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Abstract :The aim of this paper is to introduce a new type of function called 6 — C
somewhat continuous function in a convex topological space is introduced earlier. Some
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its relationship with other types of function is investigated. In this paper we have discussed
a comparison between a # — C somewhat continuous function and somewhat continuous
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1 Introduction

The development of ‘abstract convexity’ has emanated from different sources in different
ways; the first type of development basically banked on generalization of particular problems
such as separation of convex sets [3], extremality [4]; [2], or continuous selection [10]. The
second type of development lay before the reader such axiomatizations, which, in every case of
design, express of particular point of view of convexity. With the view point of generalized
topology which enters into convexity via the closure or hull operator, Schmidt[1953] and
Hammer[1955], [1963], [1963b] introduced some axioms to explain abstract convexity. The

arising of convexity from algebraic operations and the related property of domainfitness
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received attentions in Birchoff and Frink[1948] Schmidt[1953] and Hammer[1963].

Throughout this paper the axiomatizations as proposed by M. L. J. Van De Vel in his
papers in the seventies and finally incorporated in Theory of Convex Structure [12] will be
followed.

In [13] the author has discussed ‘Topology and Convexity on the same set’ and introduced
the compatibility of the topology with a convexity on the same underlying set. At the very
early stage of this paper we have set aside the concept of compatibility and started just with a
triplet(X,7,C)and have called it convex topological space only to bring back’compatibility’in
another way subsequently. With his compatibility, however, VanDevel has called the triplet
(X,7,C) a topological convex structure.

It is however seen that in many cases where compatibility is expected our definition serves
the purpose.

In this paper, Art 2 deals with some early definitions and in Art 3, we have discussed
D —C space. Art.4 deals with § —Csomewhat continuous function and its basic properties. In
the last article a new type of convex topological space is introduced which is called strongly

C-regular space.

2 Prerequisites

Definition 2.1 [13] Let X be a nonempty set. A family C of subsets of the set X is called
a convexity on X if

1. o, X eC

2. C is stable for intersection, i. e. if D C C is nonempty then ND € C.

3. C is stable for nested unions, i. e. if D C C is nonempty and totally ordered by set
inclusion then UD € C.

The pair (X,C) is called a convex structure. The members of C are called convex sets

and their complements are called concave sets.

Definition 2.2 [13] Let C be a convexity on a set X. Let A C X. The convex hull of A is
denoted by co(A) and defined by
co(A)=n{C: ACCeC}.
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Note 2.3 [13] Let (X, C) be a convex structure and let Y be a subset of X. The family of

sets Cy = {C'NY : C € C} is a convexity on Y it is called the relative convexity of Y.

Note 2.4 [13] The hull operator coy of a subspace (Y,Cy) satisfies the following : VA C
Y : coy(A) =co(A)NY.

Definition 2.5 Let (X, 7) be a topological space. Let C be a convexity on X. Then the

triplet (X, 7,C) is called a convex topological space (CTS, in short).

Theorem 2.6 [5] Let (X,7,C) be a convex topological space. Let A be a subset of X.
Consider the set A,, where A, is defined as follows : A, ={z € X :colU)NA# ¢,z €U €
7}. Then the collection 7, = {A°: A C X, A = A,} is a topology on X such that 7, C 7.

A is said to be 7,- closed if A = A,.

Definition 2.7 [5] Let (X, 7,C) be a convex topological space. The space (X, 7,C) is called

7-C semi compatible if for every A € 7, A, is a 7,- closed set, i.e., if A € 7, then (A.). = A,.

Definition 2.8 [5] Let (X, 7,C;) and (Y, 0, Cs) be two convex topological spaces. A function
f(X,1,C) — (Y.0,Cy) is said to be

1. 6 — C-open if for each x € X and each nbd. U of z, there exists a nbd. V of f(z) in Y
such that V, C f(U,) and

2. 6 — C somewhat open if U € 7 and U # ¢, then there exists a V' € o such that V # ¢
and V, C f(U,).

3 D -C -space

Definition 3.1 A convex topological space (X, 7,C) is said to be a D — C -space if every
nonempty open subset of X is 7, dense in X i.e. if A(# ¢) € 7 then A, = X.

Note 3.2 From the above definition it follows that if a subset A is 7 dense in X i.e. A =X

then it is automatically 7, dense in X.

Theorem 3.3 If a function f: (X, 7,C;) — (Y,0,Cs) is § — C somewhat open injection and

Y is a D — C -space, then X is also a D — C space.
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Proof: let U be a any nonempty open set in X. Since f is # — C somewhat open there exists
a nonempty open set V of Y such that V, C f(U,). Again since Y is a D —C -space, V, =Y.
So we have Y C f(U,). Now X = f~1(Y) C f~'(f(U.)) = U. (since f is injective) and thus
we have U, = X. Consequently X is a D — C space.

Theorem 3.4 Let (X,7,C;) be a D —C space and f : (X, 7,C;) — (Y, 0,Cs) be a surjective
function. Then f is a # — C open iff it is § — C somewhat open function.

Proof: From the definition 2.9 of § — C open function and 6 — C somewhat open function it is
clear that if a function is # — C open then it is # — C somewhat open. To prove the converse
part, let z € X and U be any nbd. of z. Then 3 O € 7 such that x € O C U.Since X is a
D —C space, O, = X and then we have U, = X If we consider Y as a nbd. of f(z), then we
get, Y, =Y = f(X) = f(U). Hence f is § — C open function.

Definition 3.5 Let (X, 7,C) be a convex topological space. A subset G of X is said to be
a7, — C closed if (Int(G)). =G.

Definition 3.6 A convex topological space (X, 7,C) is said to be a # — C irreducible space

if every pair of nonempty 7, — C closed subsets of X has a nonempty intersection.

Remark 3.7 Every D — C space X is a # — C irreducible space.

Let H, G be two nonempty 7, — C closed sets. Then H = (Int(H))., G = (Int(G)),. since
Int(H), Int(G) are nonempty open sets and X is D —C space, (Int(H)), = X, (Int(G)), =
X. This shows that HNG = X # ¢. Hence X is 6 — C irreducible space.

The converse may not be true which follows from the next example.

Example 3.8 Consider the convex topological space (X, 7,C) where X = {a,b,c}, 7 =
{6, X, {a}{b,c}}, C = {0, X, {a}}.

Here (Ft{a})s = {a}e = &) (Int{B])s = du = b, (Int{ch)s = v = di{Tnt{,B}), = [}, =
x, (Int{b,c}). = {b,c}. = {b,c},(Int{a,c}). = {a}. = x. So nonempty 7. — C closed sets
are {b,c},X and {b,c}NX = {b,c¢} # ¢. Thus (X,7,C) is § — C irreducible space. Now
{b,c} € 7 and {b,c}, = {b,c} # X. Hence (X, 7,C) is not D — C space .
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Proposition 3.9 Let (X, 7,C) be a convex topological space which is 7—C semi compatible.
For any subset A of X | Int(A)). is 7. — C closed.

Proof: Let V = (Int(A)).. We will show that (Int(V)), = V.

Now Int(V) C V which implies that (Int(V)). C Vi = ((Int(A).). = (Int(A)). (since X is
7 — C semi compatible )=V.

Again let € (Int(A)). and 2 € U € 7. Now Int(A) C (Int(A)). which implies that
Int(A) C Int((Int(A)).. z € (Int(A)). = co(U)NInt(A) # ¢ = co(U)NInt((Int(A)).) # ¢
=z € [Int((Int(A)).)].. Thus we have V C (Int(V)).. Hence V = (Int(V)).,.

Theorem 3.10 Let (X, 7,C) be a convex topological space which is 7 — C semi compatible.
Then (X, 7,C) is not a § — C irreducible space iff 3 nonempty open subsets U and V of X
such that U, NV, = ¢.

Proof: Let X be not a § —C irreducible space. Then there exists nonempty 7, —C closed sets
A and B of X such that AN B = ¢. Since A and B are 7. — C closed sets, (Int(A)), = A
and (Int(B)). = B. Let U = Int(A) and V = Int(B). Then U and V are nonempty open
sets such that U, NV, = ¢. Conversely let there exist a nonempty open sets U and V' of X
such that U, NV, = ¢. Let A= U, and B = V.. Then A = (Int(U)), and B = (Int(V)).
(by proposition3.9) are nonempty 7, — C closed sets of X such that AN B = ¢. Hence X is

not ¢ — C irreducible space.

Theorem 3.11 Let f : (X,7,C;) — (Y,0,Cy) is 6 — C somewhat open injection where
(Y,0,Cy) is 0 — C semi compatible. If Y is § — C irreducible space then X is also a § — C
irreducible space.

Proof: Suppose that X is not a # — C irreducible space. Then there exists nonempty open
sets U and V of X such that U, NV, = ¢. Since f is § — C somewhat open function there
exists nonempty open sets G and H of Y such that G, C f(U,) and H, C f(Vi). Since
f is injective G, N H, = ¢. This shows that Y is not a § — C irreducible space-which is a

contradiction. Hence X is a § — C irreducible space.

4 @ — C somewhat continuous function

Definition 4.1 Let (X, 7,Cy) and (Y,0,C;) be two convex topological spaces. A function
f:(X,7,C) = Y,0,Cy) is said to be
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1. 6 — C continuous function if for each z € X and each open nbd.V of f(z), there exists an
open nbd. U of z such that f(U,) C V. and
2. 0 — C somewhat continuous function if V' € o and f~1(V) # ¢, there exists nonempty

open set U in X such that U, C f~4(V,).

Remark 4.2 From the above definition it follows that 8 — C continuity implies § — C some-

what continuity. But the converse is not always true which follows from the next example.

Example 4.3 Let X = {a,b,c}, 7 = {¢, X, {a,b},{c}}, Ci = {¢. X, {a,b},{c}}, 0 =
{6, X, {a},{c},{a,c}, {b.c}},Co = {0, X, {a},{c}}. Here theidentity functioni : (X,7,C;) —
(X,0,Cy) is § — C somewhat continuous function but not § — C continuous function. It is
clear that 1 is @ — C somewhat continuous function. Consider the point b € X. Now {b, ¢} is
nbd. of b =i(b) in (X,0,Cs) and in (X, 0,Cs), {b,c}. = {b,c}. Again nbd. of bin (X, 7,C;)
are X and {a,b}. In this space X, = X and {a,b}. = {a,b}. But {a,b} Z i""{b,c} = {b,c}

and X Z i~ '{b,c} = {b,c}. Consequently i is not § — C continuous function.

Theorem 4.4 Composition of two § — C somewhat continuous functions is again § — C
somewhat continuous function.

Proof: Obvious.

Theorem 4.5 Let f: (X,7,C;) — (Y,0,Cs) be a 6 — C somewhat continuous surjection. If
(X,7,Cy) be a D — C space then (Y, 0,C,) is also a D — C space.

Proof: Let V(# ¢) € o. Since f is surjective , f~(V) # ¢. As f is § — C somewhat
continuous function, there exists U(# ¢) € 7 such that U, C f~'(V,). Now X isa D —C
space. So U, = X. Hence Y = f(X) = f(U,) C ff'(V,) = Vi i.e. we have V, =Y. This
shows that Y is a D — C space.

Theorem 4.6 Let [ : (X, 7,C;) — (Y, 0,C2) be a #—C somewhat continuous function where
(X,7,Cy) is 7 — C semi compatible. If X is a § — C irreducible space then Y is also a § — C
irreducible space.

Proof: Let Y be not § — C irreducible space. Then there exist nonempty open sets U and V'
in Y such that U, NV, = ¢. Since f is § — C somewhat continuous, there exist nonempty
open sets G and H in X such that G, C f~'(U,) and H, C f~'(V.). This implies that
G.NH, C fY(U,)Nn fY(V.) = fFY(U.NV,) = ¢. This shows that X is not a 6 — C

irreducible space-which is a contradiction. Hence Y is a § — C irreducible space.
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Result 4.7 [5] Let (X, 7,C) be a convex topological space and A C X. Consider the convex
topological space (A, 74,C4) where 74 is subspace topology and C4 is relative convexity on

A. Then for any subset B of A, ((B).)™ C B,.

Theorem 4.8 Let f: (X,7,C;) — (Y,0,Cy) be a —C somewhat continuous function and A
be a dense subset of X. Then f: (A,74,Ca) — (Y,0,C2) is also 6 — C somewhat continuous
function.

Proof: Let V € o such that f~1(V) # ¢. Since f : (X,7,C1) — (Y, 0,Cy) is a § —C somewhat
continuous function, there exists U(# ¢) € 7 such that U, C f~'(V,). A is dense in X
implies that ANU # ¢. Now UNA € 74. By result 4.7 we have (UNA)74 C (UNA), C U,.
So (UNA)™ C U, C f~Y(V,). This shows that f : (A,74,Ca) — (Y,0,Cs) is also 6 — C

somewhat continuous function.

Theorem 4.9 Let f: (X,7,C;) — (Y,0,Cs) be a function where (Y, 0,Cy) is D — C-space.
Then f is 8 — C continuous function iff § — C somewhat continuous function.
Proof: For any function f : (X,7,C;) — (Y,0,Cy) it is clear that § — C continuity = 6 —C
somewhat continuity [by Remark 4.2].

Conversely let f be # — C somewhat continuous function and Y is a D — C-space.

Let x € X and V be open nbd. of f(z) in (Y,0,Cy). since Y is a D — C-space, V, =Y.
In (X,7,Cy), we take X as a open nbd. of z. Then clearly f(X,) = f(X) C Y = V..

Consequently f is  — C continuous function.

Result 4.10 Let (X, 7,C) be a convex topological space. Let A € 7. Then (A,)” C (A,)™.
Proof: Consider the convex topological space (X, 74,C4). We have to prove that (A,)" C
(A)™. Let x € A, and let V € 74 such that x € V € 74. Since V € 74, V = ANU for some
U € 7. This shows that V € 7. Now 2 € (A)" = coV)NA# ¢ = coV)NANA# ¢ =
coa(V) N A # ¢ [by relative hull formula] = = € (A,)™. Hence (A,)" C (A,)™.

Theorem 4.11 Let (X, 7,C) and (Y, 0,C;) be two convex topological spaces. Let A be an
open subset of X such that f: (A,74,Ca) — (Y,0,C;) is € —C somewhat continuous function
and f(A) is dense in Y. Then any extension F of f is # — C somewhat continuous function.
Proof: Let U be any open set in Y such that F~'(U) # ¢. Since f(A) is dense in Y,
UNf(A) # ¢ and FH(U)NA # ¢. Thatis f7/({U)N A # ¢. Since f : (A,74,Ca) —

(Y,0,Cy) is 6 — C somewhat continuous function and U € o with f=! # ¢, there exists
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V € 74 with V # ¢ such that (V,)™ C f~Y(U,) -(1). It is clear that V is open in X
as A € 7. Thus by result 4.10 we have (V,)” C (V,)™. Consequently from (1) we have
(V)" C (Vi)™ C fYU,) € F~Y(U,). This shows that F is # — C somewhat continuous.

Theorem 4.12 Let (X,7,C;) and (Y,0,Cy) be two convex topological spaces. Suppose
X = AU B where A andB are open subsets of X and f: (X,7,C;) — (Y, 0,Cy) is a function
such that f |4 and f |p are § — C somewhat eontinuous function. Then f is § — C somewhat
continuous function.

Proof: Let U € o such that f=1(U) # ¢. Then (f |4)"2(U) # ¢ or (f |g)""(U) # ¢ or both
(f1a)'(U) # ¢ and (f |5)7'(U) # ¢

Case 1. (f [a)7'(U) # ¢. Since f |a: (A,74,Ca) — (Y,0,Cy) is 6 — C somewhat continuous,
there exists V € 74 with V # ¢ such that (V,)™ C (f |4)~*(U,) € f~1(U,). AsV € 7 by
result 4.10 (V,)™ C (V,)™ C f~'(U,). This implies that f : (X,7,C) — (Y,0,C) is § — C

somewhat continuous function. Similarly for the other case.

Definition 4.13 Let (X,C) be a convex structure and let 7; and 75 be two topology on X.
Then 7, is said to be # — C weakly equivalent to 7, provided if U € 7y and U # ¢, then there
exists a nonempty set V' € 7, such that (V,)™ C (U,)™ and if P € 7, and P # ¢, then there

exists a nonempty set () € 7y such that (Q.)™ C (P,)™.

Note 4.14 Consider the identity function i : (X,7,C) — (X,7,C) and let 7, and 7, be
weakly equivalent. Let V € 7 such that i~}(V) = V # ¢. Then there exists U € 7, with
U # ¢ such that (U,)" C (V,)™? = (U,)™ C (V,)™? = i~'((V.)™). This shows.that i is § — C
somewhat continuous function. Similarly we can show that i : (X, 7,C) — (X, 71,C) is also
f — C somewhat continuous function.

Conversely if ¢ : (X,7,C) — (X,72,C) is § — C somewhat continuous function in both

directions then 71 and 7 are § — C weakly equivalent.

Theorem 4.15 Let f: (X,71,C) — (Y,0,C) be § — C somewhat continuous function. Let
73 be a topology on X which is § — C weakly equivalent to 7;. Then f: (X, 75,C) — (y,0,C)
is # — C somewhat continuous function.

Proof: Obvious.

Theorem 4.16 Let f: (X,7,C) — (y,0,C) be § — C somewhat continuous function. Let o,

be a topology on Y which is § — C weakly equivalent to o. Then f: (X,7,C) — (y,01,C) is
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also @ — C continuous function.

Proof: Obvious.

5 Comparison between §—C somewhat continuous func-
tion and somewhat continuous function

In this article we will show that a § — C somewhat continuous function is not necessarily a
somewhat continuous function and vice versa. Here we also show that there exists a special

type of convex topological space in which the above two concept coincides.
Example 5.1 Let X = {a,b,¢,d}, 7 = {¢, X, {b},{d}, {b,d}}, 1 = {9, X, {a,b},{c},{a,b,c}},
C =C = {¢, X} and consider the function f : (X,7,C) — (X,71,C;) defined by f(a) = ¢,

f) = a f(e) = ¢ f(d) = b. Here f is # — C some what continuous function but not

somewhat continuous function. Note that for any U € 7, in the convex topological space
(X,7,C), U. = X. Now {c} € 7y and f~'({c}) = {a,c} # ¢, but there is no V € 7 such
that V. C f~1({c}).

Example 5.2 Let X = {a,b,c}, 7 = {4, X, {a}, {b},{a,b}}, C = {4, X}, C1 = {9, X, {a}}

and consider the identity function f: (X,7,C) — (X,71,Cy). It is clear that f is somewhat

wttores. Digitalizacion realizada por ULPGC. Biblioteca Universitaria, 2017

continuous function. Now {b} € 7 and in the convex topological space (X, 7,Cy), {b}. =

{a,c}. Again in the convex topological space (X, 7,C) for any U € 7, U, = X. Thus for
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{b} € 7y, there isno V € 7 such that V, C f~!({b}.). Consequently f is not  —C somewhat

continuous function.

Definition 5.3 A convex topological space (X, 7,C) is said to be strongly C-regular space

if for any nonempty set U € 7 there exists a nonempty set V' € 7 such that V, C U.

Example 5.4 Let us consider the convex topological space (X, 7,C), where (X, 7) is discrete
topological space and C is defined by C = {¢, X} U{{z} : = € X}. then for any U € 7,
U, = U and thus (X, 7,C),is strongly C-regular space.

Example 5.5 Let R denote the set of reals and 7y be the usual topology on R. Here the
convexity C is defined as follows : A set C' € C iff for any two points a,b € C, the convex
combination of a, b must be in C' i.e. C is the standard convexity on R. Then it is clear that

(R, 7y,C) is a strongly C-regular space.
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Example 5.6 Any locally convex space (X, 7) is strongly C-regular space. Already we have
proved in [5] that in a locally convex space, if A = A then A = A = A,. Let V be any
nonempty open set in X. Since (X, 7) is regular space, there exists W € 7 with W # ¢,
such that W C V. So we have (W), = W C V. This shows that W, C (W), C V. So we see
that for any nonempty open set V' | there exists a nonempty open set W such that W, C V.

Consequently (X, 7) is strongly C-regular space.

Theorem 5.7 Let f: (X, 7,C;) — (Y, 0,C2) be a § —C somewhat continuous function which
is onto. If (Y,0,Cy) be strongly C-regular space, then f is a somewhat continuous function.
Proof: Let U € o with U # ¢. Then f~Y(U) # ¢. Now U € 7 and (Y, 0,Cs) is strongly
C-regular space so there exists W € o with W # ¢ such that W, C U. Since fis § — C
somewhat continuous function and f~'(W) # ¢, there exists V € 7 with V # ¢ such that
V. C f~Y(W,). This implies that V C V, C f~%(W,) C f~}(U). Consequently f is somewhat

continuous function.

Theorem 5.8 [ : (X, 7,C) — (Y,0,C;) be a somewhat continuous function. If (X, 7,C) be
a strongly C-regular space, then f is § — C somewhat continuous function.

Proof: Let U € o and f~1(U) # ¢. Since f is somewhat continuous function there exists
V € 7 with V # ¢ such that V C f~1(U). Again (X,7,C) is a strongly C-regular space
so for V € 7 there exists W € 7 with W # ¢ such that W, C V. This shows that
W, CV C fY(U) C f~4(U,). Therefore f is 6 — C somewhat continuous function.
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