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MULTI-OBJECTIVE OPTIMAL CONTROL PROBLEM

D. K. Bhattacharya & T. E. Aman

Abstract

The paper first considers a general multi-objective optimal control problem and obtains a
necessary and sufficient condition for the existence of solution of such a problem. It
shows that the solution of such a problem reduces to finding out the solution of a single
objective optimal control problem of known type. Next similar investigations are made
with fractional multi-objective optimal control problem. Finally, by using the above
results, actual solutions are obtained for particular example of multi-objective optimal
control problem and that of multi-objective fractional optimal control problem.

1. Introduction:

Single-objective general optimal control problem is well known [1],[5],[15]. Pontryagin’s
maximum principle gives a necessary condition of optimality [16]. More specific
necessary conditions are the Legendre conditions [10]. For general linear quadratic
optimal control problem, conditions of optimality are more transparent [11]. Recently
such general linear quadratic problem has been studied in a newly developed abstract
space by the authors [2]. Special linear quadratic optimal control problems are more
interesting from the solution view point [11]. Further, in all such cases, examples are
available from physical as well as from biological world.

Again, if we think of constrained optimization problem and linear / nonlinear
programming problems, we see that such problems are well studied and moreover
vector generalizations of these problems are also well known [4] [9], [12]. These are
called vector maximization problem/ non-inferior solution problem /pareto- optimal
problem. Further, examples of such problems are available in many branches of
science, especially in Economics. Moreover such problems have also been generalized
in abstract spaces [3]. Lastly, fractional forms of such vector optimal problems have also
been studied [6], [13], [14].

So far as vector generalization of optimal control problems and also of fractional forms of
such problems, are concerned, it is noted that examples of such problems may be cited
from real world situations. But no attempt is made as yet to study such vector optimal
control problems. The paper attempts, for the first time, to formulate such problems, to
investigate their solutions, and to find out the actual solutions in suitable examples.

2. Multi- objective control problem and its solution.
2.1. Statement of a multi—-objective optimal control problem (MOCP).
Let x = f(x, u) be a dynamical system where x = x (t) € R", u=u(t) e Uc R°, U = (ai< y;

<b), te [0 t], f R"x NP »>N"is a c' — map; the initial condition is x = xo when t = 0. Let
the objective function be J,(u) = (J1x (U) , Jax (U),... ... Jmx (U)) Where

Jix (u) = J:' Fi(x, uydu (j =1, 2, ..., m) (the integral is supposed to exist for each j).
Then the muilti-objective optimal control problem is

optJ (1) = opt (Jix (U), Ja (U), ...... » Jmx (U)), YU e U
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2.2. An example of a quadratic multi—objective control problem

Let fish populations x; (1) (i = 1, 2,...,n) have growth equations given by x, = x; fi(x). Let
the harvesting efforts be ui(t). Let the harvest satisfy catch- per unit effort hypothesis [7].
Then the harvested model is given by

XM =xf)-a®)u®)x®),i=12..n,

where q; denote the catchability coefficients of x;,. Letu=(u), ai<u <b,i=1,2, ... , n.
Let a = (o) be the desired target for harvest x,. Then the deviation from the target of
harvest x is equal toy = g x - a , q = (g). Let the performing index be to minimize the
sum of two functions, one being || q x - a ||* under the weight functions Q(t) = (Qu(t))
and the other one being ||u||* under the weight functions R(t) = (Ras(t) ) : @, b =1,2,.....n.
SoifQ=(Q“ and R = (R, k=1, 2,....m, (m > 2),then there are m performing criteria

Joli) = [* [(r—a) Q" (gx—a) +u” Ruldt.

The problem is to minimize Jy(u) = (J1x (U) , Jox (U), ... ... Jmx (U)), Yu € U.
This is an example of a (M O C P), where the optimization depends on the choice of u =
u* and also on the choice of Ji (i= 1, 2,..., m) and optimization means minimization.

Remark 1: The above problem reduces to a standard optimal control problem if Q and
R are taken as identity matrices.

2.3. Geometrical meaning of an optimal control problem and a multi-objective
optimal control problem.

Let x= f(x, u), xe R", u eU < K", be a system of ordinary differential equations with
initial condition x = Xo, and let J = J:l F (x, u) dt be the objective function. Let the optimal
control problem be to optimize J(x, u) over u. Now the integral J is evaluated along each
integral curve of x= f(x, u), passing through x = x, corresponding to different choices of
u. So J: X -R, where X is the set of all (x, u) defining J(x, u). The solution of the optimal
control problem means the optimal value of the integral along a particular integral curve
X () = x*(t) through x = xo which corresponds to the choice of u = u* (called the optimal
control). This is why, for the sake of convenience, we write J as J(x,u) or J,(u) and
optimal J as J(x*,u*) or J,-(u®).

In a multiple objective control problem, the objective function is vector valued in nature,
due to the presence of some other functions like Q and R, as taken in the above
example. Naturally if the vector components of the objective function are taken as J1(u),
Joy(U),...... Jm(u) , then for one such Jy (u) (i=1,2, ...,m), all the objective values
corresponding to different choices of u evaluated along different integral curves through
X = Xo may be comparable. In that case, it is meaningful to say that Jj- (u*) is the optimal
value of the control problem, where x* = x*(t) is that integral curve through x = x, (called
the optimal x*) which corresponds to the optimal u = u*. But the same u* and x* may not
optimize all Ji (u) (i=1, 2, ..., m). There are three possibilities: (i) (x*,u*) maximizes all Ji
(u) (i=1,2, ...,m), (i) (x*,u*) maximizes some Jj (u) (i=1,2, ...,m) and minimizes the rest
Jix (u) (i) (x*,u*) maximizes some Jji (u) (i=1,2, ...,m), minimizes some Jj (u) and
neither maximizes nor minimizes the rest Ji (u). For meaningful discussion, we consider
the first two cases only. On similar ground, A. M. Geoffrion [9] and others gave some
meaning to vector maximization problems. We consider similar concepts for our vector
control maximization problem.
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2.4. Efficient and properly efficient multi-objective control problem.

Definition 1. Let a M O C P be stated as in 2.2 where the problem is a maximization
problem. Let X = {(x, u)}, where u eU and x is the integral curve of x= f(x, u) passing
through the initial point x =xp. Then (x*, u*)e X is said to be an efficient solution of MOC P
if there exists no (x, u) such that for all i (i= 1,2,....,m), Ji (u) < Jx- (u*) but there exists at
least one | (I =1,....,m) such that Ji (u) < Jy~ (U*), ¥V (X, u) eX.

Definition 2.

(x*, uv)e X is said to be a properly efficient solution of M O C P, if it is efficient in the
sense that there exists I = {ie (1,2,...,m) : Jx(u)> Ji(U*)}, L={ l€ (1,2,...,m) : Jy=(U*) >
(W}, ¥ (x, u) eX, (x,u)= (x*, u®), I UL = (1,2,..,m) and if there exists a scalar M > 0
such that for each icl, there exists some | e L, such that
Jxx (ll) - sz* (u*)

" <M, V(x,u)e X .
J - W*)=J, (u)
Definition 3.
(x*, u*) e X is said to be a k-th entry efficient solution of M O C P, if ke(1,2,..,m) such
that when Ji (u) > Jie (U¥), V(X,u) €X., then there exists at least one |e [%=(1,2, o, k-

1,k+1, ...m) for which Jy+(u*) > Jy(W)}, V (X, u) eX.

Definition 4.
(x*, u*) € X'is said to be a properly k-th entry efficient solution of M O C P, if it is a k-th
entry efficient solution and further if there exists a scalar My > 0 such that

Jo )= J (")

<M, V(xu)e X.
J o %)= J ()

We readily have the following propositions:

Proposition 1.
(x*, u*) eXis an efficient solution of M O C P if and only if (x*, u*) is a k-th entry efficient
solution for each ke (1, 2,..., m).

Proposition 2.

(x*, u*) € X is a properly k-th entry efficient solution of M O C P if and only if (x*, u*) is a
properly k-th entry efficient solution for each k € (1, 2,..., m).

Remark:

To discuss an efficient solution or a properly efficient solution of M O C P, it is sufficient
to consider a k-th entry efficient solution or a properly k-th entry efficient solution only.

2.5. Scalar maximum optimal control problem (SMCP) and multiple-objective
control problem (MOCP).

In general, we can always find a subset of the set of all K-th efficient solutions of MOCP

which are also K-th properly efficient solutions. In this connection, we need the idea of

131

realizada por ULPGC. Biblioteca Univ

g
|
B
a

4
£
£
3
£

£

g

£

3

8
3
2
o



k-th entry SMCP (scalar maximization control problem). Such problems consist of

problems of the form 4, ., ,Ae R.™ where a Mcp is defined as follows:

Letle K(=1,2,....k-1, k+1,......,m). Then the definition of a Aycp is:

Maximize [Ji(u) + >, Mdu(W)], ¥ (x, u) eX.

We now prove the following characterization theorem of k-th entry properly efficient
solution of MOCP

Theorem 1.

Every maximum solution of k-th entry SMCP is an efficient solution of k-th entry MOCP.
It is also a properly k-th entry efficient solution of the MOCP. Conversely, every properly
k-th entry efficient solution of a MOCP is an optimal solution of k-th entry Auce, for some
AeR™.

Proof: Let (x*, u*, A*) be the point of maximum of Ayce, for some A*cR,™", then

W+ M) S (W) + 30 AN (),
e, (i) - Jie(u sz ZIK b

If J x(U) - J oe(u®) > 0, then it follows that Z e Mid(u) < Z i N1 e(U).
Hence Z, o M) - J we(u*)) < 0. As &% > 0, so there exists at least one | K such

that J x(u) < J x=(u*), whenever J (u) - J +(u*) > 0. Hence (x*, u) is a k-th entry efficient
solution of MOCP.

Now we show that (x*, u*) is also a K-th entry properly efficient solution of MOCP. If not,
given any M,> 0, we have, Jiu(U) - Jie(U*) > My [J pe(U*) - d i(U)], V' | € K and V(x, u) eX.

As A* > 0 are given in hycp, SO We choose accordingly M= (m-1) max 1%, le K. Then

summing up from 1 to m-1, we have,

J oY) - J joe(U¥) Z, o MY el J w(u)]
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e, Jio(U) + D e M) > i) + ) A (), V (%, U) eX

.This is a contradiction as (x*, u*) is a maximal solution of Aycp. Hence (x*, u*) is properly
k-th entry efficient of MOCP, with M= (m-1) max A*, e K.

Conversely, let (x*, u*) be a properly k-th entry efficient solution such that

Ji(U) = Jiser(U*) < My [J=(u*) -d i(u)] , for at least one le K and v(x, u) eX., where for
each such |, Jy+(u*)- Jx(u)>0,l € K . Hence if we choose A*= (11,...., Mg 1,.1) € ™"

where My occurs in the k-th place, then Jix(u)- Jie(U*)< z g M () = w(U)]-

e, J iUt D o M) < d (W) + Y, A e(U), V(x, u) €X. Hence (x*, u*, A¥),

is an optimal solution for the member Ayce of SMCP where A*= (1, 1, ... . , M, 1,.1) .
This completes the proof.

2.6. Procedure to evaluate optimal solution of MOCP

16n realizada por ULPGC. Biblioteca Uni

If MOCP is assumed to possess a properly efficient solution (x*, u*), then necessarily
(x*, u*) is @ maximum solution of some SMCP. As each such SMCP can be thought of
as a single objective optimal control problem, so necessarily (x*, u*) satisfies
Pontryagin’s maximum principle. Thus a working rule to find out the optimal solution of a
MOCP, when it exists, may be expressed in terms of finding out the optimal solution to a
suitable SMCP equivalent to the MOCP, by applying Pontryagin’s maximum principle.

This is illustrated in working out the following example.

Example
Letx, = x fi (x) — qi ui x;, fi(X) = -Ki x; (X -ai), 1 = 1, 2, be a system of differential equations,

q; are constants, u; =ui(t) are parameters, a; < ui(t) < b,. Let MOCP be to maximize (J;, J2)

over u, where Ji(x,u) I [(gx—a)" Q7 (gx —a) +u" R'uldt, o= (a4, a2)",

le O R]l 0 .
Q= 0 0 = 0 R =12 =12
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Solution:

Let (x*, u*) be a maximum solution of MOCP. We consider the 2-th entry efficient
solution where Jyy (U)-J1x(U*)>0, Joxr(U*)=Jax(u)>0 and Jy(U)-Jix-(U*)< My [Jo*(U*)= Jox(U)],
for some M, >0. Then the corresponding member of SMCP which is to be maximized is
Maximize J_ (u)= Jix (u) + My Joi (u), M, > 0, subjectto x, = x; fi (X) — qi u; x; (i = 1, 2).

For symmetry of expressions, we write J| (#) = MsJix (u) + Mz Ja, (u), M2 > 0, My =1.

For this problem, the Hamiltonian takes the form

H = M; [qi xi-00) 'Q (qi X -0 )+ " RV u] + pi [x fi(X) — 0 ui xi 1= M [Q i (i xi-o0) + Rj u?]
+p[xfix)—-qux]i=1,2 j=12

where (p1, p2) is the co- state vector which is to be determined suitably.

Now applying Pontryagin’s maximum principle, we get

. H
p,=—%=-M[ZqQ,,(q, 7 ai)]—Pi{ ; CAC )+f(X) qu }
0
= -2M,q,(0, + O, Ng;x, —@,) — P, [x, féix) +f,(X)-f1,ul
For the equilibrium solution, we have
ALy (1)
ql

For steady state solution, we use -K; x; (x;-o;) = 0, i = 1, 2 and obtain
pz =Ai Pi + Bi1 Ai= - K| Xi, Bi =- 2M,-‘I,- (Q], + Qz; )(qix,- _a;) (2)
Solving (2), we have, as a particular solution,

pi= — Zqui (Qh + Qz, )(q,x, _ax) (3)

Again for maximum H, gu—H=0, for some u* € (a;, b). From this, it follows that

1

2(R11+R21) u1*-p191x1=0, 2(R12+R22) Uz*-p202%2=0 4)
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From (1), u* is given by u*=fi(x*)/q; %)
Using the values of p; from (3) and u*; from (5) in (4), we have the optimal value of x* =
(x*4, X*, X*3) given by positive roots of the equations

(R + Ry)K, (@ = x,*) = ¢, (x,*) M, (Q)y + 0y Mgy X, *—,) =0

(R, + R)K, (@, = ,%) =4, (5,%) M(Q); + 05 )(4,%, *-,) =0 ©®)
under suitable choice of the parameters. Using this value of x* in (5), we get the optimal
u*. Thus (5) and (6) determine the optimal solution (x*, u*) of M O C P.

3. Multi- objective fractional optimal control problem (M O F C P).

3.1. Statement of Multi- objective optimal fractional control problem (M O F C P).

X\ _(fCu)) (x(0)) (x, . . . .
Let |  |[= , = be two systems of ordinary differential equations,
) \&.u)) \y©0)) \y,

where x = (x)), y = (yi), i = 1,2, ... ,n. Let the objective function be given by Jy (u)={(Ju,(u)}
q,(y,u)

and g, (u) being given by pi (W) = [ Fi(x wdt, gy (W= [ G (yu) ot LetXY

denote the set of all (x, y, u) for which Ji (u) is defined. Then MOFCP is defined as

where Jiy (u) 1,2, ... ,m; (gy(u) # 0), u being the control parameter, pi (u)

Maximize Ji(u), (i=1,2,.., m), Vue U.

3.2. Meaning of maximal solution of MOFCP

p..(u)

It is noted that if (x*, y*, u*) maximizes some Ji,(u) = ,(0=1,2, ... m), then it

"
may be assumed that pj«(u*) is the maximum and g;(u*) is the minimum value of pjy(u)
and ¢ (u) respectively. But the same (x*, y*, u*) may not maximize all Ji,(u). Hence to
make the MOFCP meaningful, we use a modified definition of efficient and properly
efficient point. These are parallel to the corresponding definitions which we have
considered in case of MOCP. But these are completely new compared to the earlier
definitions in the similar cases as considered by E. U. Choo [8] and others.

Definition 5.
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(x*,y*,u*) € XY is called an efficient point of MOFCP, if there exists no (x, y, u) € XY
such that forall i =1, 2, .., m, pix(u) > pi=(u*) and gy (u) < gy~(u*), but there exists at least
onel (=12, .., m)such that py(u) < py (U*) @and qy(u) > qy- (u*),v(x,y, u) € XY.
Definition 6.

(x*,y*, u¥)e XY is called a properly efficient point of MOFCP , if (x*,y*, u*) is efficient in
the sense that there exists I = {i : pi(u) >pi(u*) , Gy (u) <qy«(u*)}, Y(x,y,u) € XY, and L =

{1I: pu(u) < pe (U¥), Qy(u) > qy+ (UM} V(Xy,U) € XY, and further if there exists a constant

M>0 such that for each k in I, there exists one | ¢ K =(1,2,.,k—1k+1,. m)for which

{ D)~ Pu (u*)}{q@* )~ 4, (u)} <M

@y W) = ¥ | P @®) = p, ) |

Definition 7.

(x*,y* u*) e XY is said to be a k-th entry efficient solution of M O C P, if ke(1,2,..,m) such
that when pi(U) > pie(U*) , Quy(U) < qiy=(u™)}, V(X y,u) € XY, then there exists at least one

le K=(1,2,... k-1,k+1,.., m) for which{px(u)<pu(U*),ay(U)>y- (U")},¥(x, y, u) € XY.
Definition 8.

(x*, y*,u*) € XY is said to be a properly k-th entry efficient solution of M O FC P, if itis a
k-th entry efficient solution and further if there exists a scalar My > 0 such that

P ()= ppa (™) !:qky*(u*)_qky(u):|<M e &
@, )= g (@®) | p@®-p, )| "

We readily have the following propositions:

Proposition 3.
(x*, y*,u*) eXY is an efficient solution of MOFC P if and only if (x*, y*, u*) is a k-th entry
efficient solution for each ke (1,2,...,m).

Proposition 4.

(x*,y*, u*) e XY is a properly k-th entry efficient solution of MOFC P if and only if (x*, y*,
u*) is a properly k-th entry efficient solution for each k € (1,2,...,m).

Remark:

To discuss an efficient solution or a properly efficient solution of M OFC P, it is sufficient
to consider its k-th entry efficient solution or a properly k-th entry efficient solution only.

3.2. An example
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Let there be n varieties of fishes, for each of which, a fixed age is considered as its

mature stage and a fixed age is considered as its immature stage .Naturally the growth

rate of mature ones differ from that of immature ones. Obviously for the mature ones,

natural growth rate is less and loss due to intra-specific coefficient is also less; whereas

both are higher for immature ones. Let us denote the mature and immature varieties by x

= (x) and y = (y;), respectively, i= 1,2,....n . Let their growth equations under harvesting
=u(t) for time interval O to t; be given by

X=f(x, u), x (0) = Xo

y = g(ys u)> y (O) = YO.
Let the profits of selling i-th varieties of x and y (i= 1, 2,..., n) be given respectively by

)= [ Fxudt agw=[" Gy udt

Let the problem be to compare the ratios of py(u) and g (u) for i= 1,2,....,n (qy(u) # 0)
and to find the optimal one.
This is an example of a multi-objective fractional optimal control problem MOFCP.

3.3. Scalar maximum fractional optimal control problem (SMFCP) and multiple-
objective fractional optimal control problem (MOFCP).

In general, we can always find a subset of the set of all K-th efficient solutions of
MOFCP which are also K-th properly efficient solutions. In this connection, we need the
idea of k-th entry SMFCP (scalar maximization fractional control problem). Such

problems consist of problems of the form Au ycp, Wwhere a Au wcp is defined as follows:
Leth, pe R™ ke (12,.., m).Letle K(=1,2,....k-1, k+1,......,m). Then Aumce is to
maximize [P io(U) —dky(u Z ep (Mipx(U)- i qy(u)), YV (x, y, u) € XY.

We now prove the following characterization theorem of k-th entry properly efficient
solution of MOFCP

Theorem 3.

Every maximum solution of k-th entry SMFCP is a k-th entry efficient solution of MOFCP.
It is also a properly k-th entry efficient solution of the MOFCP. Conversely, every
properly k-th entry efficient solution of a MOFCP is a k-th entry maximum solution of
some A wep, A eR.™

Proof: Let (x*, u*, A*, u*) be the point of maximum of Aumce; then
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PGy (W Y, (A1 pw(U)- 1 Gy(W)

< [Pre(U*) =G (U D e (M1Pwe(U®) - % Qye(u¥))

L., [Prod)- Proc (U [ (U)- (W D" ¢ (1P 1y Gy (W)

<D e (1Pe(U®) - ¥ Qye(u?).

Let Pi(U)- Prae(U*) >0 and quy<(u*)- iy (u)> 0, for some ke(1,2, .., m) and V (x, y, u) € XY,
then - ¢ (Mipw(u)- 1w Gy(W) <D e (M1Pwe(U®) - w5 Qye(U¥)), ¥ (X, Y, U) € XY.

Hence D o Ar(Pu(W-pure))+ Y, ;o w9 (Qy(u)-q (W) <0.

As A%, u* >0, so there exists at least one | € K such that P i (U) - p xe(u*) <0 and
*q y<(u*) - q y(u) <0, whenever pi(u)- Pic-(U*) >0 and Qiy~(U*)- qiy(u)> 0

Hence (x*, y*, u*) is a k-th entry efficient solution of MOFCP.

Now we show that (x*, y*, u*) is a K-th entry properly efficient solution. If not, given any
My > 0, we have,

Pix () = P () {qk}'*(u*)-qky(u)}>Mk,VIe R,V (xy u)e XY,
qu(u)_qu*(u*) plx*(u*)_plx(u)

If we write My = my ng, then we can take [pix(U)- Pix(U*)] > My [Pie(U)- pu)] and

[Ay* (U*)- Qiy(U)] > Nk [Qy(u)- qy(u*)]. As A, u* > 0 are given in Aumcp, SO we choose
m= (m-1) max A* and n,i= (m-1) max p*, le K . Now summing up from 1 to m-1 gives
[Pec(U)- Proc(U] > Y, ¥ [Pre(U)- Pr)] @nd [y (U*)- Qiy(U)] > D, 1% [y (W)= Gye(U)]:
Adding we get

[Pro(U)- Proc(U™)] + [y (U*)- Qhy(W)] > D, A% [Pe(U)- PR(W] + D o 1 [y (U)- Qy(u¥)].

i.€, [PidU) =AW+ D o (A1P(U)- 1 Gy(W))

> [Proe(U*) =G (UT+ Y- o (K11 Pue(U?) = 14 Gy (U¥)), ¥ (X, Y, 1) € XY,
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This shows that (x*,y*,u*) is not a solution of Auwce, A1 eR.™" This is a contradiction.
Hence (x*, y*, u*) is a K-th entry properly efficient solution.

Conversely, let (x*, y*, u*) be a properly k-th entry efficient such that

{pkx(u)—pw(u*q{w*)—q@(u)

" " J <M, Y(x,y,ue XY, for at least one le f(, where
q,y(u)Aq,y*(u ) || P @®) = pi ()

each of py-(u) - pxu) and qy(u)- qy-(u*)] is positive, e K . Now taking M= miny, we get,
[Pioc(U)- Proc(U*)] < Mic [Pi=(U)- p)] @nd Gy (U*)- Quy(U)] < Nic [y (U)- Qy~(U™)]-
Hence if we choose A*= (1,1,...., m,, 1,.1), w*= (1,1,, n,, 1,.1), € R.™ where my, ng

occurs in the k-th place of A* and p* respectively, then
[P Poc(U)] < Y. o A [ose(W)- )], [Ghyr (U)- (W] <Y o 1i* [y (U)- Qye(u)]
So finally we get, [Pix(u)—qxy(U)]+ Z e (Mpw(u)- p*) ay(u))

< [Proe(U*) == (U Dz (K1 Pree(U) - ¥y Gy ()
Hence (x*, u*, A*,u*), is @ maximum solution of the member Apycp of SMFCP where A*=
(1,1,...., mg, 1,.1), u*= (1,1,, n,, 1,.1), This completes the proof of the theorem.
3.4. Procedure to evaluate optimal solution of MOFCP
If MOFCP is assumed to possess a properly efficient solution (x*, y*, u*), then
necessarily (x*, y*, u*) is a maximum solution of some SMFCP. As each such SMFCP
can be thought of as a single objective optimal control problem, so necessarily (x*, y*,
u*) satisfies Pontryagin’s maximum principle. Thus a working rule to find out the optimal
solution of a MOFCP, when it exists, reduces to finding out the solution to a suitable
SMFCP equivalent to the MOFCP by applying Pontryagin’s maximum principle This is

illustrated in working out the following example.

Example
Let X, = x,f,(x)-rux, =K ,x,(a, —x,)—ru,x,

yz :yigi(y)_slulyi :Ki,yi(ﬂl _yx)_s)uxyi’ i= 1’2’

be two systems of differential equations, a, i, r;, s; are constants,
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P = [ Q'+ Riud, gy = [ [V Q" y+u Riud, i=12,=1,2,

u;=uji(t), are parameters, a; < u(t) < b;, each of Q', Q% R'and R?is a2x2 matrix given by

0 R 0 0 R, 0
0 - O Rz 0 = ) L LR =[] Let XY be the
0 QJZ 0 Rj2 0 le O Rj2

set where p;«(u) and q,u) are both defined; Let the MOFCP be defined as follows:

P ()

]

Maximize J iy (u) = ,i=12, Yue U

Solution:

JLet (x*, y*, u*) be a maximum solution of MOFCP. We consider the 2-th entry proper
efficient solution, such that there exists my >0 and ny > 0 satisfying [pix(u)- pi(U*)] < M,
[P2c+(U)- P2xu)] @nd [Qay- (U*)- Quy(U)] < Nz [Qzy(U)- Gay+(U¥)], (X, y, U) € XY, where {p,(u) >
Pre(U) , Qry(U) < Quy (U}, {P2(U)<P2x(U), Qzy(U)> Gy (UF)].

Then the corresponding member of SMFCP which is to be maximized is the following:

Maximize /| (u)= Z (Mipix (u) = Ni gy (U)); M2 >0, N >0, my =1, ny= 1.
i=1
SUbJeCt tO x K x (a x;)_rluixi yi= Klryz (ﬁl _yx)_szuzyz

For this problem, Hamiltonian is taken as

H=mi(x"Q’x+u" R'u)-ni(y Q7 y+u"Ru) + N [x,f,(x)—ru,x, +X; y.g,(y)—su,y,
=mi (X" Q’x+u"R'u)-ni(y" Q" y+u"R"u)
+ MK x (o, —x,)—rux,*NiKy, (B, —y)-suy, i=1,2/j=12.

where (A;, \';) is the co- state vector to be determined suitably.

Now applying Pontryagin’s maximum principle and simplifying, we get

i :_gxi:_m[zQﬂ x, 1-4, 6f(x)

i

=+ fi(x)—ru, | =-m[20 ,x, ]- K

=i
i
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== zmz (Q]I +(,)21 )X,‘ K|X| )\’i = Ci }\‘i+ D" Ci: - KiXi, Di=_2mi(Qli +Q2i)x1

’ ~

3 CH ’ ! a x( ) ! ! !
AimmTmm 20,y 14, 7, B2 g ()= s, |= n[20y, 1- Ky,

-~

= 2”1 (Q]: + Q;I )y1 'K,,yl )\"i = C'i )‘-i + D’i ) C,i= - K'iYi, D'i= 2}’11 (Q{I + Qéz )yz .

As for steady state solution, we get K x,(a, —x;)—ru,x, =0,1=12, so we obtain

A= Ciri+ D;; C=- K; Xi, Di=— 2m,. (Q“ +Q2,.)x,. (7)

Solving (7), we have, as a particular solution,

h= - 2]’)’1, (Qn +Q:, )X, (8)

Again for maximum H, ?lﬂ=0, for some u* € (a;, b). From this, it follows that
u

2(R41+R21) us*Aq 11x4=0, 2(R12*+R22) Up*-Az 1%,=0 9)
Considering equilibrium solution as the optimal solution, we have u* given by

ur= fiX)/r = gily)/si (10)
Using the values of A;from (8) and u*; from (10) in (9), we have optimal x* = (x*;, x*2, x*3)
given by the positive roots of the equations (under some restrictions on the parameters)

(R]l +R21)K1(a1 _xl*)_r13(x1*) ml(Qll +Q21)x1* =0
(R, + Ryy)K, (a, _x:*)_rzs(x:*) m,(Q, +0y,)x,*=0 (11)

Proceeding similarly we find the optimal value of y* = (y*4, y*,, ¥*3) given by the positive

roots of the equations (under certain restrictions on the parameters)

(R, + R, )K(B, *yl*)+sl3(y1*) "1(Q1’1 +Q;1)y1* =0
(R, + Ry)K (B, - y,*) + 523(J/:*) (0, +05,)y,*=0 (12)

Now using the value of either x* given by (11) or y* given by (12), we can find the value

of u* from (10). Thus the given 2 th entry properly efficient MOFCP is solved out.
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