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MULTI-OBJECTIVE OPTIMAL CONTROL PROBLEM 

D. K. Bhattacharya & T. E. Aman 

Abstract 
The paper first considers a general multi-objective optimal control problem and obtains a 
necessary and sufficient condition for the existence of solution of such a problem. lt 
shows that the solution of such a problem reduces to finding out the solution of a single 
objective optimal control problem of known type. Next similar investigations are made 
with fractional multi-objective optimal control problem. Finally, by using the above 
results, actual solutions are obtained for particular example of multi-objective optimal 
control problem and that of multi-objective fractional optimal control problem. 

1. lntroduction: 
Single-objective general optimal control problem is well known [1] ,[5] ,[15]. Pontryagin's 
maximum principie gives a necessary condition of optimality [16]. More specific 
necessary conditions are the Legendre conditions [1 O). For general linear quadratic 
optimal control problem, conditions of optimality are more transparent [11]. Recently 
such general linear quadratic problem has been studied in a newly developed abstract 
space by the authors [2]. Special linear quadratic optimal control problems are more 
interesting from the solution view point [11). Further, in ali such cases, examples are 
available from physica l as well as from biological world. 
Again, if we think of constrained optimization problem and linear / nonlinear 
programming problems, we see that such problems are well studied and moreover 
vector generalizations of these problems are also well known [4) [9], [12). These are 
called vector maximization problem/ non-inferior solution problem / pareto- optimal 
problem . Further, examples of such problems are available in many branches of 
science, especially in Economics. Moreover such problems have also been generalized 
in abstract spaces [3). Lastly, fractional forms of such vector optimal problems have also 
been studied [6) , [13), (14). 
So far as vector generalization of optimal control problems and also of fractional forms of 
such problems, are concerned , it is noted that examples of such problems may be cited 
from real world situations. But no attempt is made as yet to study such vector optimal 
control problems. The paper attempts, for the first time, to formulate such problems, to 
investigate their solutions, and to find out the actual solutions in suitab)e examples. 

2. Multi- objective control problem and its solution. 

2.1 . Statement of a multi-objective optimal control problem (MOCP). 

Let x = f(x, u) be a dynamical system where x = x (t) E 91", u = u(t) E Uc: 91P, U = (a; < u; 
< b;), t E [O, t1] , f : 91" x 9'lP ---+91" is a c1 - map; the initial condition is x = x 0 when t =O. Let 
the objective function be J. (u) = (J1• (u) , J2x (u) , ...... Jmx (u)) where 

f '' J jx (u ) = Jo Fi(x, u) du U = 1, 2 , .... , m) (the integral is supposed to exist for each j) . 

Then the multi-objective optimal control problem is 

opt J x(u) = opt (J1x (u) , J2x (u) , ..... , J mx (u)) , V u E U . 
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2.2. An example of a quadratic multi-objective control problem 
Let fish populations X; (t) (i = 1, 2 ..... n) have growth equations given by xi =X; f;(x). Let 

the harvesting efforts be u;(t). Let the harvest satisfy catch- per unit effort hypothesis (7]. 
Then the harvested model is given by 
X¡ (t) = X¡ f;(X) - q¡ (t) U¡ (t) X¡ (t), i = 1, 2, ... ,n, 

where q¡ denote the catchability coefficients of X;. Let u = (u;), a; < u; < b;. i = 1, 2, ....... n. 
Let a = (a;) be the desired target for harvest X;. Then the deviation from the target of 
harvest x is equal to y = q x - a , q = (q¡). Let the performing index be to minimize the 
sum of two functions, one being 11 q x - a 112 under the weight functions Q(t) = (Oab(t)) 
and the other one being l lull2 under the weight functions R(t) = (Rab(t) ) ; a , b = 1,2 .. .. .. n. 
So if Q = (Qk) and R = (Rk), k = 1, 2 .. .. . m, (m ~ 2),then there are m performing criteria 

Jkx(U) = r [(qx -af Qk(qx-a)+uT Rku]dt. 

The problem is to minimize Jx(u) = (J1x (u), J2x (u) .. ..... Jmx (u)), \fu E U. 
This is an example of a (M O C P), where the optimization depends on the choice of u = 
u* and also on the choice of Jix (i= 1, 2, ... , m) and optimization means minimization. 

Remark 1: The above problem reduces to a standard optima! control problem if Q and 
R are taken as identity matrices. 

2.3. Geometrical meaning of an optimal control problem and a multi-objective 
optimal control problem. 

Let .X= f(x, u), XE \Hº, u E U e \Hº, be a system of ordinary differential equations with 

initial condition x = Xo, and let J = r F (x, u) dt be the objective function. Let the optima! 

control problem be to optimize J(x, u) over u. Now the integral J is evaluated along each 
integral curve of .X= f(x, u) , passing through x = Xo corresponding to different cho ices of 
u. So J: X ~R. where X is the set of ali (x, u) defining J(x, u). The solution of the optima! 
control problem means the optima! value of the integral along a particular integral curve 
x (t) = x*(t) through x = Xo which corresponds to the choice of u = u* (called the optima! 
control). This is why, for the sake of convenience, we write J as J(x,u) or Jx(u) and 
optima! J as J(x*,u*) or J.-(u*). 
In a multiple objective control problem, the objective function is vector valued in nature, 
due to the presence of sorne other functions like Q and R, as taken in the above 
example. Naturally if the vector components of the objective function are taken as J1x(u) , 
J2x(u) .... ... Jmx(u) , then for one such J;x (u) (i=1 ,2, .... m), ali the objective values 
corresponding to different choices of u evaluated along different integral curves through 
x = xo may be comparable. In that case, it is meaningful to say that Ji.- (u*) is the optima! 
value of the control problem, where x* = x*(t) is that integral curve through x = Xo (called 
the optima! x*) which corresponds to the optima! u= u*. But the same u* and x* may not 
optimize ali JP< (u) (i=1, 2, .... m). There are three possibilities: (i) (x*,u*) maximizes ali JP< 
(u) (i=1,2, .... m), (ii) (x*,u*) maximizes sorne Jix (u) (i=1,2, .... m) and minimizes the rest 
JP< (u) (iii) (x*,u*) maximizes sorne Jix (u) (i=1,2, .... m), minimizes sorne Jix (u) and 
neither maximizes nor minimizes the rest JP< (u). For meaningful discussion, we consider 
the first two cases only. On similar ground, A. M. Geoffrion (9] and others gave sorne 
meaning to vector maximization problems. We consider similar concepts for our vector 
control maximization problem. 

130 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



2.4. Efficient and properly efficient multi-objective control problem. 

Definition 1. Let a M O C P be stated as in 2.2 where the problem is a maximization 
problem. Let X= {(x, u)}, where u E U and x is the integral curve of .X= f(x, u) passing 
through the initial point x =XQ. Then (x*, u*) EX is said to be an efficient solution of MOC P 
if there exists no (x, u) such that for all i (i= 1,2, .. .. ,m), Jix (u) :$; J¡x· (u*) but there exists at 
least one 1 (1 =1 , .... , m) su ch that J1x (u) < J1x· (u*), V (x, u) E X. 
Definition 2. 
(x*, u*) E X is said to be a properly efficient solution of M OC P , if it is efficient in the 
sense that there exists 1 = { iE (1,2, ... ,m): Jix(u)> J;x•(u*)}, L={ IE (1,2, .. . ,m): J1 •• (u*) > 
J1x(u)}, V (x, u) EX., (x ,u);z= (x*, u*), I U L = (1,2, .. ,m) and if there exists a scalar M >O 

such that for each iEI, there exists sorne 1 E L, such that 

l ;x (u)-J . (u · ) 
----"'-- :$; M , V(x,u) E X. 
J 1x. (u*)-J1x (u) 

Definition 3. 
(x*, u*) E X is said to be a k-th entry efficient solution of M OC P, if kE(1,2, .. ,m) such 

that when J1a (u)> J1a· (u*), 'v'(x,u) EX., then there exists at least one IE K=(1,2, ... , k-
1,k+1 , ... m) for which J1x·(u*) > J1.(u)}, V (x, u) EX. 

Definition 4. 
(x*, u*) E X is said to be a properly k-th entry efficient solution of M OC P, if it is a k-th 
entry efficient solution and further if there exists a scalar Mk > O such that 

l 1a: (u) - J 1a:. (u *) 
----- :$;Mk, V(x,u) E X. 
J 1x_ (u*) - l 1x(u) 

We readily have the following propositions: 

Proposition 1. 
(x*, u*) EX is an efficient solution of M OC P if and only if (x*, u*) is a k-th entry efficient 
solution for each kE (1 , 2, ... , m). 

Proposition 2. 
(x*, u*) E X is a properly k-th entry efficient solution of M O C P if and only if (x*, u*) is a 
properly k-th entry efficient solution for each k E (1 , 2, ... , m). 

Remarlc 
To discuss an efficient solution ora properly efficient solution of M O C P, it is sufficient 
to consider a k-th entry efficient solution or a properly k-th entry efficient solution only. 

2.5. Scalar maximum optima! control problem (SMCP) and multiple-objective 
control problem (MOCP). 

In general, we can always find a subset of the set of all K-th efficient solutions of MOCP 

which are also K-th properly efficient solutions. In this connection, we need the idea of 
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k-th entry SMCP (scalar rnaxirnization control problern) . Such problerns consist of 

problerns of the forrn A,MCP ,AE R+ m-1, where a 4AcP is defined as follows: 

Let IE K (=1,2, .... ,k-1 , k+1, ..... . ,rn) . Then the definition of a 4AcP is: 

Maxirnize [Jkx(u) + I IEK /..1 J1x(u)], V (x, u) EX. 

We now prove the following characterization theorern of k-th entry properly efficient 

solution of MOCP 

Theorem 1. 

Every rnaxirnurn solution of k-th entry SMCP is an efficient solution of k-th entry MOCP. 

lt is also a properly k-th entry efficient solution of the MOCP. Conversely, every properly 

k-th entry efficient solution of a MOCP is an optirnal solution of k-th entry 4AcP, for sorne 

AE R+m-1. 

Proof: Let (x*, u*,/..*) be the point of rnaxirnurn of 4AcP, for sorne /..*ER+m·1, then 

J kx(u) + L IEK /..*1J ix(u) ::; J kx-(u*) + L IEK /..*1 J ix-(u*), 

i.e., (J kx(U) - J kx•(u*)) + I id /..*1 J1x(u) ::; L IEK /..*1J1x·(u*). 

lf J kx(u) - J kx·(u*) >O, then it follows that I IEK /..*1 J 1x(u) ::; I id /..*1 J 1x•(u*). 

Hence I IEK /..*1 (J 1x(u) - J 1x·(u*)) ::; O. As /..*1 >O, so there exists at least one 1 E K such 

that J ix(u) < J ix·(u*), whenever J kx(u) - J kx·(u*) >O. Hence (x*, u*) is a k-th entry efficient 

solution of MOCP. 

Now we show that (x*, u*) is also a K-th entry properly efficient solution of MOCP. lf not, 

given any Mk> O, we have, Jkx(u) - Jkx·(u*) > Mk [J 1..(u*) - J 1x(u)], V 1 E K and V(x, u) EX. 

As /..*1 >O are given in 4AcP, so we choose accordingly Mk= (rn-1) rnax /..\ IE K . Then 

surnrning up frorn 1 to rn-1, we have, 

J kx(U) - J kx·(u*) > L IEK /..*1[J 1x·(u*) - J 1x(u)] 
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i.e., J kx(u) + L id< A-*1 J1x(u) > J kx-(u*) + L IEK A-*1 J 1x•(u*) , V (x, u) EX . 

. This is a contradiction as (x*, u*) is a maximal solution of 4icP- Hence (x*, u*) is properly 

k-th entry efficient of MOCP, with Mk= (m-1) max A-\ IE K. 

Conversely, let (x*, u*) be a properly k-th entry efficient solution such that 

Jkx(u) - Jkx·(u*) < Mk [J1x·(u*) -J ix(u)] , for at least one IE K and V(x, u) EX. , where for 

each such 1, J1x·(u*)- J1x(u) >O,I E K. Hence if we choose A-*= (1 , 1, ... . , Mk, 1, .1) E ffi+ m-1, 

where Mk occurs in the k-th place, then Jkx(u)- Jkx·(u*)< L id< A-i* [J 1x·(u*) -J 1x(u)]. 

i.e., J kx(u)+ L ¡Ef< A-t J 1x(u) < J kx·(u*) + L IEK A-i* J ix·(U*), V(x, u) EX. Hence (x*, u*, A,*), 

is an optimal solution for the member 4icP of SMCP where A-*= (1, 1, ..... , Mk, 1,. 1) 

This completes the proof. 

2.6. Procedure to evaluate optimal solution of MOCP 

lf MOCP is assumed to possess a properly efficient solution (x*, u*), then necessarily 

(x*, u*) is a maximum solution of sorne SMCP. As each such SMCP can be thought of 

as a single objective optimal control problem, so necessarily (x*, u*) satisfies 

Pontryagin's maximum principie. Thus a working rule to find out the optimal solution of a 

MOCP, when it exists, may be expressed in terms of finding out the optimal solution to a 

suitable SMCP equivalent to the MOCP, by applying Pontryagin's maximum principie. 

This is illustrated in working out the following example. 

Example 
Let X; = X; f; (x) - q; U; X; , f;(x) = -K; X; (x; -a;) , i = 1, 2, be a system of differential equations, 

q; are constants, u; =u;(t) are parameters, a; :::; u;(t) :::; b;. Let MOCP be to maximize (J 1, J2) 

over u, where J;(x,u) = f~ [(qx - al Q1(qx-a)+u r R1u]dt, a= (a1, a 2)T, 

Qi = [º11 O ), Ri = [R11 
o Qj2 o o ) , i = 1, 2 ; j = 1,2. 

R12 

133 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 U

ni
ve

rs
ita

ria
, 2

01
7



Solution: 

Let (x*, u*) be a rnaxirnurn solution of MOCP. We consider the 2-th entry efficient 

for sorne M2 >O. Then the corresponding rnernber of SMCP which is to be rnaxirnized is 

Maxirnize J~ (u)= J1x (u) + M2 J2x (u), M2 > O, subject to X; =X; f; (x) - q¡ U; X; (i = 1, 2). 

For syrnrnetry of expressions, we write J~ (u)= M1J1x (u) + M2 J2x (u), M2 > O, M1 =1. 

For this problern, the Harniltonian takes the forrn 

H = M; [ q; X; -a.;) T Qi ( q; X; -a.; )+ u;T Ri u;] + p; [x; f;(x) - q¡ u; X; ] = M; [Q ii ( q; X; -a.;)2 + Ri; u;2] 

+ p¡ [X; f;(X) - q¡ U¡ X;] , i= 1, 2, j = 1,2. 

where (p1, p2) is the co- state vector which is to be deterrnined suitably. 

Now applying Pontryagin's rnaxirnurn principie, we get 

For the equilibriurn solution, we have 

u= f (x) i =1 2 
1 ' ' q¡ 

For steady state solution, we use -K; X; (x; -a.;) = O, i = 1, 2 and obtain 

Solving (2), we have, as a particular solution, 

Again for rnaxirnurn H, aH =O, for sorne u* E (a;, b;). Frorn this, it follows that 
aui 
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From (1) , u* is given by u;*=f;(x*)/q; (5) 

Using the values of p; from (3) and u*; from (5) in (4) , we have the optimal value of x* = 

(x* 1, x* 2, x* 3) given by positiva roots of the equations 

(R11 + Rz1 )K1 (a1 -X1 *)- q13(x1 *) M1 (Q1 1 + Q21)(q1x1 *-a1) =O 

(R12 + Rzz)Kz (az - Xz *)- q/ (xz*) M 2 (Q12 + Q22 )(q2x2 * -az ) =O (6) 

under suitable choice of the parameters. Using this value of x* in (5), we get the optimal 

u*. Thus (5) and (6) determine the optimal solution (x* , u*) of M OC P. 

3. Multi- objective fractional optimal control problem (M O F C P). 

3.1. Statement of Multi- objective optimal fractional control problem (M O F C P). 

Let (~J = (j(x,u)J, (x(O)J = ( xºJ be two systems of ordinary differential equations, 
y g(y,u) y (O) Yo 

where x = (x;), y= (y;) , i = 1,2, ... ,n. Let the objective function be given by Jxy(u)={(J;xy(u)} 

where J;xy (u) = P; (x, u) , i = 1,2, ... ,m; (q;y(u) * O), u being the control parameter, Poc (u) 
q;(y,u) 

and q;y (u) being given by P;x (u) = f:1 F; (x, u) d t , q;y (u) = f:1 G; (y,u) dt. Let XY 

denote the set of all (x, y, u) for which J;xy (u) is defined. Then MOFCP is defined as 

Maximiza J;xy(u), (i=1 ,2, .. , m) , 'V u E U. 

3.2. Meaning of maximal solution of MOFCP 

lt is noted that if (x* , y*, u*) maximizas sorne J;xy(u) = P;x (u) , (i = 1, 2, .. ... m) , then it 
q;y (u) 

may be assumed that p;x·(u*) is the maximum and q;y.(u*) is the minimum value of P;x(u) 

and q;y(u) respectively. But the same (x*, y* , u*) may not maximiza all J;xy(u) . Hence to 

make the MOFCP meaningful , we use a modified definition of efficient and properly 

efficient point. These are parallel to the corresponding definitions which we have 

considerad in case of MOCP. But these are completely new comparad to the earlier 

definitions in the similar cases as considerad by E. U. Choo [8] and others. 

Definition 5. 
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(x*,y*,u*) E XY is called an efficient point of MOFCP, if there exists no (x, y, u) E XY 

such that for all i = 1, 2, .. , m, P;x(u) > P;x·(u*) and q;y(u) < q;y·(u*) , but there exists at least 

one 1 (1 =1 ,2, , .. , m) such that P1x(u) < Pix· (u*) and qy(u) > q1y· (u*) , V(x ,y, u) E XY. 

Definition 6. 

(x*,y*, u*) E XY is called a properly efficient point of MOFCP , if (x*, y*, u*) is efficient in 

the sense that there exists 1 = {i : P;x(u) >p;x·(u*) , q;y(u) <q¡y·(u*)} , V(x,y,u) E XY, and L = 

{ 1: Pix(u) < Pix· (u*) , q1y(u) > q1y· (u*)}, V(x,y,u) E XY, and further if there exists a constant 

M>O such that for each k in I, there exists one 1 E K = (1 ,2, .. ,k - l .k + 1, ., m)for which 

Definition 7. 

(x*,y* u*) E XY is said to be a k-th entry efficient solution of M OC P, if kE(1,2, .. ,m) such 
that when Pkx(u) > Pkx·(u*) , %(u) <%·(u*)}, V(x,y,u) E XY, then there exists at least one 

IE .k =(1 ,2, ... ,k-1 ,k+1 , .. , m) for which{Pix(u)<p1x(u*),q1y(u)>q1y· (u*)} ,V(x, y, u) E XY. 

Definition 8. 

(x*, y* ,u*) E XY is said to be a properly k-th entry efficient solution of M O FC P, if it is a 
k-th entry efficient solution and further if there exists a scalar Mk > O such that 

[ P1o; (u) - P1o;• (u*)][ q1c;-. (u*) - qky (u) l ~Mk ,IE .k. 
q1Y(u) - q1Y. (u*) P1x• (u*)- P1x (u) 

We readily have the following propositions: 

Proposition 3. 
(x*, y* ,u*) EXY is an efficient solution of MOFC P if and only if (x* , y*, u*) is a k-th entry 
efficient solution for each kE (1 ,2 , ... ,m) . 

Proposition 4. 
(x*,y*, u*) E XY is a properly k-th entry efficient solution of MOFC P if and only if (x* , y* , 
u*) is a properly k-th entry efficient solution for each k E (1 ,2, ... ,m) . 

Remarlc 
To discuss an efficient solution ora properly efficient solution of M OFC P, it is sufficient 
to consider its k-th entry efficient solution ora properly k-th entry efficient solution only. 

3.2. An example 
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Let there be n varieties of fishes , for each of which, a fixed age is considered as its 
mature stage and a fixed age is considered as its immature stage . Naturally the growth 
rate of mature ones differ from that of immature ones. Obviously for the mature ones, 
natural growth rate is less and loss due to intra-specific coefficient is also less; whereas 
both are higher for immature ones. Let us denote the mature and immature varieties by x 
= (X¡) and y= (y¡) , respectively, i= 1,2 , ... . n . Let their growth equations under harvesting 
u=u(t) for time interval O to t1 be given by 

X= f(x, u) , x (O)= Xo 
y= g(y, u), y (O)= Yo 

Let the profits of selling i-th varieties of x and y (i= 1, 2, .. . , n) be given respectively by 

P;x (u) = r F; (x, u) d t , q;y (u) = r G; (y, u) d t 

Let the problem be to compare the ratios of Pix(u) and q,,. (u) for i= 1,2, .... ,n (q,,.(u) * O) 
and to find the optima! one. 
This is an example of a multi-objective fractional optima! control problem MOFCP. 

3.3. Scalar maximum fractional optima! control problem (SMFCP) and multiple­
objective fractional optimal control problem (MOFCP). 

In general, we can always find a subset of the set of ali K-th efficient solutions of 

MOFCP which are also K-th properly efficient solutions. In this, connection, we need the 

idea of k-th entry SMFCP (scalar maximization fractional control problem). Such 

problems consist of problems of the form A.µ McP, where a A-µ McP is defined as follows: 

Let A., µ E R+m-1, k E (1,2, ... , m) . Let 1 E K (=1 ,2, .... ,k-1 , k+1 , ..... . ,m). Then A-~cP is to 

maximize [p kx(u) --qky(u) + L IEK (A. 1 P1x(u)- µ1 q1y(u)) , V (x, y, u) E XY. 

We now preve the following characterization theorem of k-th entry properly efficient 

solution of MOFCP 

Theorem 3. 

Every maximum solution of k-th entry SMFCP is a k-th entry efficient solution' of MOFCP. 

lt is also a properly k-th entry efficient solution of the MOFCP. Conversely, every 

properly k-th entry efficient solution of a MOFCP is a k-th entry maximum solution of 

sorne A.µ MCP, A,µ E R+ m-1. 

Proof: Let (x*, u*, A.*, µ*) be the point of maximum of A-~cp ; then 
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Let Pkx(u)- Pkx-(u*) >O and % ·(u*)- %(u)> O, for sorne kE(1,2, .. , m) and V (x, y, u) E XY, 

Hence I iei "- 1· (p ix (u) - p ix·(u*)) + I iei µ*1 (q 1y·(u*) - q 1y(u)) ::; O. 

As A.\ µ*1 >O, so there exists at least one 1 E K such that p ix (u) - p ix·(u*) <O and 

• q 1y•(u*) - q 1y(u) <O, whenever Pkx(u)- Pkx·(u*) >O and %·(u*)- %(u)> O. 

Hence (x*, y*, u*) is a k-th entry efficient solution of MOFCP. 

Now we show that (x*, y*, u*) is a K-th entry properly efficient solution. lf not, given any 

Mk > O, we have, 

lf we write Mk = mk nk, then we can take [Pkx(u)- Pkx·(u*)] > mk [P1x·(u)- Pixu)] and 

[%· (u*)- %(u)] > nk [q1y(u)- q1y·(u*)]. As A. 1·, µ*1 > O are given in /...~cp, so we choose 

mk= (m-1) max /...*1 and nk= (m-1) max µ\ IE K . Now summing up from 1 to m-1 gives 

[Pkx(U)- Pkx·(u*)] > I IEK A.*1 [P1x•(U)- PixLI)] and [qky" (u*)- %(u)]> I IEK µ*1 [q1y(u)- q1y•(u*)]. 

Adding we get 

> [Pkx·(u*) -%·(u*)]+ L IEK (A.*1 Pix·(u*) - µ*1 q1y·(u*)), V (x, y, u) E XY, 
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This shows that (x*,y*,u*) is nota solution of A.JlMcp, A., µ E R+ m-1. This is a contradiction. 

Hence (x*, y*, u*) is a K-th entry properly efficient solution . 

Conversely, let (x*, y*, u*) be a properly k-th entry efficient such that 

[
p (u)- p . (u*)][q1cy. (u*)- q (u)] , 

1cx 1cx * * /cy s. M k, 'i/(x,y,u) E XY, for at least one 1 E K , where 
q1y(u)-q1y. (u) P1x•(u )- P1x(u) 

each of Pix.Cu) - Pixu) and qy(u)- qiy.(u*)] is positive, 1 E K. Now taking Mk= mk nk, we get, 

[Pkx(u)- Pkx.(u*)] S. mk [P1x•(U)- P1xU)] and [%· (u*)- %(u)] S. nk [q1y(u)- %·(u*)]. 

Hence if we choose A.*= (1 ,1, .... , mk, 1,. 1) , µ*= (1 ,1,, nk, 1,.1), E \R+m-1,where mk, nk 

occurs in the k-th place of A.* and µ* respectively, then 

So finally we get, [Pkx(u)-qky(u)]+ I iEK (A.*1 Pix(u)- µ*1 q y(u)) 

Hence (x*, u*, A.*, µ*), is a maximum solution of the member AJlMcP of SMFCP where A.*= 

(1 , 1, .... , mk, 1, .1), µ*= (1, 1,, nk, 1,. 1) , This completes the proof of the theorem. 

3.4. Procedure to evaluate optimal solution of MOFCP 

lf MOFCP is assumed to possess a properly efficient solution (x*, y* , u*), then 
necessarily (x*, y*, u*) is a maximum solution of sorne SMFCP. As each such SMFCP 
can be thought of as a single objective optimal control problem, so necessarily (x*, y* , 
u*) satisfies Pontryagin's maximum principie. Thus a working rule to find out the optimal 
solution of a MOFCP, when it exists, reduces to finding out the solution to a suitable 
SMFCP equivalent to the MOFCP by applying Pontryagin's maximum principie This is 
illustrated in working out the following example. 

Example 
Let X; =xJ;(x)-r;u;x; =K;x;(a ; -x; ) - r;u;x;, 

be two systems of differential equations, a;, p; , r;, s; are constants, 
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u; =u;(t) , are parameters, a; :<=:: u;(t) :<=:: b;, each of 0 1, 0 2, R1 and R2 is a2x2 matrix given by 

Oi=[º¡i O )Ri=[R¡i O) O'i=[º;1 O )R'i=[R;1 O) LetXYbethe - O O. ' O R . ' - O O' ' O R' ' 
- ¡2 ¡2 - ¡2 ¡2 

set where P; x(u) and q iy(U) are both defined; Let the MOFCP be defined as follows: 

Maximize J · (u)= P;x (u) i = 1 2 \fu E U. 
ocy ( ) ' ' ' qiy u 

Solution: 

.Let (x*, y*, u*) be a maximum solution of MOFCP. We consider the 2-th entry proper 

efficient solution, such that there exists mk >O and nk > O satisfying [P1x(u)- P1x·(u*)] < m2 

[P2x•(U)- P2xu)] and [%· (u*)- %(U)] < n2 [%(u)- % •(u*)], \f(x, y, u) E XY, where {P1x(u) > 

P1x·(u*) , %(U) < % ·(u*)}, { P2x(u)<P2x(u*), %(u)>q2y· (u*)} . 

Then the corresponding member of SMFCP which is to be maximized is the following: 
i=2 

MaximizeJ~y(u)= L (m;p;x(u)-n; q¡y(u)); m2 >O, n2 >O, m1 =1 , n1= 1. 
i= I 

For this problem, Hamiltonian is taken as 

where (A.;, A.';) is the co- state vector to be determined suitably. 

Now applying Pontryagin's maximum principie and simplifying, we get 

. 8H [ 8f (x) ] -A, =--=-m.[2Q x ] - A, x--+ 1'.(x) - r.u . - -m[2Q x ]- W'xA, 
i ax. 1 jl l l 1 ax. J i 1 l l )1 l n .¡ 1 1 

' ' 
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= - 2m; (Q¡¡ + Q2; )x; - K; X; A; = C; A;+ O;; C;= - K; X;, O;= - 2m; (Q1; + Q2; )x; 

,i '; = - aH = + n[20'y. ] - x' [ Y· ag; (y) + g . (y)- su l = n.[20'y. ]- K';y;A.'; cy¡ 1 - Jl 1 1 l cy¡ 1 l l l - 11 l 

As for steady state solution, we get K;x; (a; - X;) - r;u;x; = O, 1 = 1,2 , so we obtain 

,i ; = C; A.;+ O;; C;= - K;x;, O;= - 2m;(Q¡¡ +Q2; )x; (7) 

Solving (7) , we have, as a particular solution, 

(8) 

A . f . H 8H gam or rnax1rnurn , - =O, for sorne u* E (a;, b;). Frorn this, it follows that 
Ou¡ 

(9) 

Considering equilibriurn solution as the optirnal solution, we have u* given by 

u;*= f;(x*)/ri = gi(y)/s; (10) 

Using the values of A.; frorn (8) and u*; frorn (10) in (9), we have optirnal x* = (x*1 , x*2, x*3) 

given by the positiva roots of the equations (under sorne restrictions on the pararneters) 

(R11 + R21 )K1(a 1 - x1*)-r1
3 (x1*) m1(Q11 +Q21 )x1*=0 

3 
(R12 + R22 )K2 (a2 - X2 *) - r2 (x2 *) m2 (Q12 + Q22 )x2 * = O (11) 

Proceeding sirnilarly we find the optirnal value of y*= (y*1, y*2, y*3) given by the positiva 

roots of the equations (under certain restrictions on the pararneters) 

(R11 + R21)K;(fJ1 - y1*)+s1
3 (y1*) n1(Q;1 + Q~1 )y1 * = 0 

(R12 + R22 )K~ (/32 - Y2 *) + S2 3 (Y2 *) nz CQ;2 + Q~2 )Y2 *=O (12) 

Now using the value of either x* given by (11) or y* given by (12), we can find the value 

of u* frorn (10). Thus the given 2 th entry properly efficient MOFCP is solved out. 
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