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An elementary explicit example of unbounded limit behaviour
on the plane

JOSE SABINA DE LIS

Departamento de Analisis Matematico, Universidad de La Laguna.

Abstract. An academic new example of two-dimensional planar dynamical system is con-
structed to describe a very well-known fact. Namely, that unbounded semiorbits could gene-
nate nonconnected w-limit sets (see [Hl], page 48).

1. Introduction. The concept of w-limit set was introduced by D. Birkhoff (cf. [Bi]).
For a differential equation in R"

' = f(z) (1)

the w-limit set of a certain solution or semiorbit ”summarizes”, roughly speaking, the
asymptotic behaviour of such a solution. If z = z(t) is a solution to (1) definedin ¢t > t,, a
z € R" is said to be an w-limit point of z(t) (see [Bi], [Hl]) if there exists {t,}, t, — oo, such
that z(t,) — z. For a fixed solution z = z(t), or better, for the semiorbit y = {z(t)/t 2 t,}
attached to z = z(t), A*(7) usually designates the set of w-limit points of 7. As a possible
reliable picture of a physical phenomenom it is clear that a major emphasis must be put in
the study of A*(y) when v is a bounded semiorbit to (1). In bounded regions of R? with
finitely many critical singularities of (1), the structure of A*(7) for semiorbits v liying in
such regions, is given by the celebrated Poincaré-Bendixon Theorem (see [Ha|,[Hl]). In R"
the more general information about A*(7), for v bounded, is that contained in the next
result (see for instance [HIl] page 47)

THEOREM.
If v = {z(t)/t > t,} C R™ is a bounded semiorbit to (1) then A*(y) is a nonempty,
invariant, compact and connected set.

Even in R? it is sometimes hardly possible to add a bit more to the general asserts given
above about A*{7) (see for instance the Lorenz’s system in [GH]).

It is also well-known that the connectedness of A* () is a consequence of the boundedness
of v. Here we will focuss our attention in this precise fact. When A*(7y) contains two
points z1, 27, the semiorbit y will meet infinitely many times every pair of arbitrarily small
neighbourhoods Uy, U of z; and z; (respectively). Boundedness of v will imply that z
and z; will be ”"connected” into A*(y). The objective of this note is giving an ezplicit
example in R? that such connectedness is lost when 7 is unbounded. Obviously, this fact
is well-known since long (see for instance [HI] page 48). Moreover, after thinking on it for a
while, it is not difficult to arrive to the conclusion that a picture of such an orbit 4 shuold
be more or less as shown in figure 1.

What is presented in this work is a class of equations that make precise in an explicit
and analytic way this kind of behaviour.
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2.The results.

Let w0 = @o(y) € C!([0,+00)) such that ,(0) = 0, ¥o(y) > 0 in y > 0, and also
that limy .4 ¢o(y) = 0. Suppose, without loss of generality, that max,>o |¢,(y)| < 1.
Designate by ¢ = ¢(y) the odd extension of ¢, and call & = max,>o |¢,(y)|. A simple
example of such a function is

__ Y

IR Y\ )

¥

M

figure 1
Consider now the following class of equations
¢ =y(1-2?)
2
{y'=¢(y)~z- @)

It will be shown that the w-limit set of every semiorbit v starting at (z,,y,) # (0,0),
z2 < 1, exactly consits of the lines {z = 1}U{z = —1}. Let us first introduce the following
regions,

I'={(z,y)/y > 0,¢(y) > z},
IT = {(z,y)/y > 0,0(y) < z},
IIT = {(z,y)/y < 0,9(y) < z},
1V = {(z,y)/y < 0,¢(y) > z}.
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The first fact to be proven below is the rotation around (0,0) of the solutions to (2)
lying in the strip (—1,1) x R.

LEMMA 2.1.

Let (z(t),y(t)) be a noncontinuable solution to (2) with initial position (z,,y,) €
(=1,1) x R and maximal existence interval (a,w). Then w = +oo and (z(t),y(t)) pass
through the regions I, II, III and IV —following this ordered sequence— arriving again in
finite time to I and repeating this sequence infinitely many times.

Remarks.

a) In Lemma 2.1 the initial data (z,,y,) could be taken in either of the regions II, III or
IV. Then, the orbit starting at (z,,y,) will cross trough the remaining regions in a cyclic
and ordered way.

b)For v = (v1,v2), v1 # 0, v? + v3 = 1 let us define
'y = {(sv1,sv2)/s >0} NA

where A designates any of the regions introduced above. I', can be ordered in the nat-
ural way regarding s. Lemma 2.1 allows us defining the Poincaré map n (see [Ha], [Hl])
over I'y. In fact, call (z(t,t0,Z0,Y0),y(t,t0,To,Yo)) the (unique) solution to (2) satis-
fying (z(0),y(0)) = (Zo,v0). If (zo,y0) € Ty then there exists 7(zo,y0) = min{t >
0/(z(t,t0,T0,Y0),Y(t,t0,T0,Y0)) € ['v}. From Lemma 2.1 it follows that 7(z,,y,) is de-
fined and positive whatever the choice of (z,,y,) € T, be. For (z,,y,) € I', define s by
the equality (z,,y,) = sv € T, write 7(s) = 7(z,,y,) and define o = o(s) by means of
ov = (2(7(8), To, Yo ), Y(7(8), To, Yo))- It is well-known that

m: r,-r,

sv — o(s)v

(the Poincaré’s mapping) is an increasing C' mapping whose (possible) fixed points give
rise periodic solutions to (2). In this case it also possible to show that II is also a C'!
difeomorfism. Notice that s belongs to the interval (0, ;) provided 32 < 0, meanwhile

> o1
I, could consist on several connected pieces if ;2 > 0. Designate by (a(v), lvl—ll) that one
the most separated from (0, 0). For simplicity let us also set a(v) = 0 when 2 is negative.

We can state the following result,

LEMMA 2.2.
For each v € R?, |v| = 1, v; # 0, define the interval I, = (a(v),ﬁ) and the C!
difeomorfism 7 ° L= L . Then, for each s € I, s < o(s). Moreover,
s — a(s)

a) Equation (2) does not exhibit limit cycles into (—1,1) x R.
b) For each s € I, limo™(s) = |vl—1|

The next result is the objective of this note and is a straightforward consequence of
Lemma 2.2.
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THEOREM 2.3.
For each (z,,y,) lying in the strip (—1,1) x R the unique semiorbit vy passing through
(xov yo)y
9f {(I(t’ To, yn)v y(t, Io»yo))/t 2 0}

goes off the origin (0,0) turning around this point infinitely many times and satisfying

AT(y) = {(z,y)/z = lor z=-1}.

3. The proofs.

3.1. The proof of Lemma 2.1.

First notice that the strip (—1,1) x R is invariant. Indeed, z = 1 and ¢ = —1 are orbits
of (2). Assume that (z,,y,) € I and let (z(t),y(t)) the solution starting at that point,
with maximal existence interval (a,w), then (z(t),y(t) leaves I at finite time. Otherwise,
(z(t),y(t)) € I and z'(t) > 0, y'(¢t) > 0 for each t € (a,w). However, since z(¢) < a for
each t then lim,_., y(t) = +oo. Indeed, y(t) can not be bounded. Otherwise, w = +oo,
which implies lim; .4 z'(t) = lim;— 4o y'(t) = 0 what contradicts z(t) > z,, y(t) > y,
for each t. Therefore, lim,;_,, y(t) = +o00. But lim,_, y(t) = +0oo entails w = +o0 since,

v =(y) — =(t)

< ely) — 2o
<e(y) -1
and the solutions to z' = ¢(z) — 1 do not blow up since f;m ‘p(:)_l = +4o00. Therefore

we must conclude that lim;_. 4o y(t) = +00. However w = +o00 and the fact z(t) < a for
t > t, imply lim, .4 z'(t) = 0. On the other hand

2'(t) = y(t)(1 - 2%) 2 y(t)(1 - a?)

for t > t,; and limy— 400 y(t)(1 — @) = +oo . Thus (z(t),y(t)) must leave I at finite
time. In other words, there exits t; € [0,w) such that z(t1) = ¢(y(t1)) which implies
(z(t),y(t)) € II for t = t; + €, and certain positive small enough e. In fact, z'(t;) =
y(t1)(1 = 22(t1)) = y(t1)(1 — @(y(t1))?) is positive and the function A(t) = z(t) — p(y(t))
vanishes at t = ¢; with A'(t;) = z'(t;) — %f(y(tl))y’(tl) = z'(t;) > 0. Thus, the existence
of € is proven.

Next, designate by (z1,y1) = (z(t1 + €),y(t1 + €)). We are going to show the existence
of t3 > t; + € such that 0 < z(t2) < 1, y(t2) = y2 = 0 and so that (z(t),y(t)) € II for each
t; < t <ty. To see this, set K = {y < y;} N II. Then, if necessary taking a smaller ¢,
(z(t),y(t)) € K fort; < t < t;+e We claim that a t, > t; exist so that (z(t;), y(t2)) €
0K . Otherwise w = +0o and we wolud have lim;—.4+0(z(t), y(t)) = (z2,y2) with z2 > z;.
However, monotonicity of both z(t) and y(t) would imply lim,_4(z'(%),y'(t)) = (0,0),
what is not possible. On the other hand, if t, = min{t/t > t1,(z(t),y(t)) € 0K} then
(z(t2),y(t2)) = (22,0) with 0 < z; < 1. In fact, observe that a part of K consist of
y = y1, other one consist of a piece of the graph z = ¢(y) meanwhile a third part consist

e
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of a piece of the orbit £ = 1. Because of the direction field of (2) the only piece of K
where the <4t points of (z(t), y(t)) can be located is just y = 0, as claimed (see figure 3).

Finally, since y'(t2) = —z; < 0 there exist t; < t3 < w such that (z(t3),y(t3)) € III.
Thus, it can be asserted that every solution to (2) starting in an arbitrary (z,,y,) € I reachs
the region III in a finite period of time ¢, after passing through the regions I, II. Therefore,
it is straightforward to show that every semiorbit v to (2) starting in (z3,y3) € III also
reachs the region I —after passing through III and IV~ in a finite period of time. In fact,
¢ = ¢(y) was chosen in order to (2) were symmetric with respect to (0,0). Specifically, the
orbit ¥ starting at (z,,y,) = (—z3,—ys) € I is the symmetric of v with respect to (0, 0).
This is due to the following fact ”(z(t),y(t)), t € (a,w), is a noncontinuable solution to
(2) if and only if (z1(t),y:1(t)) = (—z(t), —=y(t)), t € (a,w) is a noncontinuable solution to
(2)”. So, by the uniqueness of solutions,

Z(t, —Ty, _yo) = ‘I(t, ZTo, yo)
y(t, —To, —Yo) = —=y(t,%0,%0), t € (a,w).

%
| (24,%4)
(",vo) : A
]
A 1 l: K Y
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|
X (3,%)
| T
figure 8

Thus, every semiorbit v starting in (z,,y,) € I finally arrive again in I after crossing
I,II,I1I1,1IV in finite time, as was claimed.

3.2. The proof of Lemma 2.2.

Firstly, it should be remarked that, in the cases where %f < 0 the orbits to (2) reach in
finite time the connected piece of I, most separated from (0, 0). To see this, it suffices with
emplouying the argument to be developed below, and concerning the Lyapunov function
V(z,y) = y* — log(1 — z?).

Now observe that for each v € R?,v; # 0,|v| = 1, there exists s, € (a(v), Ivl—tl) such

that s, < (s,). To see this let us observe that by replacing the solution to (2) (z(t),y(t))
instead of (z,y) in the (Lyapunov) function

V(z,y) = y* —log(1 — z?) (3)

we get, after derivation with regard ¢,

2 (V((t),¥(8)) = 2yp(y).
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On the other hand, observe that V' > 0 and is convex in the strip (=1,1) x R, V = 0 if
and only if y = 0. In addition, the restriction of V to every segment T', is an increasing
function of s, provided v, # 0. Therefore, the existence of a s, € (a(v), |"1_1|) such that
So < 0(s,) follows, in the case v, # 0. By continuity, and using again the behaviour of
V' the same holds true for the segments T',, v = 0. Own existence of V also entails that
o(s) # s for each s € (a(v), Ivl_ll) and for each v € R?, |v;| # 0, |v| = 1. This fact avoids the
possible existence of infinitely many closed orbits to (2), vn, whose intersection points with
the open segment (0,1) x {0}, say (z,,0), could converge towards the point (z,y) = (1,0).
We should observe that (2) is a perturbation of the equation (4) below (see remark a)),
which exhibits a continuum of periodic orbits "filling” the strip (—1,1) x R. Therefore, we
need to rule out the existence of such a family of closed orbits converging to the ”sides”
z = +1 of the strip. On the other hand, since the existence of a s; € (a(v), I"'l_ll) such
that s; < o(s1) would entail ~together with the own existence of s,— the existence of an
"intermediate” s, so that o(sz) = s, such kind of s; can not exist. Thus, s < o(s) for each
s and so, the sequence {c™(s)} is always increasing whatever the values of s € (a(v), lvl_xl)

and v be. As the limit § = limo™(s) exists it must necessarily be § = lvl_ll’ otherwise
o(8) = 8, what is not possible.
Remarks

a) Equation (2) is a perturbation of the equation
2 = y(1-2%)
il @)
Equation (4) exhibits a continuum of closed orbits filling the strip (—1,1) xR and surround-
ing (0,0). This can be easyly checked by using the first integral V(z,y) = y* — log(1 — z?).

b) If we call U(z,y) the right hand side of (3) -what is usually coined as the derivative of
V with regard to equation (2)- it is checked that the single point {(0,0)} is the invariant
maximal set contained into {U(z,y) = 0}. Therefore, by reserving the time ¢ in (2) and
using the La Salle’s invarianze principle (see [Hl], Theorem 1.3 page 316) we can complete
the picture of the phase portrait of (2) by asserting that

tl}Tw(z(t’ Imyo)v y(tvzov ya)) = (01 O)a
for each (z,,¥,) € (—1,1) x R.

¢) The assertion concerning A*(7y) in Theorem 2.3 is an inmediate consequence of the fact
limo™(s) = ﬁ on every segment [,
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(Este trabajo ha sido parcialmente desarrollado dentro del Proyecto CICYT INF91-74).

RESUMEN

En este trabajo disefiamos un algoritmo para calcular el minimo tamafio muestral
para el test de dos parametros binomiales.

Se contrasta Hy,=p =p,=p, frente H,=p =p,—A y p,=p,+A,
0<A < p,<1/2 con nivel de significacion (Error del primer tipo) menor que o y

funcion de potencia mayor que 1-f (Error del segundo tipo menor que B). Se
proporcionan unas tablas que definen la funcion de decision entre las dos hipotesis.

ABSTRACT

In this paper, we design an algorithm to calculate the minimum sample size for
the two parameters binomial test.

We test Hy=p =p,=p, against H,=p =p,—A and p,=p,+A,
0<A < p, <1/2 with level of significance (Type 1 error) below o and power function

above 1-f (Type II error below ). We supply tables that define the decision function
between the two hyphotesis.
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