(z)\overline{\zeta_n(w)}b_n(z)\overline{b_n(w)}}{[1 - \zeta_n(z)\overline{\zeta_n(w)}][1 - b_n(z)\overline{b_n(w)}]}$$
(4.6)

and hence by a simple calculation

$$\Gamma_n(z) = \frac{1}{2} \left[\frac{1 + b_n(z)\overline{b_n(w)}}{1 - b_n(z)\overline{b_n(w)}} + \frac{1 + \zeta_n(z)\overline{\zeta_n(w)}}{1 - \zeta_n(z)\overline{\zeta_n(w)}} \right].$$
(4.7)

The Möbius transformation $z \to \frac{1+z}{1-z}$ maps \mathbb{D} onto the open right half-plane \mathbb{H} and \mathbb{T} onto the extended imaginary axis $\hat{\mathbb{I}}$. Taking into account the mapping properties of the function b_n stated above, we find that each of the two terms in (4.7) maps \mathbb{D} onto \mathbb{H} and \mathbb{T} onto $\hat{\mathbb{I}}$. The function $\Gamma_n(z)$ then has the same property. In other words, $\Gamma_n(z)$ is a lossless Carathéodory function.

A rational lossless Carathéodory function has the property that the zeros and poles separate each other. For the sake of completeness, we sketch the proof.

The function $\Gamma_n(z)$ may be written in the from

$$\Gamma_n(z) = ic + \sum_{k=0}^{n-1} \lambda_k \frac{z + z_{n,k}}{z - z_{n,k}},$$
(4.8)

where $\lambda_k > 0$ and c is a real constant. (See e.g. [7].) We find that

$$\lambda_k \frac{e^{i\theta} + e^{i\theta_{n,k}}}{e^{i\theta} - e^{i\theta_{n,k}}} = -2i\lambda_k \frac{\sin(\theta - \theta_{n,k})}{|e^{i\theta} - e^{i\theta_{n,k}}|^2}.$$

It follows that

$$\operatorname{Im}\left(\lambda_{k}\frac{e^{i\theta}+e^{i\theta_{n,k}}}{e^{i\theta}-e^{i\theta_{n,k}}}\right) > 0 \quad \text{for } \theta < \theta_{n,k}, \quad \operatorname{Im}\left(\lambda_{k}\frac{e^{i\theta}+e^{i\theta_{n,k}}}{e^{i\theta}-e^{i\theta_{n,k}}}\right) < 0 \quad \text{for } \theta > \theta_{n,k}.$$

When $\theta \to \theta_{n,k}$, the term $\lambda_k \frac{z+z_{n,k}}{z-z_{n,k}} = \lambda_k \frac{e^{i\theta}+e^{i\theta_{n,k}}}{e^{i\theta}-e^{i\theta_{n,k}}}$ in (4.8) dominates, hence we may conclude that

$$\lim_{\theta \to \theta_{n,k}^-} \frac{1}{i} \Gamma_n(e^{i\theta}) = +\infty, \quad \lim_{\theta \to \theta_{n,k}^+} \frac{1}{i} \Gamma_n(e^{i\theta}) = -\infty.$$

Thus the image of the arc $\{z = e^{i\theta} : \theta_{n,k} < \theta < \theta_{n,k+1}\}$ by the mapping $z \to \Gamma_n(z)$ is the whole imaginary axis \mathbb{I} . Consequently (at least) one of the zeros of $\Gamma_n(z)$ must lie on this arc. Taking into account the ordering for general n indicated in (4.1) and the fact that $\Gamma_n(z)$ has the same number of zeros and poles, we conclude that (4.2) holds.

This completes the proof of the theorem.

References

- A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad. The computation of orthogonal rational functions and their interpolating properties. *Numer. Algorithms*, 2(1):85–114, 1992.
- [2] A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad. Orthogonal rational functions and quadrature on the unit circle. *Numer. Algorithms*, 3:105–116, 1992.
- [3] A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad. Orthogonal rational functions, volume 5 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 1999.
- [4] A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad. Orthogonality rational functions on the unit circle: from the scalar to the matrix case. Technical Report TW401, Department of Computer Science, K.U.Leuven, July 2004.
- [5] M.J. Cantero, L. Moral, and L. Velázquez. Measures and para-orthogonal polynomials on the unit circle. *East J. Approx.*, 8:447–464, 2002.
- [6] L. Golinskii. Quadrature formula and zeros of para-orthogonal polynomials on the unit circle. Acta Math. Hungar., 96:169–186, 2002.

- [7] W.B. Jones, O. Njåstad, and W.J. Thron. Moment theory, orthogonal polynomials, quadrature and continued fractions associated with the unit circle. *Bull. London Math. Soc.*, 21:113–152, 1989.
- [8] G. Szegő. Orthogonal polynomials, volume 33 of Amer. Math. Soc. Colloq. Publ. Amer. Math. Soc., Providence, Rhode Island, 4th edition, 1975. First edition 1939.