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ABSTRACT

In this paper the generalized Hankel type integral transformation

izada por ULPGC. Bibliotey

depending on three real parameters defined by

[+ ]
4o p s TIE)= vﬁ{ x
where %J(x) is the Bessel function of the first kind of order u ,which

-1 —20 42V

Fy(y)=(F, xy)*3, 18 (xy)” 1E(x)dx  (=-1/2)

reduces to almost all the Hankel,generalized Hankel and Hankel type

integral transformations,is extended to certain spaces of generalized
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functions by the kernel method in such a way that the theory of E.L.
Koh and A.H.Zemanian in relation with the Hankel transformation

F(y) = (h,£)(¥y) = {wW)Jy(xy)f(x)dx w=-1/2)
appears then as a particular case for v=1,3=1,a0=1/2 . An inversion
theorem is established by interpreting convergence in the weak
distributional sense.The theory thus developed is applied to solve
certain initial value problems.
KEY WORDS Genralized Hankel type transformations,generalized functions,

countable union spaces,inversion theorem,adjoint method,

operational calculus,generalized Cauchy problems.

1 INTRODUCTION

Some generalizations of the classical Hankel transformation [15 & 17]
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(o]
F(y) = (h“f)(y) = f ‘7(xy)J“(xy)f(x)dx (H2-1/2) (1.1)
o
were given by many authors from time to time.Recently Malgonde [4]
introduced the generalized Hankel type transformation depending on
three real parameters (o 3,0 ) defined by

A =2a42v

0
F (y)=(F £)(y)=vB ¥ Jo 0?3, 13 (xv)” M (x)dx 2-1/2) (1.2)

lu 00 3,0
where «, and v are any arbitrary real numbers and J”(z) is the Bessel
function of the first kind of order 1 .Later on Malgonde [5] extended
(1.2) to certain spaces of generalized functions by kernel method. The
Fl—tra.nsformation (1.2) was also extended by Malgonde and Bandewar [8]
to certain generalized functions of slow growth through a generaliza-
tion of mixed Parseval equation (1.7) given below.
A new variant of the generalized Hankel type integral

transformation depending on three real parameter (a,3,’) is defined by

-1 2042

00
= Ao = > —
Fz(v)—(Fzy’aﬁ’vf)(y)J‘ﬁfo x (xy) J”[(?(xy) 1f(x)dx =-1/2) (1.3)
where o, and v are any arbitrary real numbers and Jy(z) is the Bessel
function of the first kind of order u .
Recently two variants of Hankel type integral transformations defined by

0
F(y) =(F ) = v [ xyM I, (xv)E(x)ax (1.4)

1.u 0

o
F(v) =(Fp , ,, DY) =f, 7% ™ 3, cnfxax (1.5)
where J,(x) is the Bessel function of the first kind of order v (¥2-1/2)

and # is an arbitrary real parameter,which are particular cases of (1.2)
and (1.3) respectively for 3=1,0=1,a=, =, have been extended to
certain space of generalized functions by Malgonde [6 and 71].

In view of the general nature of the kernel involved in the
transformations (1.2) and (1.3) on specializing the parameters we obtain

almost all the Hankel transformations [14,15,16,17]1,the Hankel-Schwartz
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transform [12],the Hankel-Clifford transform [9],amongst others.
We shall use quite a few times the asymptotic expansions

3,32 E /—%— x"%cos B -@/2)w + 1/2)1 +0 B )Y a8 xw
J“[ﬁxv]E (1) ¥ @Bx 727 » as x»o ,u=-1/2 (1.6)
and the following some of the important classical results [4].

THEOREM 1 (Inversion formula)

If £(x) is of bounded variation into a neighbourhood of the point x:xo>0,
#2-1/2 and the integral f:lf(x)|x°l_v/2dx exists, then

" R
lim -1-22+2- ot v i
oo PR ¥ (x,¥) J,[B(X,v) IF,(y)dydx=—5 [f(X, +0)+f(x,-0)].

THEOREM 2 (Mixed Parseval’s equation )

oLt v -t -1+ .
If £ ™ and Fy(n)y are in L;(0®),F,("=F; , -, [£x)1¥)
and Fz(y)=F2#,aﬁ,v [g(x)]1(y) then foru = -1/2
o0 a
J fxaxdx = [ Fy (¥)F,(y)dy 1.7
o (2]

According to Méndez [10] the equality (1.7) is called the mixed Pars-

eval’s equation for the Fz—transfomtion or F2 —~transformation

o e
As it is well-known there exist two ways to define an integral

transform of generalized functions,the adjoint and the kernel method.The

adjoint method has been employed by Zemanian [17],Méndez [10],Lee [31,

Schuitman [11],amongst others.The kernel method was used by Koh and

Zemanian [2],Dube and Pandey [1],amongst others.

In the present paper we extend the Fz—traneformation (1.3) to

other spaces of generalized functions following a different procedure

called the kernel method. Theorems on smoothness , boundedness, inversion

and uniqueness , together with an operation -transform formula for a
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Bessel-type differential operator are presented.

The notation and terminology used here are those of Zemanian [17].
Throughout this work I denotes the open interval (0,»). D(I) denotes the
space of smooth functions whose supports are compact subsets of I. We
assign to D(I) the topology that makes its dual D°(I) the space of
Schwartz”s distribution on I [13]1.E(I) and E“(I) are, respectively,
the space of smooth functions on I and the space of distributions with
compact supports on I.We use the following operators:

_d k .
Dsz" dx ’ (Aa,u,v) =( x'a_“va xz'w'ul)x x-w)'w‘-'h1 2))k and

* k _, _-wvia+l-2 v+ a4 k
() =(x D, x***Ip_x )  for k=0,1,2,... .

Let a,n and v be any arbitrary real numbers.H, App and H, Ap
denote the linear spaces consisting of all smooth complex-valued
functions #(x) on I such that, for every pair of non-negative integers

(m,k), the numbers

it H Y e = eup |FEFDITTH e | @8
? O<x<0
and
PPHPY o) = sup | E DT g x) (1.9)
" ’k O<x <0 o
1000 _
exist respectively. The set of seminorms { Y x }m ko where i=1,2

generates the topology of H respectively.The duals

L aup®d

of q’a#’v and l;’a#’v are denoted by Hi’a#,v and l';’a#,v respectively
2.THE TESTING FUNCTION SPACES H AND H (¢ ) AND THEIR DUALS

aup,a oM Y

Let a denote a positive real number and &« w ,» be any arbitrary
real parameters.Then for each a,a . ,and ¥ we define D'Ial up.a as the

space of testing functions ¢ (x) defined on O<x<0 and for which
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ST ey = sup |e

0 <X<Qo
for k = 0,1,2,———— .

acx—.uv+a+1—2» R P(x)| < o (2.1)

n
A H 5V

We assign to H the topology generated by the countable multinorm

O LH v ,a
O‘JJ,V,B}‘” OSSP ,a
k=0 *

in, i is a norm on

o, ais Hausdorff space, since n

lHa# » ’a.Horeover,lH o o ,aiB a locally convex linear space that satisfies

the first axiom of countability.The dual space H ¥ aconsists of all

continuous linear functionals on H o 8"

Following Koh and Zemanian [2] and Malgonde [6],we now list some
properties of these spaces.

(i) Let » 2 -1/2, a > 0 and o ,» be any arbitrary real

-1-2x+2

parameters and Kl(x,y)wﬁx (xy)aJ“[I? (xy)’ 1.For a fixed positive re:

number y,

m

"—m[xl(x,y) ] M
y

m=0,1,2,.... .

AP ,a
(ii)fHa “.a is sequentially complete and therefore a Frechet
space .Hence lHa 2p,a is also sequentially complete.

(iii) If a>b>0, then 'Ha,u,v,bc lHa’u’v’a,and the topology of ma,p,v,b

]
3
2
£
S
5
o
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is stronger than that induced on it by H po.a

(iV)HLa R is a proper subset of H up ,afor every choice of a>0,and E
the topology of HLa e is stronger than that induced on it by H_ T Y f
(v)D(I)c lHa’u,V' A ,and the topology of D(I) is stronger than that induced z
on it byIHOl,.u’V,a . §
(vi)For every choice of a . » and a, D-!a’y 8 < E(I) .Moreover,it i
is dense in E(I) because D(I) < !Ha#,v ™ and D(I) is dense in E(I).

The topology of lHa P is stronger than that induced on it by

E(I).Hence,E"(I) can be identified with a subspace of IH(;# ».8 -

(vii)The operation ¢~ A " ’v¢ is a continuous linear mapping of H_ Hp,a
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into itself since

o P ,a _ o4 Y ,a -
n, (Aa,u,p‘» = 0.5, (®) for k = 0,1,2 ....
(viii)Let f be an arbitrary element of lHa,“ » a.Then there exist

bounded measurable functions gi(x) defined for x>0 and i=0,1,2...,r ,
where r is some nonnegative integer depending upon f, such that for an

arbitrary ¢ € D(I) we have
»

KEA> = (I8, D e xR p ) g xd L x>

LT < D Y e 2

We turn now to the definition of a certain countable—union

spaces !Hcl up (0) that arise from the D-Ia T spaces. Our subsequent

discussion takes on a simpler form when the H, » () spaces are

M

used in place of the H o i b, aSPaces. .

Following Koh and Zemanian [2], lHaJ_l’v (o ):F01 D-la#,v .8 is the

is a monotonic sequence of

countable-union space, where { % }m
positive numbers such that ap+ o (c=40 is allowed).A generalized

function f is Fé#,aﬁ'v —transformable if f= No"#,v () for some o>0,

wherelH&#,v(o') is the dual Ofma,p,v(a)‘

In view of our definitions of H ot (¢) and its dual,the

M
following lemmas are immediate.

m

LEMMA 1 For any fixed y>0, %ﬂ [Kx.0)] €M, @),m=0,1,2...

y
where ¢>0.
LEMMA 2 For every choice of o>o0, H],a g = ﬂ"a#,v(a),
and convergence in H1 g implies convergence in H MoV ©@).
AR > is in H] and
The restriction of f= lHa,“'v @) to HLa#,v Lo u,v
convergence in lHal s (¢) implies convergence in HL oyt v

LEMMA 3 The operation ¢~ AG,IJ » ¢ is a continuous linear mapping of

. - X .
H o e 2 (¢) into itself.Hence the operation f - A, " ,vf is a continuous
linear mapping of IH& o , (@) into itself [17].
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As was indicated in note(vi), HS A ,(©) contains all

distributions of compact support on I=(0,»).Similarly any

conventional function f for some a< is a member of IH(; o (¢) ,as
K

is every generalized derivative ( A:’“ v y f ,k=1,2,3. . .according to
Lemma 3. Moreover, we may say that the members of lH& " ,U(O) are
“generalized functions of exponential descent”,since the

A SH P ,a

X } shows that the testing functions ¢ € H

multiform { » o 08

are at most of exponential growth.

3 THE GENERALIZED HANKEL TYPE INTEGRAL TRANSFORMATION F’ZJ_‘ o B

Let p2 -1/2 and a,v be any arbitrary real numbers.In view

of note (iii) Of & 2, to every f e IHO;# oy there exists a unique

real number o, (possibly,afz-lm) such that f e IHO: i | it bcvt and
th

fi= No;’#,v,b if b, .Therefore,f IHO:’M’V(Of ).We define the x4 "order
generalized Hankel type integral transform F2 HAAY f of £ as the
application of £ to the kernel K1(x,y) ; 1.e.,

Fo(v) = (F, )(y) =< £(x) , K (x,¥y» (3.1)

"J ,a ﬁ ,v
where O<y<w and o f>0.’1'he right hand side of (3.1) is meaningful by
Lemma 1 for each y>0 and o f>0.

LEMMA 4 Let a and ¢ be fixed real numbers such that 0<a<vf.

For all fixed y>0,for 42-1/2 and for 0<x<o

le™ ™1™ 3, BGv"1| <A, 4, (3.2)

where IL 8w is a constant with respect to x and vy.

PROOF:The proof is simple and can be verified as it was made by Koh

and Zemanian [2].
THEOREM 3 (Analyticity of Fz(y)):For vy > 0, let Fz(y) be defined by

(3.1).Then
d _ a
3y Fz(y) = < f(x) ' oy Kl(x,Y) >
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PROOF:The proof can be easily verified following Koh & Zemanian [2].
THEOREM 4 (Boundedness of Fz(y)):Let Fz(y) be defined by (3.1).

Then Fz(y) is bounded according to

. y—:-aizv-{,uv .

|Fy(v)|= { (3.3)
(o]

2Vr 4 —OH+2V+ P
y as y»®
where ¢ is a positive constant and r is non-negative integer.
PROOF :Proof is very similar to that of Koh and Zemanian [2].
In view of note (iv) of § 2 and Lemma 2, if f is inMH} @)

[~ QYR
then f belongs to Hi o v provided that # 2 -1/2. We now show
that generalized Hankel type integral transform of fem‘; o (of) given by

1,00, v
Hankel type integral transform of f as given in Malgonde and Bandewar ([7

(3.1) is equal (in the sense of eguality in H ) to the generalizec

by <Fpf ¢ >=<f ,F@ > (3.9)
for every fEH’la’“ , and ¢ € H1a,p L -
THEOREM 5 Let fe M) (o) ,¢ <M, ., and u = -1/2.Then
®
< <f(x) , Ky(x,¥)> , #(y) > Xf(x) [ K (x,¥)(v)d>. (3.5)

PROOF :Proof follows on the similar lines as that of Malgonde [5].

THEOREM 6 Let Fz(y)=(F2:“ ’aﬁ,vf)(y),fé}l&#,v (of) as in (3.1) where
yv>0.Let 4 = -1/2.Then,in the sense of convergence in D’ (I),

£(x) = lim £° Fo(v)Ey(x,¥)dy (3.6)
where Ky(x,¥) 28 v o ) I, B 1 .

PROOF :Let ¢(x)sD(I). We wish to show that
< SFE, MK (x, vy, $(x) > (3.7
tends to <f(x), #(x)> as R+».From the smoothness of Fz(y) and the

fact that support of #(x) is a compact subset of I,we may write

82

izada por ULPGC. Bibliotey

El
a
£
s
H
2
3
El
]
]
£
]
g
3
8
=



(3.7) as a repeated integral on (x,y) having a continuous integr-
and and a finite domain of integration. Hence we can change the
order of integration and obtain

¢(X)f F, (Y)K (x.Y)dyde <f(t), K,(t,v)> ¢(x)K2(x,y)dxdy. (3.8)
By an argument based on Riemann sums for the integral .. dy .

the right side of (3.8) can be written as

< £, L8 R (6,y) £B(x)K,(x,y)dxdy > (3.9)
By the formula in Malgonde [4]
vagty  FYI 1 () 13, 18 (xv)” 1dy
=xzfv_€v [%'3,,, B&R’II, BERY 1€, BOR) ] I, 03 (xR)” ]

and the asymptotic representations of the Bessel functions enable us
to show that for any a>0,the testing function in (3.9) converges in
[Ha,p,v a1;0 #(t) as Reoo_Since ﬁElHa,“ - awhere 0<a¢7f -
(3.9) converges to <f(t),#(t)> as R+ . This proves the theorem. _

it follows that

THEOREM 7 (Uniqueness theorem):Let Fz(y)i P (y) for y>0

2#,01/?,»

and Gz(y)i & (y) for y>0,f and g being in H~ o) -

2,;.1 A0 o
If Fz(y)=Gz(v),for every y>0,then f=g in the sense of equality in D’ (I).

PROOF :By Theorem 6 , f-g = lim £ [ F,(v)-G,(¥)] Ky(x,y)dy = O.

4. AN OPERATION -TRANSFORM FORMULA

In this section,we shall apply the preceding theory in solving

certain differential equations involving generalized functions.

We define the operator Aa ot IHO"’_‘ A )*lHo:,“ L @) by the relation
< Aa*,,_, LEX) L ex) D> = < f(x) LA, P (XD (4.1)

for all f= IH(;’“,V @, Jand ¢ € IHO(,M’V @) #z-1/2 and for o« and v

arbitrary real numbers.It can be readily seen that
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